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Abstract

The symmetry data of a d-dimensional quantum field theory (QFT) can often be captured
in terms of a higher-dimensional symmetry topological field theory (SymTFT). In top down
(i.e., stringy) realizations of this structure, the QFT in question is localized in a higher-
dimensional bulk. In many cases of interest, however, the associated (d + 1)-dimensional
bulk is not fully gapped and one must instead consider a filtration of theories to reach a
gapped bulk in D = d+m dimensions. Overall, this leads us to a nested structure of relative
symmetry theories which descend to coupled edge modes, with the original QFT degrees
of freedom localized at a corner of this D-dimensional bulk system. We present a bottom
up characterization of this structure and also show how it naturally arises in a number of
string-based constructions of QFTs with both finite and continuous symmetries.
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1 Introduction

Symmetry principles impose important constraints on the dynamics of physical systems. In

the context of quantum field theory (QFT) symmetries specify selection rules and constraints

on renormalization group flows. Recently, the notion of symmetry itself has undergone rapid

developments, especially with regards to the interplay between these physical principles and

topological / categorical structures which are just now being discovered and systematized.

When available, a particularly helpful tool in understanding the symmetries of a given

d-dimensional QFT involves the symmetry topological field theory (SymTFT) of the QFT. A

SymTFTd+1 is a (d+1)-dimensional TFT which captures the global categorical symmetries

of a d-dimensional QFTd. In this framework, one places the SymTFTd+1 on an interval which

splits the choice of global structure of the QFTd into two boundary states: there is a relative

QFT |Td〉 at one end of the interval and a choice of topological boundary conditions 〈Bd|

at the other end. Evaluating 〈Bd|Td〉 specifies the partition function for the initial absolute

QFT which is independent of the length of the interval as the SymTFT is topological.

This setup is best established for finite symmetries (see e.g., [1–15]), and there have also

been recent proposals on extending this framework to certain continuous symmetries (see

e.g., [16–20]).

Indeed, this general picture resonates well with the extra-dimensional structures present

in string-based constructions of QFTs. To obtain a QFT decoupled from gravity, one con-

siders a curvature singularity / stack of probe branes localized at a small region in a non-

compact extra-dimensional geometry X . Then, assuming that X is topologically a cone,

i.e., X = Cone(∂X), there is a natural radial direction which begins at the singularity and

extends out to the asymptotic boundary ∂X . Dimensional reduction of the stringy back-

ground on ∂X and dropping dynamical modes which decouple in the infrared (IR) results in

a (d+1)-dimensional symmetry TFT (see [13] as well as [21–30]). This provides a beautiful

match between top down and bottom up approaches to the construction of SymTFTs.

But string constructions suggest further generalizations of the SymTFT paradigm.1 A

common occurrence in many stringy realizations of QFTs is the presence of singularities

which are not isolated at a single point of X . This provides a general way to introduce

various flavor symmetries in the d-dimensional QFTd via a higher-dimensional “flavor brane,”

though more broadly this may simply be another higher-dimensional QFTD where D > d.

These additional singularities specify relative QFTs in their own right, and as such, tracking

just the radial direction of Cone(∂X) would naively result in a (d + 1)-dimensional system

1See e.g., [17, 20, 26, 31] for some recent string-motivated generalizations of the SymTFT formalism.
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with gapless degrees of freedom.2 Such gapless degrees of freedom are an indication that one

is not necessarily dealing with a bulk TFT, but a more general bulk / boundary system.

In a suitable scaling limit of a bulk theory Sd+1(g) in which various parameters / scales

are tuned / decoupled, one can expect to either reach a gapped or free theory. We shall

refer to the bulk system obtained after applying such a scaling limit as a symmetry theory

(SymTh), for now remaining agnostic as to whether we have a fully gapped bulk.3 Overall,

one can summarize this structure as a d-dimensional relative theory Td which sits at one end

of an interval filled by the symmetry theory Sd+1, with another boundary mode / boundary

condition Bd at the other end (which may or may not be fully topological). This results in

a decompression of the original QFTd in terms of the formal quiverlike structure:

QFTd TdBd Sd+1

(1.1)

In the special case where the symmetries are of finite type, Sd+1 is a TFT, and Bd speci-

fies gapped boundary conditions, but more generally, Bd might support gapless free fields

(especially in the case of continuous symmetries). Indeed, there is no guarantee that the

(d+ 1)-dimensional bulk is fully gapped, as naturally arises in many string-based examples.

Another comment here is that even in these cases, the structure of this decompression is not

unique; one can in principle make different choices for the bulk theory provided the resulting

categorical structures reduced to d-dimensions (such as the Drinfeld center) all match. That

being said, stringy constructions typically favor a particular canonical choice, and we leave

these choices implicit in what follows.

In the context of top down motivated constructions, Sd+1 is obtained from taking a limit

in a family of QFTs which we schematically write as Sd+1(g), i.e.:

Sd+1 = lim
g→0
Sd+1(g). (1.2)

2Of course, in terms of the impact of this sector on the QFTd, there is a decoupling limit one can first
take to remove the dynamics of this flavor brane in the QFTd, similar to the discussion in [19]. This becomes
especially subtle when d < 4 since the dynamics of the flavor brane can a priori also be non-trivial in the
IR. A careful treatment in this case then requires specifying a suitable order of limits for decoupling all
dynamics where the flavor brane is first decoupled. This can be achieved because the QFTs in question are
still localized on subspaces in the ambient target space.

3A more restricted version of SymTh was introduced in [20] which refers to the specific case of free fields
in the bulk. This can often be traded for a characterization in terms of a formal topological field theory with
non-compact gauge groups as in [16,18,19,32]. Here, we allow ourselves a more general perspective to cover
the different limits which can in principle arise. An additional comment here is that this is also what one
expects for a CFTd with a holographic dual, where the physical boundary condition of the symmetry theory
is itself “smeared out” to a bulk AdS (see, e.g., [17]).
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In particular, we can treat Sd+1(g) as a QFT in its own right. As such, it is natural to

ask whether it too has a non-trivial symmetry theory. Put together, then, there is another

symmetry theory governing the combined system of line (1.1).

Denoting by Td+1 the relative theory associated with the bulk theory Sd+1(g), we see

that there can be a symmetry theory Sd+2. Just as we decompressed the absolute QFTd in

line (1.1), we can now decompress Sd+1(g). In the absence of edge modes for Sd+1(g), i.e.,

considering this theory on a manifold without boundary, we have the decompression:

Sd+1(g)

Td+1

Bd+1

Sd+2

(1.3)

Continuing in this manner, we can continue to decompress the various Sd+m’s for m ≥ 1

until eventually we reach a fully gapped bulk. The existence of such a bulk theory is in

some sense guaranteed by the SymTFT formalism, and in the context of string /M-theory

backgrounds, d+m is bounded above.

What happens when we combine the decompression of the QFTd and its symmetry theory

Sd+1? In this case, we can decompress the bulk theory Sd+1(g) at the expense of introducing

an additional junction which connects to the original relative theories Bd and Td:

TdBd Sd+1(g) TdBd

Td+1

Sd+1(g)

Bd+1

J d Jd

Sd+1(g)
Sd+2

(1.4)

where here, we have the junction theories Jd and its orientation reversed counterpart J d

which fuse the triple Bd+1, Td+1,Sd+1 with different orientations (see [26] for a discussion

of junctions). We comment that in the context of our string constructions, the junctions

Jd,J d turn out to be relatively innocuous. Now, we can contract the (d + 1)-dimensional

edges supporting Sd+1 colliding the junctions into Bd, Td producing the corners B′
d, T

′
d . In

the context of our constructions we will have Bd = B′
d and Td = T ′

d , but in principle this
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operation can alter corners. We present the process as:

Sd+1(g) TdBd

Td+1

Sd+1(g)

Bd+1

J d Jd

Sd+2 Sd+2

Td+1

TdBd

Bd+1

(1.5)

Observe, then, that the original Td now specifies a corner mode of a higher-dimensional

bulk. In this setting the relative theories Td+1 and Bd+1 now serve as edge theories which

merge at the Td corner.
4 Finally, it will be useful to disperse the original boundary condition

Bd as a gapped / free system which spans the edges far away from the Td corner. This

will decompress various distinct boundary conditions which are all subsumed into Bd. We

decompress as:

Sd+2

Td+1

TdBd

Bd+1

Sd+2

Td+1

Td

Bd+1

B

(1.6)

Here, on the right, we have indicated the different relative theories appearing as edges

and corners, and denoted the remaining boundary conditions collectively as B (a tuple of

two corners and an edge) which can in principle either be gapped or free. Compared with

the original decompression in line (1.1) with Sd+1 not gapped, we will have examples where

now Sd+2 is gapped. As such, standard manipulations of defects and topological symmetry

operators can now be carried out in this bigger system. We view this as a nested collection

of relative symmetry theories with corners, or perhaps more colloquially as a “cheesesteak”

construction.5

Now, once we have a fully gapped bulk symmetry theory, we can then proceed to track

how defects and symmetry operators push down onto the different edges, as well as the

corner theory Td. One consequence of this setup is that we can now explicitly track more

subtle features such as higher-group structures6 involving entwinement between higher-form

symmetries [44–46], even in situations where some of the constituent generalized symmetries

4Of course corners are not topological. The topologically invariant feature here is that both Bd, Td are
interfaces between Bd+1, Td+1 which are edges for Sd+2. Nonetheless we represent both Bd, Td as corners
with an eye on their geometric origin in string constructions.

5See, e.g., [33].
6See also [34–39] and [40–43].
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have continuous factors.

Our discussion thus far has focused on the symmetry theory from the perspective of the

relative theory Td. Alternatively, one can consider a bulk interacting theory such as Td+1

and then simply ask what happens if we consider a system with a defect inserted at the “end

of the world”. This defect will in general also support a non-trivial QFT, and so inevitably

there will be a non-trivial interplay between the symmetries of the bulk and that of the

defect. In this case, it will be useful to decompress line (1.6) further. Schematically, we

have:

Sd+2

Td+1

Td

Bd+1

B Sd+2

Td+1 Td

Bd+1

B̃

(1.7)

Here, in transitioning between the tuples B and B̃ we require that an interface between

two edges can be equally presented as two d-dimensional interfaces connected by a new (d+1)-

dimensional edge. The result of this final decompression are two symmetry sandwiches, an

absolute sandwich in dimension (d+1) and two relative sandwiches in dimension d (reading

structures vertically).

We summarize all (de)compression steps discussed in figure 1.

This picture naturally arises in stringy constructions, and this was indeed the initial

motivation for this work. To further support the utility of this perspective, we turn to some

explicit examples which illustrate these general features. A particularly prominent example

is the case of 5D SCFTs realized by M-theory on the singular background X = C3/Z2n

with group action generated by (z1, z2, z3) 7→ (ωz1, ωz2, ω
−2z3) with ω = exp(2πi/2n). This

geometry has a 5D SCFT localized at the origin z1 = z2 = z3 = 0, but also contains an

su(2) flavor symmetry factor along the locus z1 = z2 = 0. Observe that in this geometry,

the radial direction of X = Cone(S5/Z2n) contains a fixed locus, so a naive dimensional

reduction along ∂X would result in a gapless 6D theory in the candidate symmetry theory.

Transverse to this flavor brane there is still a gapped system, but this instead would have

been specified by reduction on a lower-dimensional space, i.e., ∂2X◦, the space obtained by

first excising the flavor brane from ∂X and considering the boundary of the resulting system.

Performing the reductions on the appropriate boundaries and “boundaries of boundaries”

all of the ingredients in line (1.6) appear.

As an additional example, we also consider the relative symmetry theory of N chiral

6



Sd+2

Td+1

Td

Bd+1

B Sd+2

Td+1 Td

Bd+1

B̃

Sd+2

Td+1

TdBd

Bd+1

Sd+2

Td+1

Td

Bd+1

B

Sd+1(g) TdBd

Td+1

Sd+1(g)

Bd+1

J d Jd

Sd+2 Sd+2

Td+1

TdBd

Bd+1

TdBd Sd+1(g) Sd+1(g) TdBd

Td+1

Sd+1(g)

Bd+1

J d Jd

Sd+2

QFTd

(iii)

(ii)

(i)

(iv)

(v)

TdBd Sd+1

Figure 1: We summarize the five (de)compression steps we consider. In (iii) we have assumed

simplifying assumptions for the junction theories.
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multiplets as engineered from the collision of singularities in a local M-theory background

[47–49]. In this case, we view the 4D chiral multiplet as a defect of a bulk “flavor brane”

system, which in principle has its own SymTFT. This case is especially subtle because of the

large number of symmetries which can act on free fields. As such, it provides an interesting

check on the formalism and the computation.

The geometric perspective also provides a systematic way to compute quantities of inter-

est in the original QFTd, including the structure of various discrete and continuous anomalies.

In the case of 5D SCFTs realized by singular M-theory backgrounds, we show how to account

for excisions of singularities in calculating triple products of (co)homology classes. This in

turn specifies more refined data on possible mixing structures present when dealing with

0-form and 1-form symmetries in these settings. We also illustrate these calculations in the

case of our system of 4D chiral multiplets coupled to a bulk gauge theory.

The rest of this paper is organized as follows. Though our approach is motivated by

string theory considerations, we begin in section 2 with a bottom up characterization of

relative symmetries theories, and in particular the nested structure which accommodates an

eventual filtration. We follow this in section 3 with a top down construction of this structure.

To illustrate these general considerations, we turn to some explicit examples in section 4.

Section 5 contains our conclusions. We present some additional details of the geometric

computations in appendix A.

2 Relative Symmetry Theories

In this section we introduce relative symmetry theories. The main idea is that the global

symmetries of a d-dimensional QFT can be captured in terms of a (d + 1)-dimensional

symmetry theory (SymTh). Treating the combined system as a (d + 1)-dimensional bulk

theory with a d-dimensional edge mode, we can also analyze the symmetries of this combined

system. The motivation for proceeding up in dimension in this way comes directly from

string theory where one often encounters an intricate collection of intersecting branes and

singularities which localize to produce a QFTd of interest. One can of course attempt to

“compress” all of this data into a single extra dimension, but this can obscure various

features of the bulk system, including global structures such as its spectrum of extended

operators as well as higher-categorical structures. One could in principle anticipate further

generalizations, but the construction we present matches well to expectations based on top

down realizations of QFTs.

This section is organized as follows. We begin by briefly reviewing symmetry theories,

8



and their use in specifying the absolute form of a QFTd. There is a natural uplift of this

structure to stringy backgrounds on geometries of the form X = Cone(∂X) where the extra

dimension of the symmetry theory is interpreted as the radial coordinate of the cone. Stringy

considerations also include cases where the radial direction is itself filled by an interacting

QFT, which can have its own symmetry theory. Unpacking this, we show how to lift the full

system to a nested collection of relative symmetry theories. In particular, we explain how

boundary conditions of the relative theories are correlated in this bigger nested structure.

2.1 Symmetry Theories

We now briefly review some aspects of symmetry theories. Our starting point will be to

discuss the best established case with finite symmetries, in which case we have a symmetry

topological field theory (SymTFT). We then turn to the case of continuous symmetries, as

captured by a symmetry theory (SymTh). As mentioned our definition of a SymTh is simply

a bulk system which captured the symmetries of the relative QFT localized on an edge. As

such, we permit ourselves to consider both gapped and free field theories in the bulk, and we

view both possibilities as obtained from a scaling limit of a possibly more complicated bulk

QFT (as often happens in stringy constructions). The main aim of our approach is to filter

this system further to produce a bulk theory which is fully gapped but which nonetheless

encodes the structure of different symmetries, viewed as boundary modes in a possibly even

bigger system.

To begin, we consider a QFTd with a collection of categorical symmetries. In the case

where these symmetries are finite there is a general construction available to capture the

global form of the QFTd in terms of an auxiliary (d+ 1)-dimensional symmetry topological

field theory SymTFTd+1 (see e.g., [1–15]). In this framework, the local / interacting degrees

of freedom are separated from the global structure of the theory by introducing suitable

boundary conditions on the SymTFT. One refers to the physical boundary conditions Td as

the relative QFT, and the gapped / topological boundary conditions as Bd. The boundary

conditions Bd dictate the global form of the theory, i.e., the spectrum of symmetry and defect

operators of the absolute QFTd. We can summarize this in terms of a decompression step:

QFTd TdBd Sd+1

(2.1)

in the obvious notation.

In this setup, q-dimensional heavy defects of the QFTd lift to (q+1)-dimensional defects

9



in the (d + 1)-dimensional system which stretch between the two boundaries Bd and Td.

Topological symmetry operators link / intersect with these defects and remain of the same

dimension when pulled from the d-dimensional boundary out to the bulk. Observe that

linking / intersection of defect operators with symmetry operators is consistent between the

QFTd and the bulk symmetry theory because the heavy defects have support along the extra

spatial direction.

One can in principle generalize this basic picture in many ways. For example, while the

best established case involves finite / discrete symmetries, there have been recent proposals

for how to extend this to the case of continuous symmetries [16, 18–20]. Notably, in this

broader setting, there can be subtleties concerning the dynamics of the (d+ 1)-dimensional

bulk system. This includes the appearance, for example, of non-compact gauge groups, as

well as a choice of a metric dependent regulator to make sense of the boundary conditions

and partition function.7 A related issue is that even if one demands that the bulk is gapped

or a collection of free fields, the structure of the boundary condition Bd which dictates the

global form of the theory also need not be gapped, i.e., it might also have free fields. Along

these lines, we comment that in many top down constructions the “bulk” often includes

interacting degrees of freedom. These additional bulk degrees of freedom can sometimes be

decoupled, but as far as we are aware, this need not be the case in general.

To illustrate some of these issues, consider a QFTd with a continuous flavor symmetry

given by a Lie group G. To track the effects of gauging, it is convenient to first introduce

a gauge theory but one in which the gauge coupling might have some dependence on the

interval direction r of the bulk system:

Lbulk ⊃ −
1

4g(r)2
TrF ∧ ∗F . (2.2)

Different choices for the position dependent profile of g(r) both in the bulk and the boundary

Bd (at r = ∞) lead to different possible bulk symmetry theories with boundary conditions.

One can view these as different choices for how to regulate the bulk symmetry theory. One

canonical choice is to take a limit where one tunes g2 → 0 so that one is only left with free

fields / possible topological terms. Another natural choice is to allow a non-trivial value at

Bd, at the expense of having some explicit metric dependence in the boundary conditions. To

a certain extent, taking such a limit is rather natural when the gauge theory is in (d+1) > 4

dimensions (since it always flows to weak coupling) but when the bulk gauge theory is in

(d+1) ≤ 4, the bulk might itself experience strong coupling dynamics. One must then tune

7Consider, for example, the case of classical 3D gravity formulated as a Chern-Simons theory with non-
compact gauge group [50].

10



the various scales to reach the desired bulk system with trivial local dynamics.

Rather than go this route, we shall instead opt for a different strategy to make sense of

the topological structure of continuous symmetries. Our aim will be to view Sd+1 as obtained

from a limit of QFTs Sd+1(g) via:

Sd+1 ≡ lim
g→0
Sd+1(g). (2.3)

We then will aim to instead construct the SymThd+2 for Sd+1(g). Iterating this procedure

multiple times, we expect to eventually filter the whole system to a bulk which is fully

gapped. From a top down perspective, this appears to be a more canonical way to proceed.

For example, in the explicit examples we introduce later, we will encounter a bulk gauge

theory which naturally has a position dependent coupling in the radial direction. A related

comment is that similar structures typically appear in holographic setups.

Focusing then on the bulk symmetry theory Sd+1(g), we now treat this as a QFTd+1 in

its own right. With this in mind, suppose that we did not include any “edge modes” at all,

i.e., we place the theory on a (d+1)-dimensional space with no boundaries. In this case one

can again take this absolute theory and decompress it:

Sd+1(g)

Td+1

Bd+1

Sd+2

(2.4)

Here Sd+2 is the symmetry theory describing the symmetries of Sd+1(g) and the dots indicate

the omission of edge modes. It is worth noting that this decompression step is not unique

since we can in principle distribute the gapped and free contributions to each boundary

system in different ways. From this perspective, one might simply wish to refer to both

d + 1 theories as “relative theories.” Suppose, then, that we make a different choice of

decompression of the form:

Sd+1(g)

T ′
d+1

B ′
d+1

S ′
d+2

(2.5)

For example, it could happen that a gapped TFT initially localized on Td+1 has now been

moved over to become a part of Bd+1. In this case, the two bulk theories Sd+2 and S ′
d+2
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may also differ. That being said, top down considerations typically lead to a canonical split

between these pieces.

Even more generally it can happen that Td+1 is a relative QFT with locally decoupled

sectors in the sense of [26]. Then the edge modes and the connecting symmetry theories are

disjoint sums of theories, and the latter interact only through the boundary condition Bd+1.

In this case it is more accurate to speak of decompressing Sd+1 into a SymTree with junction

Jd+1. This will be the case when we have multiple flavor branes in string constructions. We

will not dwell on this distinction and universally represent the decompression as in line (2.4).

We now ask how decompression of Sd+1(g) works when we consider it in the presence of

the original boundary theories Bd and Td. To this end, suppose that we only decompress

Sd+1(g) in the interior of our system. Doing so, we obtain:

TdBd Sd+1(g) TdBd

Td+1

Sd+1(g)

Bd+1

J d Jd

Sd+1(g)
Sd+2

(2.6)

In more detail, we now have trivalent junctions at the left and righthand sides, which we

refer to as Jd and its orientation reversed counterpart J d. These junctions fuse Sd+1(g) with

Bd+1 and Td+1. As explained in [26], these junction theories are typically non-topological,

but support free fields which serve to match the boundary conditions of other symmetry

theories / SymTFTs. In the explicit examples we consider later, it will also turn out that

these junction theories are trivial. As such, we shall not dwell on them further.

Now, with the decompression (2.6) in place, we can then proceed to compress back the

finite segments supporting Sd+1(g) which separate Bd and Td from their respective junctions:

Sd+1(g) TdBd

Td+1

Sd+1(g)

Bd+1

J d Jd

Sd+2 Sd+2

Td+1

TdBd

Bd+1

(2.7)

Here we have used the triviality of the junctions in identifying the corners with Td and Bd.

There are again some different choices we could have made in the treatment of these

corner and edge mode theories. For example, once we are dealing with distinct relative
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theories, we might instead have a decompression to:

S ′
d+2

T ′
d+1

T ′
dB ′

d

B ′
d+1

(2.8)

Namely, we redistribute the locations of some of the gapped and gapless degrees of freedom

for the different systems. This is primarily a matter of perspective, and hinges on whether

we are interested in the symmetry theory specified by QFTd directly, or whether we instead

want to view the corner theory T ′
d as a defect / corner mode in some bigger bulk system.

Equivalently, in the latter perspective the bigger bulk system T ′
d+1 is specified as initial

data, and in asking how its symmetries relate to the defect insertion T ′
d we should consider

decompressions which manifest T ′
d+1 as an edgemode, although other decompressions may

be available from a purely d-dimensional perspective.

Further, observe that in the treatment where T ′
d is considered as a defect theory (or

end of the world theory) in a given ambient bulk T ′
d+1, one might wish to view B ′

d+1 as a

symmetry theory S ′
d+1 (in the sense of line (2.5)) which carries only “partial information” of

the original symmetry theory Sd+1.

Geometrically we will find a collection of decompressions satisfying

T ′
d = Td , (2.9)

however with distinct data in dimensions (d+ 1) and (d+ 2) as in line (2.8). As such, some

of these distinctions will not play much of a role. Finally, observe that we can in principle

keep decompressing the bulk symmetry theory until we eventually reach a fully gapped bulk.

In the case just discussed, we have essentially assumed that this procedure terminates after

two steps of decompression, and we have handpicked our string examples such that this will

be the case.

2.2 Boundary Conditions

Having introduced a bulk theory Sd+2, we now turn to a discussion of boundary conditions.

We will need to deal with the boundary conditions for bulk fields near Bd+1, Td+1, as well

as the further specialization to the corners Td,Bd. We will reserve the main analysis of the
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Sd+2

Td+1

TdBd

Bd+1

Q

∂(Td+1)Q

∂(Bd+1)Q

∂2
(Bd)

Q

(i) (ii)

∂2
(Td)

QRr≥0

Rx⊥≥0

(iii)

Figure 2: Notational conventions and parametrization of the corner patch centered on Td.

corners to cases with a top down construction, as there Bd manifestly decompresses to the

tuples B or B̃ which we will characterize instead of Bd (see figure 1). For ease of exposition,

we specialize to the case where Bd+1 is gapped and Td+1 is gapless.8

To set conventions (see figure 2 for a summary), let Q be the (d+2)-dimensional manifold

with corners supporting Sd+2. It has two boundary components

∂Q = ∂(Bd+1)Q ∪ ∂(Td+1)Q (2.10)

where ∂(Bd+1)Q, ∂(Td+1)Q support Bd+1, Td+1 respectively. We abbreviate ∂(Bd+1)Q ≡ ∂(Bd+1)

and ∂(Td+1)Q = ∂(Td+1) and denote the restrictions to these as |Bd+1
and |Td+1

respectively.

The boundaries ∂(Bd+1)Q, ∂(Td+1)Q themselves have boundaries that are oppositely oriented

∂(∂(Bd+1)Q) = −∂(∂(Td+1)Q) , (2.11)

and support Bd, Td. We denote their supports as ∂2
(Bd)

Q as ∂2
(Td)

Q where we realize the no-

tation ‘∂2’ to manifestly and compactly emphasize the notion of “boundaries of boundaries”

(which is non-trivial when we have a space with corners).

Next, consider the local corner patch centered on Td and modeled on R≥0 × R≥0 ×Md

with coordinates r, x⊥, y. The edge ∂(Bd+1)Q is parametrized by x⊥, y and sits at r = 0,

the edge ∂(Td+1)Q is parametrized by r, y and sits at x⊥ = 0, and y denotes collectively the

coordinates of Md which is a copy of spacetime (see subfigure (iii) of figure 2).

8One might be tempted to always split up Bd+1 and Td+1 in this way. In the context of string constructions,
however, it sometimes happens that free U(1) factors also geometrically localize near Bd+1. That being said,
the considerations we present here naturally extend to this more general situation as well.
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2.2.1 Boundary Conditions: Sd+2|Td+1

Let us now turn to the boundary conditions involving restriction of the bulk modes of Sd+2

onto Td+1. Recall that in our simplified exposition, the gapped modes are on Bd+1 and the

gapless modes are on Td+1. The relative theory Td+1 is associated to the higher-dimensional

QFT Sd+1(g) (and its subsequent limit to Sd+1, as obtained from the decompression:

Sd+1(g)

Td+1

Bd+1

Sd+2

(2.12)

As such, we impose Neumann boundary conditions of the bulk Sd+2 fields near Sd+2|Td+1
.

Given the additional gapless degrees of freedom on Td+1 this is also known as enriched

Neumann boundary conditions in the literature [15]. In the string construction we will

consider, Td+1 is determined by a collection (possibly just one) of (KK-reduced) super-Yang-

Mills theories.

2.2.2 Boundary Conditions: Sd+2|Bd+1

We now turn to boundary conditions for Sd+2 near the gapped edge mode Bd+1. We ask how

bulk operators push onto Bd+1, the top edge in (2.12).

To set notation, we denote the electric bulk fields by a(i) and their magnetic duals by

ã(i), where i denotes an indexing of our fields. Denote similarly the electric fields of Bd+1

by b(j). We also allow for a non-trivial background value in this boundary which we write

as B(j). A general comment here is that while the fields of the theory Sd+2 must admit a

canonical electric-magnetic pairing, in the case of the relative theory Bd+1 this need not hold.

Restricting any bulk field to the boundary supporting Bd+1 yields the boundary conditions:

αs
ia

(i)
n

∣∣∣
Bd+1

= βs
j b

(j)
n + γs

jB
(j)
n (electric)

(
∂/∂r y λs

ia
(i)
n+1

) ∣∣∣
Bd+1

= µs
jb

(j)
n + νs

jB
(j)
n (magnetic)

(2.13)

where here we have allowed for a non-trivial background value B on the boundary, as a gen-

eralization of the Dirichlet boundary conditions one often imposes in the standard SymTFT

formalism. In the above, the subscripts n and n+ 1 on the fields denote the cocycle degree,

and α, β, γ and λ, µ, ν are integer matrices. The notation ∂/∂r y denotes the interior product
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with the unit vector field ∂/∂r associated to the coordinate r orthogonal to the boundary.

Both the bulk and boundary fields can be torsional and, in these cases, the matrices (and

equations) are only defined with entries in ZN for some integers N depending on the labels

i, j, s, n above.

The boundary conditions (2.13) give (affine) linear mappings:

En : {a(i)n } → {b(i)n }

Mn : {a(i)n+1} → {b(i)n } ,
(2.14)

and compatibility of the boundary conditions amounts to En and Mn respectively descending

to well-defined mappings with codomain cokerMn and cokerEn respectively so their images

do not overlap. Note further, that the cokernel {b(i)n }/(ImEn ⊕ ImMn) need not be trivial;

it characterizes the degrees of freedom of Bd+1 of the boundary system which are not fixed

by boundary conditions.

Finally, we note that boundary conditions for Sd+2 need to be complete. This amounts to

imposing a maximal set of compatible mixed Dirichlet and Neumann boundary conditions for

a
(i)
n and their magnetic duals ã

(i)
m (with n+m+1 = d+2 for discrete symmetries). Dirichlet

boundary conditions for a
(i)
n are dually described and equivalent to Neumann boundary con-

ditions for ã
(i)
m and, conversely, Neumann boundary conditions dualize to Dirichlet boundary

conditions. A compatible maximal set of boundary conditions can therefore be specified as

mixed Neumann / Dirichlet boundary conditions of the pair a
(i)
n , ã

(i)
m . As such the boundary

conditions (2.13) are equivalently given as9

αs
ia

(i)
n

∣∣∣
Bd+1

= βs
j b

(j)
n + γs

jB
(j)
n

λs
i ∗d+1 ã

(i)
m

∣∣∣
Bd+1

= µs
jb

(j)
n + νs

jB
(j)
n ,

(2.15)

The second line of the boundary conditions (2.13) expresses the boundary conditions for ã
(i)
m

in terms of a
(i)
n and ∗d+1 is the Hodge star along Bd+1. We will work with the boundary

conditions (2.13) as these will be manifestly read from geometry in our top down examples.

Note again that we have not introduced fields b̃ conjugate to b. This is because the fields

b do not characterize the degrees of freedom of Bd+1. Rather, the Bd+1 degrees of freedom are

characterized by the cokernel {b(i)n }/(ImEn⊕ ImMn) and we will encounter examples where

we can introduce conjugate variables corresponding to the dual of such an equivalence class.

9These considtions are written for discrete valued fields, if we consider abelian continous valued fields

then n+m+ 2 = d+ 2 and the second line would instead be λs
i ∗d+1 dã

(i)
m

∣∣∣
Bd+1

= µs
jb

(j)
n + νsjB

(j)
n .
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In the above parametrization these dual modes are subsumed into the {b(i)n }. Equivalently,

the fields {a(i)n }, {ã
(i)
m }, {b

(i)
n } over-parametrize the degrees of freedom of the system, and we

only identify electromagnetic pairs once identifications between modes have been realized.

With this we can also clarify some aspects of our mixed Dirichlet /Neumann boundary

conditions. In considering the pair Sd+2 and Bd+1, the path integrated fields include {b(i)n }

modulo the constraints of line (2.13). For example, turning all backgrounds off, bulk modes

not in the kernel of the maps En,Mn of (2.14) remain fluctuating and as such Bd+1 results in

Neumann boundary conditions for these. The bulk and boundary fields are identified but the

resulting mode remains fluctuating. True Dirichlet boundary conditions are imposed only

for bulk modes in the kernel of En,Mn (again with backgrounds turned off). This clarifies

the sense in which line (2.13) formulates mixed Dirichlet /Neumann boundary conditions.

2.2.3 Corners

In geometric string constructions of d-dimensional QFTs the d-dimensional degrees of free-

dom are usually localized in codimension larger than one. This will allows us to determine

a bulk symmetry theory Sd+2 such that Td simultaneously specifies boundary mode for Sd+1

and a corner mode for Sd+2. In general, the initial bulk-boundary systems given by Sd+1, Td

unfold to corners supporting some different theory T ′
d 6= Td and the geometric prescription

we give via string theory should be understood as a toolset to avoid this general case. In the

therefore special setups we consider the corner mode is fully specified by the boundary mode

Sd+1|Td, i.e., from this perspective by data in one dimension higher. An interesting issue

concerns the structure of anomaly inflow from our bulk system(s) to the boundary / corner.

There is clearly an inflow where we descend by one dimension at a time:

(d+ 2)→ (d+ 1)→ d . (2.16)

Based on the way we have constructed the bulk theory, observe also that there is no inflow

directly from the (d+2)-dimensional bulk to the d-dimensional corner; instead, we can always

factor through the intermediate edges of dimension d+1. Any inflow from dimension (d+2)

descending to dimension (d+1) then cancels when pushed further to dimension d by (2.11).

For this reason the main approach to characterizing corners we will take is to view them

simply as interfaces between edges.
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2.3 Defect and Symmetry Operators

We now use the above considerations to address how one constructs symmetry operators

and defect operators for the Td theory. As from the usual sandwich construction, applied to

the tuple Sd+2,Bd+1, Td+1, Td,Bd, we have simply:

{Symmetry operators of Td} ↔

{Operators of Sd+2, its edges Bd+1, Td+1, or Bd that do not terminate at Td}

{Defect operators of Td} ↔

{Operators of Sd+2, its edges Bd+1, Td+1, or Bd that terminate at Td}

(2.17)

However, there are some novelties that arise for this more general setup. To illustrate, we

begin with the standard decompression of an absolute QFTd involving its regulated SymTFT

/ SymTh Sd+1(g). In this setting, the topological operators of a SymTFT can in principle lift

to a more general class of defects which have some dependent on local metric deformations.

Even so, the passage back to the topological limit Sd+1(g)→ Sd+1 clearly still makes sense,

in which case we again arrive at topological operators. With this caveat stated, we now ask

how heavy defects and topological operators descend into the relative theory Td:

Sd+1(g) TdBd
Sd+2

Td+1

TdBd

Bd+1

(2.18)

On the left we can depict the support of defect and symmetry operators10 respectively as:

TdBd Sd+1 TdBd Sd+1

(2.19)

Here we have presented a generic defect stretching from Td to Bd and a generic symmetry

operator localized in the bulk Sd+1. We now apply (2.18) to (2.19) and note the various

possibilities, see figure 3 for defect operators and figure 4 for symmetry operators. Notice

that while some operators may appear as defects in the gapless Td+1 theory they can appear

as topological operators from the point of view of a Td observer.

10There are of course also more general cases where symmetry operator take the form of non-genuine
bulk operators, attaching back to Bd, see, e.g., [51, 52], which we will not consider here, however similar
considerations also hold there.
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Td+1

TdBd

Bd+1

Td+1

TdBd

Bd+1

Td+1

TdBd

Bd+1

Td+1

TdBd

Bd+1

TdBd

(i)

(ii)

(iii)

(iv)

Figure 3: We sketch the possible fate of defect operators under decompression.
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Td+1

TdBd

Bd+1

Td+1

TdBd

Bd+1

Td+1

TdBd

Bd+1

Td+1

TdBd

Bd+1

TdBd

(i)

(ii)

(iii)

(iv)

Figure 4: We sketch the possible fate of symmetry operators under decompression.

How does a symmetry operator linking / acting on a defect operator deform under the

decompression (2.18)? We use the labelling in figures 3 and 4 to list pairs. The symmetry

operator with support (i) can act on defects with support (i), (iv). Similarly (ii) can act on

(ii), (iv). The symmetry operator with support (iii) can act on defects with support (iii),

(iv). The symmetry operator with support (iv) can act on defects with support (i), (ii), (iii).

2.4 Example: 2-group Symmetry / Symmetry Fractionalization

We make the above considerations concrete in the context of two discrete fields bn, an and

we find that our discussion naturally incorporates the effects of symmetry fractionalizations

[53–56] and extension properties of 2-group symmetries. Let us first set the background field

Bn for bn to zero, then the possible electric boundary conditions are:

αan|Bd+1
= βbn . (2.20)
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We take bn, an to be discrete of order kn, ln, respectively, i.e., they are torsional cocycles

taking values in Zkn ,Zln. For (2.20) to be well-defined we require α, β to be multiples

kn/gn, ln/gn respectively with gn = gcd(kn, ln). These factors multiply both sides to take

values in Zgn which is the overall coefficient system of the equation. Bulk modes not taking

values in Zgn ⊂ Zkn, characterized by the quotient Zkn/Zgn
∼= Zkn/gn , are therefore not fixed

by these boundary conditions and we need to supplement (2.20) with boundary conditions

for the dual fields ãm.

We make the above constraints manifest and rewrite (2.20) as a condition in Zgn. Working

over the integers, we write:

α = α′kn
gn

, β = β ′kn
gn

. (2.21)

By abuse of notation, we also refer to the mod Zgn reduction by the same variables. Then,

we have:

α′a′n|Bd+1
= β ′b′n , (2.22)

now valued in Zgn , i.e., α
′, β ′ ∈ Zgn and a′n = (kn/gn)an and b′n = (ln/gn)bn. Next, introduce

g′′n = gcd(gn, α
′). Then the above multiplication by α′ has a kernel isomorphic to Zg′′n . We

consider the case with trivial kernel and set α′ = 1 which implies g′′n = 1. Further introduce

g′n = gcd(gn, β
′). Then the above realizes Dirichlet boundary conditions on a Zg′n subgroup

of a′n and outside of this subgroup specifies an identification of a′n profiles with boundary

profiles. Boundary modes taking values in Zgn/g′n are not mapped onto by the bulk, they

remain fluctuating.

Let us discuss the physics of the case β ′ = 1. The main idea will be to introduce a “naive”

and “true” symmetry, which we refer to as A and Ã for both the edge mode theory as well

as the bulk theory. The boundary conditions connecting Sd+2 with the gapped boundary

Bd+1 will result in a reduction in the naive symmetry to the true symmetry. With this in

mind, we define:

A(edge)
n

∼= Zβ=kn/gn Ã(edge)
n

∼= Zkn , Ã(bulk)
n

∼= Zln , A(bulk)
n

∼= Zα=ln/gn , (2.23)

which we can assemble into the long exact sequence familiar in the study of 2-groups (see

e.g., [39, 44, 57, 58]):

0 → A(edge)
n

×gn
−−−→ Ã(edge)

n

×ln/gn
−−−−−→ Ã(bulk)

n

mod ln/gn
−−−−−−−→ A(bulk)

n → 0 . (2.24)

To give a physical interpretation of this long exact sequence, introduce the topological op-
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erators

Uan = exp

(
2πi

kn

∫

Σn

an

)
, Ubn = exp

(
2πi

ln

∫

Σn

bn

)
, (2.25)

where Uan , Ubn are naive bulk and boundary topological operators built from periods of

an, bn respectively and Σn is some n-cycle. As we discussed in section 2.3, these topological

operators can be interpreted as symmetry operators for the Td theory assuming the support

of Σn is separated from that of Td.

Exponentiating the periods of the boundary conditions appearing in equation (2.20), we

get a relation between these naive symmetry operators:

Uα
an |Bd+1

= Uγ
bn
. (2.26)

Equivalently, pushing α copies of Uan into the boundary results in γ copies of Ubn . The

boundary symmetries described by Ubn are extended by the bulk symmetries described by

Uan . We then see that the group A(edge)
n describes symmetry operators which cannot be

deformed off the boundary, and are thus intrinsic to the relative theory Bd+1. Meanwhile the

group A(bulk)
n describes the bulk symmetry operators which do not admit an interpretation

as a symmetry operator of Bd+1 when deformed into the boundary, i.e., they are transparent

with respect to the boundary theory. The long exact sequence (2.24) connecting these groups

defines a class

P ∈ H3(BA(bulk)
n ,A(edge)

n ) , (2.27)

which precisely describes the Postnikov class of a 2-group which modifies the associativity

relation of A(bulk)
n symmetry operators [39, 44].

We can dualize the exact sequence (2.24) to:

0 → A(bulk),∨
n −→ Ã(bulk),∨

n −→ Ã(edge),∨
n −→ A(edge),∨

n → 0 . (2.28)

where the image of the mapping

Ã(bulk),∨
n −→ Ã(edge),∨

n (2.29)

specifies the bulk defect operators which can end on the boundary. Indeed as emphasized

in11 [58], the group Ã(edge),∨
n can be interpreted as an equivalence class of k-dimensional defect

operators modulo n-dimensional defect operators which can end on (n−1)-dimensional defect

operators which transform faithfully under A(bulk)
n . This in particular means that there are

11Technically [58] mentions the case of a 2-group involving the mixture of a 0-form symmetry and a 1-form
symmetry but their consideration generalize straightforwardly.
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elements in Ã(edge),∨
n which are endable, albeit on (n− 1)-dimensional defect operators that

transform projectively under A(bulk)
n .

Note that even if the Postnikov class of the 2-group vanishes, there can still be symmetry

fractionalization effects between the bulk and boundaries. In particular, if we have that

β = 1 and α > 1 in (2.26) then P = 0 but we still have the non-trivial effect that symmetry

operators from the boundary can fractionate when pulled into the bulk. Conversely, if α = 1

and β > 1, then we have that again P = 0 but we have that bulk symmetry operators can

fractionate when taken to the boundary.12

3 Top Down Approach

In the preceding sections we gave a bottom up discussion of symmetry theories on manifolds

with corners. We now proceed with a top down perspective, showing how for QFTs engi-

neered in string theory, the nested structures descend from the extra-dimensional geometry.

Throughout, we work on spacetimes of the form Rd−1,1 × X . Here, X is taken to be a

non-compact background, preserving some amount of supersymmetry in the d-dimensional

spacetime.13 Further, we require X to be asymptotically conical14 with radial coordinate r.

This assumption is a technical simplification and we expect our considerations to hold more

broadly. Concretely, we are interested in starting points in 10D (i.e., type IIA and IIB) or

11D (i.e., M-theory). The QFT will be localized along singularities

Rd−1,1 ×S0 ⊂ Rd−1,1 ×X , (3.1)

where S0 ⊂ X is compact. In examples S0 will often simply be a point of maximal codi-

mension in X . The d-dimensional QFT then follows from compactification on S0. In the

extra-dimensional geometry X the singularities S0 can either arise from a singular metric

profile (as in geometric engineering) or from branes probing a local geometry, which itself

might already have metric curvature singularities.

Going forward, we specialize to purely geometric backgrounds with exclusively metric

singularities. We consider cases in which S0 is of constant singularity type, i.e., there are no

singularity enhancements along S0. However, conversely, S0 itself will be an enhancement

12This is also why 2-groups with non-trivial Postnikov classes were once phrased as “obstructions to
symmetry fractionalization” in the condensed matter literature [53].

13This assumption can be relaxed permitting even non-supersymmetric backgrounds, see for example
[59–62] and references therein.

14Examples include Calabi-Yau orbifolds Cn/Γ and G2-holonomy orbifolds X7/Γ where X7 is a Bryant-
Salamon space [63] (see also [64]), non-Higgsable clusters [65] and many more.
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S0

S (j)

S (l) S (k)

S (i)

K (j)

K (k)K (l)

K (i)

X∂X

Figure 5: Sketch of a typical geometry X . The generic singularity S consists of multiple

irreducible components S (i) these meet at the enhancement locus S0 and stretch to the

asymptotic boundary resulting in K (i) = S (i)∩∂X . We refer to the S (i) as “flavor branes”.

within a generically less singular stratum S :

S0 ⊂ S ⊂ X . (3.2)

These additional singularities are taken to be supported on non-compact subspaces of X and

we will refer to their irreducible components as flavor branes. Whenever S has multiple

irreducible components we say that S0 arises at the intersection of flavor branes, but more

generally S0 is simply the locus along which the generic singularity of S worsens.

A representative example we will return to several times is the Calabi-Yau orbifold C3/Z2n

acted on according to (z1, z2, z3) ∼ (ωz1, ωz2, ω
2n−2z3) with weight vector (1, 1, 2n− 2) and

root of unity ω = exp(2πi/N). Here S0 is the point z1 = z2 = z3 = 0 and S is the locus

z1 = z2 = 0 which cuts out the flavor brane C/Zn ⊂ C3/Z2n supporting a singularity modeled

on C2/Z2. In M-theory the resolution of this geometry engineers, in an electric frame, an

SU(n)n 5D gauge theory with an SO(3) flavor symmetry and a Zn 1-form symmetry which

combine into a 2-group symmetry.15 The singular geometry engineers a 5D SCFT. The flavor

brane supports a 7D super-Yang-Mills theory twisted by the insertion of the 5D SCFT. The

twist is reflected in geometry via a monodromy transformation of the normal geometry C2/Z2

15In asserting that the 0-form symmetry is SO(3) we are neglecting contributions from both the R-
symmetry and the tangent bundle directions of the 5D SCFT. For example, including the R-symmetry
and tangent bundle structures, one could in principle have a global form for the symmetries such as
(SU(2)F × SU(2)R × Spin(4, 1))/Z2. This sort of correlated structure in the 0-form symmetries has been
observed in the related context of 6D SCFTs (see Appendix A of [66]). One reason to suspect such a corre-
lated structure for the global symmetries in this case is that a 5D N = 1 hypermultiplet transforms in the
(2,2,4) of the corresponding Lie algebra. As such, the centers are expected to be non-trivially correlated.
This will not impact the statements we make here, which exclusively focus on the su(2)F part of the 0-form
symmetry.
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when traversing a path linking the defect insertion in the flavor brane locus C/Zn.

This example already allows us to highlight important features which will be universal

in our top down analysis. Recall that in section 2 we started our analysis in d dimensions

and then, via iterated decompression, added dimensions one at a time. Each decompression

step was not unique and in decompressing a given QFT we in general had choices in how to

distribute its degrees of freedom across various edges. In contrast, in our top down discussion

the geometry X will specify a relative higher dimensional theory TD within which the Td is

realized as a defect theory where D > d.

This difference in starting point will have various natural consequences. First, in general

we will have D > d+1 and therefore we will consider an additional compactification of TD to

a KK-theory Td+1 to map onto our previous considerations in adjacent dimensions. Second,

the extra-dimensional geometry X will always specify a preferred decompression of the type:

Sd+1(g)

Td+1

Bd+1

Sd+2

(3.3)

where the stringy construction automatically comes with a regulated Sd+1(g). Here Td+1

is specified by the singularities S ⊂ X . This will also immediately identify Bd+1 as the

relative theory associated with modes which are not localized in X , i.e., so-called bulk

modes. Further, we find a family of decompressions with identical corner modes

S ′
d+2

T ′
d+1

TdBd

B ′
d+1

(3.4)

by varying how we cut up the geometry ∂X , which is associated to Sd+1. This allows us to

add some of the degrees of freedom localized to Bd+1 to Td+1 resulting in alternative edge

modes T ′
d+1 and B ′

d+1 while leaving the corners unaltered. This plethora of options traces

back to Td being localized in X in codimensions larger than one in all our examples.

Let us make some of the above explicit. In the example of M-theory on C3/Z2n we have

d = 5 and the TD is the D = 7 super-Yang-Mills theory to the su2 singular stratum. The 5D

SCFT is a codimension-2 defect within it and compactifying over circles linking the defect
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(i) (ii)

TD

Td
TdTd+1

B
(r,∞)
d+1 B

(0,∞)
d

BD

Bd

Sd+2 S ′
d+1SD+1 S ′

d+1

Figure 6: In subfigure (i) we sketch the sandwich of the bulk QFTD with inserted defect

QFTd. In subfigure (ii) we KK-reduce subfigure (i) to an open cheesesteak.

in the 7D theory we find a 6D KK theory Td+1.

Returning to the general case, we also have that, in principle, X can contain strata of

singularities of depth larger than two

S0 ⊂ · · · ⊂ Si ⊂ · · · ⊂ SI ≡ S ⊂ X , (3.5)

where 0 ≤ i ≤ I with I > 1. We immediately note that string theoretically engineered QFTs

are necessarily of finite depth (I + 1) ≤ dimX . The main features we wish to highlight are

already present when I = 1, and we therefore focus on this case going forward. See figure 5

for such a space X together with a typical singular locus S .

Now, in the above example we utilized the fact that the bulk 7D super-Yang-Mills theory,

playing the role of TD, is infrared free. This allowed us to take an IR decoupling limit such

that ultimately only the 5D dynamics of the SCFT were retained. The existence of such

a decoupling limit is by no means guaranteed, and is for example absent when considering

defects theories in an ambient higher-dimensional SCFT [67]. As such, in top down analyses

it is much preferred to start with the ambient system and discuss Td, which might be as

general as a quasi-SCFT [67], relative to it.

With this, the primary question shifts to: What is the symmetry sandwich of an absolute

QFTD with a d-dimensional defect theory inserted? To see how this question relates to our

previous considerations, we naively extend such a coupled system by an additional dimension

to a sandwich in overall dimension (D + 1) with interval coordinate 0 ≤ x⊥ ≤ 1. For

this, denote the relative theory associated with the bulk QFTD by TD and that of the d-

dimensional defect theory by Td. Similarly, introduce BD,Bd as the boundary conditions

setting their global form. We sketch the associated sandwich as in subfigure (i) of figure 6.
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The (D+1)-dimensional bulk is filled by the symmetry theory SD+1 and, as a defect within

it, we have the symmetry theory S ′
d+1 (which we identify with a Bd+1 in our bottom up

discussion, however dropping the requirement that this boundary conditions is necessarily

gapped / free).

From here, to take a step towards our bottom up considerations in adjacent dimension,

we KK-reduce the bulk on (D− d− 1)-dimensional concentric shells centered on and linking

the defect S ′
d+1. This results in the (D−d+1)-dimensional bulk transverse to S ′

d+1 projecting

down to a semi-infinite 2-dimensional strip which we parametrize with the radial coordinate

r ≥ 0 of the shells and the original decompression coordinate x⊥.

The triple (TD,SD+1,BD) reduces to the triple (Td+1,Sd+2,B
(r,1)
d+1 ) where, in the last entry,

we introduced an exponent recording (r, x⊥). Next, note that the defect triple (Td,S
′
d+1,Bd)

becomes an end of the world sandwich at r = 0 which is relative to the former sandwich. In

preparation of more unified notation we write Bd ≡ B
(0,1)
d . We sketch the two sandwiches

in adjacent dimension in subfigure (ii) of figure 6. Overall, we have a (d + 2)-dimensional

symmetry theory for an absolute (d + 1)-dimensional KK-theory, with a d-dimensional end

of the world defect, and we refer to this system as an “open cheesesteak”.

So far we have described how X may specify a (d + 1)-dimensional absolute theory. In

which situations, perhaps specifying yet more data can we hope to obtain a d-dimensional

absolute theory? Recall the latter was our starting point in bottom up considerations.

Whenever the (d+1)-dimensional KK-theory is infrared free we can consider an IR limit

localizing the ungapped dynamics to d-dimensions. However, this limit only results in an

absolute d-dimensional theory if we specify an additional set of boundary conditions. This

is due to the KK-theory containing extended defect operators, such as Wilson lines, which

can end on the d-dimensional end of the world theory Td. The end points of such defects in d

dimensions are themselves defects of the end of the world theory, and to obtain an absolute

theory in d dimensions we must determine which maximally mutually local subset of these

are to remain.

Such a choice is then realized by boundary conditions along the remaining internal non-

compact dimension which are imposed at r =∞. For now, let us simply note that this adds

a triplet of boundary conditions which we denote by B
(1,0)
d ,B

(1,x⊥)
d+1 ,B

(1,1)
d respectively labelled

by their location and dimension (see figure 7).

With this we can finally connect to our discussion in section 2 by specifying where Bd,

and other data, is to be located in the above discussion. Our claim is that X has naturally
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d+1
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(1,1)
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(0,1)
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(1,0)
d

Td

B
(0,1)
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Figure 7: To obtain an absolute d-dimensional theory, after taking a decoupling limit local-

izing dynamics to d-dimensions, we must impose additional boundary conditions (green).

decompressed Bd into the tuple

B̃ =
(
B
(1,0)
d ,B

(1,x⊥)
d+1 ,B

(1,1)
d ,B

(r,1)
d+1 ,B

(0,1)
d

)
. (3.6)

Conversely, contracting the (d + 1)-dimensional edges B
(1,x⊥)
d+1 ,B

(r,1)
d+1 the three d-dimensional

corners stack to Bd. Further, we have the identification S ′
d+1 ≡ Bd+1 as a relative symmetry

theory. The (d + 2)-dimensional bulk and corner Td are as in the bottom up discussion. In

the notation of figure 8 we have that Bd now results from compressing the edge of the tuple

B =
(
B
(1,0)
d ,B

(1,x⊥)
d+1 ,B

(1,1),∗
d

)
. (3.7)

We give a geometric underpinning for B̃ and B in section 3.4.1.

To round out this introduction we mention that whenever a limit isolating the d-dimensional

dynamics engineered by X exists we will contract only B
(r,1)
d+1 . In the geometry X this will

amount to a particularly natural partitioning of X which pushes the flavor brane local model

to the asymptotic boundary ∂X .

Further we comment that whenever Xi are local patches covering some larger geometry

Y then the symmetry theory associated to Y results from gluing the open cheesesteak of the

patches Xi. Rather than lay out the general theory of this construction we will simply give

an example with Y = (T 2 × C2)/Z4 and four copies of Xi = C3/Z4.

Finally, let us provide some geometric intuition for the ideas developed in this section.

To begin, consider the very first decompression in our bottom up discussion where Sd+1 is

supported on Md × I with interval I = [0, 1] with coordinate r. As in [13], in top down

constructions, each point r ∈ I will be associated with a shell ∂X at fixed radius r of the

internal geometry and scanning over I we have that X is swept out by radial shells. A point
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Figure 8: We depict the various (d + 2)-dimensional symmetry theories we consider, and

make explicit their relation: the tuple B̃ compresses to the tuple B which compresses to the

corner Bd. Here we have used S ′
d+1 ≡ Bd+1.

r ∈ I, assume for now r 6= 0 and r 6= ∞, can be decompressed into an interval J with

coordinate x⊥. For this, pick a decomposition

∂X = U ∪ V , (3.8)

where U, V glue along their common boundary ∂U = ∂V to ∂X . Note that formally ∂X

has infinite volume and M-theory or IIA / IIB describes a field theory with locally decoupled

sectors as in [26]. We can therefore open Sd+1|r=r∗ for a fixed value r∗ into a SymTree. This

is achieved by deforming the gluing region into a cylinder

∂X = U ′ ∪ Z ∪ V ′ . (3.9)

Here U, U ′ and V, V ′ are homotopic pairs. The cross-section of Z is topologically ∂U = ∂V ≡

W and Z = J ×W . The resulting SymTree has two ends corresponding to U ′, V ′ connected

by edges associated with Z.

With this any decomposition ∂X = U ∪ V gives a triple Td+1,Sd+2,Bd+1. The triplets

associated to two decompositions ∂X = U1 ∪ V1 and ∂X = U2 ∪ V2 agree if the Ui, Vi are

related by an ambient homotopy. Further, for geometries X with flavor branes S there

is a natural decomposition for ∂X . Flavor branes intersect ∂X in a singular locus K . A
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decomposition of ∂X which isolates the flavor symmetries associated with K is therefore

∂X = TK ∪ ∂X◦ , (3.10)

where ∂X◦ is the complement ∂X \ TK and TK is the tubular neighbourhood of K ⊂ ∂X .

The (d + 2)-dimensional decompressions described in this section are with respect to this

natural decomposition. Overall, however there are as many decompression of type (3.4) as

decomposition (3.8) of ∂X .

We structure our top down discussion as follows. First, in section 3.1 we discuss in some

detail how to favorably parametrize the geometry X . The main idea is to consider a local

model TS centered on the full singular locus. From this perspective we then discuss defect

operators in section 3.2. In section 3.3 we discuss the symmetry theories Sd+2 and Bd+1. This

will involve a compactification on a manifold with boundary and an associated long exact

sequence in relative homology will yield the boundary conditions (2.13). Next, making the

local model TS larger and larger we can fill the full geometryX , due to the homotopy relation

TS ∼ X , and we discuss how this deformation is realized in the cheesesteak (see figure 8). We

then discuss how to close the open cheesesteak in section 3.4, imposing boundary conditions

at asymptotic infinity ∂X , i.e., we specify the tuples B, B̃. Here, our main characterization

of edge and corner conditions will be via their interaction with defect operators. Finally,

in section 3.5, we end with some general comments and a brief example demonstrating how

open cheesesteaks enter as building blocks into more general considerations.

Where possible we make our discussion explicit using the running example of M-theory

on X = C3/Z2n acted on as (z1, z2, z3) ∼ (ωz1, ωz2, ω
2n−2z3) with weight vector (1, 1, 2n−2).

3.1 Geometric Considerations

We begin by identifying the geometry corresponding to the bulk, edges and corners. We will

naturally find a structure (see figure 8) in which additional decompression steps have taken

place compared to the bottom up motivated approach.

To begin, consider the non-compact manifold X with singular locus S0 ⊂ S ⊂ X and

asymptotic boundary ∂X . The maximally singular sublocus S0 is compact and does not

intersect ∂X . However, flavor branes may stretch to ∂X and intersect it in K = ∂S =

S ∩ ∂X . Further, we introduce the tubular neighborhoods TS ⊂ X of S and TK ⊂ ∂X of

K , and their complements

X◦ = X \ TS , (∂X)◦ = ∂X \ TK . (3.11)
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We will often use the shorthand notation (∂X)◦ ≡ ∂X◦. The tubular neighborhood TS is

the local model for the bulk QFTD. Both X◦ and ∂X◦ are manifolds with boundary. Their

boundaries

∂(X◦) = D(∂TS ) , ∂(∂X)◦ = ∂TK , (3.12)

are of dimension dimX − 1 and dimX − 2, respectively, see figure 9. Here D(∂TS ) denotes

the double of a manifold with boundary, given by two copies of ∂ TS glued along their

boundary ∂TK . We will abbreviate16 ∂((∂X)◦) ≡ ∂2X◦ = ∂TK .

Two very important, yet simple, relations are the homotopy equivalences

X ∼ TS , ∂X◦ ∼ ∂TS . (3.13)

The excision operation ◦ and the boundary operation ∂ do not commute. Fundamentally,

these relations are the reason why the construction we present in this section, which is based

on TS , is applicable to the theory engineered by X .

In the setups we consider here, the asymptotic singular locus K is of fixed singularity

type with no enhancements. We denote by Xf a model of the singularity, i.e., its normal

geometry at some fixed point of K . The tube TK is modelled on a family of singularities

{Xf,k}k∈K and TK is generically a fibration of Xf over K twisted by symmetries of Xf .

We write17 TK = Xf ⋊ K . Further, note that the normal geometry Xf extends radially

inwards and sets the singularity type along the full flavor locus. The coordinate, normal to

the singular locus, i.e., parametrizing the radial coordinate of Xf , is denoted x⊥.

Next we describe (non-flat) fibrations which will be the starting point for the supergravity

compactification. We briefly summarize their structure here and then discuss them in greater

detail. Underlying our constructions will be the projection

πIJ : TS → I × J , (3.14)

with intervals I, J = [0, 1] parametrized by r, x⊥ respectively. From here, fixing x⊥ we obtain

the projection of a boundary slice

πI : ∂TS → I . (3.15)

16Here, ‘∂2’ makes the nested structures and relevance of manifolds with corners explicit.
17Here, Xf ⋊ K denotes a fibration (twisted fiber product) of the singularity model Xf over K . More

generally we write Fiber⋊ Base.
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∂X◦

X◦

S ∂S = KS0

TK ⊂ ∂X

∂TK = ∂2X◦

∂X◦

X◦

(i) (ii)

∂TS = ∂X◦

TS |r>0

∂TS |r>0

∂X◦
retract

∂X◦

Figure 9: We sketch the non-compact manifold X . In the figure two flavor branes (red)

intersect at S0. The tubular neighborhoods of the flavor branes (blue) and their asymptotic

boundaries (green) are depicted. We shade these tubes in the legend, in subfigures (i), (ii) we

only mark their boundaries. These tubes glue along the neighborhood associated with the

intersection S0 (purple) to the tubular neighborhood TS of the full singular locus S . The

complement X◦ = X \ TS lies ‘behind’ the local model boundary ∂TS or “at infinity” with

respect to TS . The deformation retraction shrinking the neighborhood of S0, or equivalently,

growing the neighborhoods of S \ S0 deforms subfigure (i) to subfigure (ii). Further, we

have the converse limit, growing the purple tube until it fills X .
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∂Xf ∂E

πS

Sym(Xf )

∂Xf ⋊ ∂S ∂E ⋊ S0

πI

I 0

(i) (ii)

Figure 10: We sketch the pair of fibrations πS : ∂TS → S and πI : ∂TS → I. The generic

fibers are ∂Xf and ∂Xf ⋊∂S while the exceptional fibers are ∂E and ∂E ⋊S0, respectively.

The fibration πS is twisted by the symmetry group Sym(Xf ).

The generic fiber of both projections is topologically a copy of

∂TK = ∂2X◦ = ∂Xf ⋊ ∂S = ∂Xf ⋊ K . (3.16)

At the boundaries / corners of I × J the fiber can change, we refer to these fibers as excep-

tional. The supergravity compactification will be with respect to these generic and excep-

tional fibers and result in a theory supported on the d-dimensional spacetime of Td times the

two decompression dimensions I × J .

To discuss the above fibrations we begin by considering the related fibration TS → S

with generic fiber Xf . Away from S0 the fibration is simply determined from the normal

geometry to S \S0 which is modeled by assumption on Xf . From here, fiberwise restricting

to the boundary, we obtain the fibration

πS : ∂TS → S . (3.17)

This fibration has exactly one type of exceptional fiber ∂E projecting to S0. For example,

when S0 is a point we have

∂E = ∂TS |retract = ∂X◦|retract , (3.18)

where |retract abbreviates a deformation retraction onto a lower dimensional skeleton. See

subfigure (i) of figure 10 for a sketch of πS . Further, immediately compare subfigures (i) of

figure 6 and 10 making the internal geometry related to the former clear.

We now produce a second, very related, fibration assuming that S respects the conical

features of X . We assume that S is itself conical with link K = ∂S and radial coordinate
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0 ≤ r ≤ 1 such that at r = 0 we find ∂S to collapse to S0. In that case, we may lift the

link ∂S into the fiber and fiber the space exclusively over the radial direction I = [0, 1].

This results in the fibration

πI : ∂TS → I , (3.19)

with generic fiber ∂Xf ⋊ ∂S . At r = 0 the generic fiber degenerates to ∂E ⋊ S0. See

subfigure (ii) of figure 10 for a sketch of πI . Filling in the normal direction to the singular

locus we have the fibration

πIJ : TS → I × J , (3.20)

mapping the locus S0 to r, x⊥ = 0 and S at x⊥ = 0. Copies of ∂X◦|retract are mapped

to r = 0 at fixed x⊥ 6= 0. The generic point with r, x⊥ 6= 0 is mapped onto by a copy of

∂TK = ∂Xf ⋊ ∂S .

Example We make the above explicit for the Calabi-Yau orbifold C3/Z2n with quotient

(z1, z2, z3) ∼ (ωz1, ωz2, ω
2n−2z3) and weights (1, 1, 2n−2) and root of unity ω = exp(2πi/2n).

Here TS is a tubular neighbourhood of the singularities S = {z1, z2 = 0} and a 6-dimensional

manifold with boundary. With coordinates r = |z3|2 and x⊥ = |z1|2 + |z2|2, we have

TS = {(z1, z2, z3) ∈ X | x⊥ = |z1|
2 + |z2|

2 ≤ ǫ} , (3.21)

for some finite ǫ > 0. The first homotopy in (3.13) is realized by the deformation induced

by growing ǫ. To see the second homotopy take a model of the asymptotic boundary to

be the copy of S5/Z2n cut out by |z1|
2 + |z2|

2 + |z3|
2 = 1, similarly restricting TS to the

unit ball, and consider a scaling of the third coordinate until we realize the projection

(z1, z2, z3) 7→ (z1, z2, κz3) with κ2 = (1 − ǫ)/|z3|
2 which maps the boundary of the cylinder

TS onto asymptotic infinity.

The model of the flavor singularity is Xf = C2/Z2 and consequently ∂TK = S3/Z2 ⋊ S1

where the S1 is the angular circle in C/Zn linking the codimension-6 locus S0 = {z1 = z2 =

z3 = 0} within the flavor brane. The coordinate r parametrizes the radius of C/Zn while x⊥

parametrizes the radius in Xf . We have have the projections

πS : TS → S , (z1, z2, z3) 7→ z3

πI : TS → I , (z1, z2, z3) 7→ |z3|
2 = r

πIJ : TS → I × J , (z1, z2, z3) 7→ (|z3|
2, |z1|

2 + |z2|
2) = (r, x⊥) .

(3.22)

Consider πS , at z3 = 0 the normal geometry is C2/Z2n and therefore ∂E = S3/Z2n for this

example, otherwise we have the generic fiber S3/Z2 projecting onto z3 6= 0. All other fibers
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x⊥

r

C3/Z2n

asymptotic S5/Z2n

Figure 11: We sketch a projection of X = C3/Z2n onto a 2-simplex with local coordinates

r, x⊥. The asymptotic boundary ∂X = S5/Z2n is projected on to the green line.

follow from this observation.

Further, we make the bottom line of figure 8 explicit and explain how I × J can deform

to a 2-simplex with the same local coordinates. For this note that the asymptotic boundary

S5/Z2n can be viewed as cut out by

1 = |z1|
2 + |z2|

2 + |z3|
2 = r + x⊥ . (3.23)

Now, in the quadrant R≥0 × R≥0 parametrized by r, x⊥, the asymptotic S5/Z2n maps onto

an interval. The space C3/Z2n, viewed as r + x⊥ ≤ 1, maps onto a 2-simplex with 1-faces

r = 0 and x⊥ ∈ [0, 1], and x⊥ = 0 and r ∈ [0, 1], and (3.23). See figure 11.

Let us now return to our general discussion. We identify the internal geometry corre-

sponding to bulk, edges and corner of the open cheesesteak as already sketched in figure 9.

The bulk corresponds to a two-parameter family of copies of ∂2X◦. There are three edges,

two of which are parametrized by r with x⊥ = 0, 1 respectively and one parametrized by x⊥

with r = 0. The former pair corresponds to a 1-parameter family of copies of K = ∂S

and ∂2X◦ respectively. The latter corresponds to a 1-parameter family of copies of ∂X◦ (a

fattening of ∂E ). The corner at (r, x⊥) = (0, 1) corresponds to a copy of ∂X◦ and the corner

at (r, x⊥) = (1, 0) corresponds to S0. See figure 12.

From the perspective of the relative bulk QFT only edges and corners with x⊥ = 1 are

“at infinity.” Here, boundary conditions must be imposed to realize an absolute theory.

From the perspective of the corner Td both edges and corner with x⊥ = 1 and / or r = 1 are

“at infinity” and any limit localizing modes in d dimensions needs to be supplemented with

boundary conditions at r = 1 if it is to produce and absolute theory in d dimensions.
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Td+1 Td

B
(r,1)
d+1 B

(0,1)
d

Sd+2 Bd+1

∂X◦

Determined by ∂2X◦ Determined by ∂X◦

πI

TS

Figure 12: We sketch how the geometric structures map project onto (r, x⊥). We show the

projection for the tubular neighbourhood TS . The homotopy X ∼ TS realized by growing

the purple region / shrinking the blue tubes in the top figure gives a similar projection for X .

The arrow denotes fiberwise compactification with respect to the fibration πI . The boundary

conditions (green) set at metric infinity of X are unspecified in an open cheesesteak.
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3.2 Defect Groups

In the preceeding section we described a fibration of the geometry TS ∼ X by fibers labelled

by the coordinates r, x⊥. The two symmetry theories Sd+2 and S ′
d+1 = Bd+1 will derive from

compactification of some supergravity theory on these fibers to d + 2 or d + 1 dimensions.

They are in part characterized by their operator content. Favorably, the stringy construction

of many such operators can be realized without much of this field theory analysis: they result

from branes wrapped on cycles of the geometry following [68], see also [69, 70].

Here, we therefore take the perspective of studying Sd+2 and S ′
d+1 = Bd+1 via the top

down construction of their operators which are characterized by the kind of p-brane wrapped

and its wrapping locus, a relative homology cycle. With this, we now extend the notion of

defect group [71] to the QFT system engineered by S0 ⊂ S , i.e., the flavor brane theory

Td+1 with end of the world theory Td. We further discuss similar generalizations in the

constructions of symmetry operators.

To motivate the necessity of these considerations, consider again the example of M-theory

on C3/Z2n. The boundary homology groups18 we focus on are

H1(S
5/Z2n) ∼= Zn , H3(S

5/Z2n) ∼= Z2n . (3.24)

In an electric frame, wrapping M2-branes over cones on the 1-cycles produces defect line

operators charged under a Zn 1-form symmetry. Naively, wrapping M5-branes on asymptotic

3-cycles constructs the corresponding symmetry operators. We expect a 1:1 correspondence

between these objects, however, the count is off, Zn 6= Z2n. Clearly we ought to restrict the

3-cycles which link non-trivially with the 1-cycles, but even so, it remains to settle how the

unaccounted for wrappings are to be interpreted and specify “linking” in singular spaces.

To proceed in generality, and fix such mismatches, first consider the defects of the flavor

brane theory Td+1. Wrapping branes on cones over classes in Hn(∂Xf ) construct defect

operators of TD extending in the singular locus (S \S0)×Rd−1,1. Now, after KK reducing

further on ∂S , see figure 6, these descend to defects of Td+1 extending in (I \ {0})×Rd−1,1.

The relevant cycles for brane wrappings are now cones over classes in:

Hn(∂Xf ⋊ ∂S ) ∼= Hn(∂
2X◦) . (3.25)

In the cheesesteak these wrappings result in defects sketched in subfigure (i) of figure 13.

18Here and throughout this paper, unless stated otherwise, we denote singular homology and cohomology
groups with integer coefficient of some space X by Hn(X) ≡ Hn(X ;Z) and Hn(X) ≡ Hn(X ;Z) respectively.
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(i) (ii)

Td+1Td+1 TdTd

Bd+1Bd+1

Figure 13: We sketch defects (snaked brown line) contributing to the defect group of genuine

non-endable defects of the coupled edge corner system Td+1, Td. Defects depicted in (i) are

defects of Td+1 and can be deformed into the boundary supporting Bd+1 resulting in defects

of the corner mode Td as depicted in (ii).

In a similar fashion, the loci naively relevant for constructing defects of the corner theory

Td are cones over classes in ∂E ⋊ S0 ∼ ∂X◦|retract and for Td the groups (3.25) are replaced

with

Hn(∂X
◦) ∼= Hn(∂X

◦|retract) . (3.26)

In the cheesesteak these wrappings result in defects sketched in subfigure (ii) of figure 13.

To relate the two sets of defects above, consider sliding a cycle in ∂2X◦, characterizing

defects of flavor brane theory, into the geometry ∂X◦ which we associated with the corner

theory. This is formalized by the mapping

Dn : Hn(∂
2X◦) → Hn(∂X

◦) , (3.27)

which is the lift of the embedding ∂2X◦ →֒ ∂X◦ to homology. Defects of Td which do not

result from flavor brane defects pushed into Bd+1 are therefore characterized by the cokernel

Hn(∂X
◦)/Hn(∂

2X◦) . (3.28)

However, to determine the defects intrinsic to the corner theory Td we should ask the converse

question: which of the naive defects, constructed by wrappings on (3.26), can be moved off

Td? That is, in figure 13, can we deform subfigure (ii) to subfigure (i)? This is only possible

for some maximal subgroup Fn of ImDn on which we can define

D−1
n : Hn(∂

2X◦) ← Fn ⊂ ImDn ⊂ Hn(∂X
◦) . (3.29)

Motivated by these considerations we define the defect group of genuine, non-endable
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defects of the Td+1, Td system derived from p -brane wrappings:

D[Td] =
⊕

m

Dm[Td] with Dm[Td] =
⊕

p−n=m−2

(Hn(∂X
◦)/Fn) |triv

D[Td+1] =
⊕

m

Dm[Td+1] with Dm[Td+1] =
⊕

p−n=m−2

Hn(∂
2X◦)|triv

(3.30)

where in giving the homology groups we have characterized wrapped cones by their cross-

section. Here m is the dimensionality of the defects in Td and TD, and |triv means the cycle

trivializes when embedded into the corresponding fibers of TS → I. Similarly, we can also

introduce the naive defect group

D̃[Td] =
⊕

m

D̃m[Td] with D̃m[Td] =
⊕

p−n=m−2

Hn(∂X
◦)|triv (3.31)

built from cycles of ∂X◦. Symmetry operators acting on these defects are constructed by

wrapping branes on the asymptotic cycles themselves. Choices of polarizations for defect

operators of (3.30) can of course be obstructed by anomalies.

Example Let us apply the above to the example of M-theory on C3/Z2n. There we

compute (see appendix A) the groups

H3(∂
2X◦) ∼= Z , H3(∂X

◦) ∼= Z ,

H1(∂
2X◦) ∼= Z⊕ Z2 , H1(∂X

◦) ∼= Z2n .
(3.32)

We compute the mapping H3(∂
2X◦) → H3(∂X

◦) to be multiplication by n. The mapping

H1(∂
2X◦) → H1(∂X

◦) is computed to (f, t) 7→ f + nt where (1, 0) generates Z and (0, 1)

generates Z2. It follows here that F3 = Z and F1 = Z2. Therefore the group of line operators

in Td from M2-brane wrappings on non-compact 2-cycles computes to

D1[Td] ∼= H1(∂X
◦)/F1

∼= Zn , (3.33)

while the symmetry operators acting on these are M5-branes wrapped over H3(∂X
◦)/F3

∼=

Zn. With respect to the orbifolding group Z2n we find the symmetry operators here to be

a Zn ⊂ Z2n subgroup while the defect operators are a Zn
∼= Z2n/Z2 quotient. Overall, we

have correctly determined M2- (resp. M5-brane) wrappings associated with defects (resp.

symmetry operators), accurately capturing the Zn 1-form symmetry of the 5D SCFT in an

electric frame. It now remains to discuss the defect operators one would naively attribute to

the subgroup Z2 ⊂ Z2n and the symmetry operators similarly attributed to Z2
∼= Z2n/Zn.
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(i) (ii)

Td+1Td+1 TdTd

Bd+1Bd+1

Figure 14: In (i) we sketch a defect (snaked brown line) ending on the boundary supporting

Bd+1. We can deform it onto the corner, (i) → (ii), and this gives another class of defects

which are genuine in Td. However, taking the perspective of Td+1, they are seen to live at

the boundary of a higher-dimensional defect.

The former are clear, they are flavor line operators, as constructed from wrapping M2-branes

on non-compact 2-cycles, captured by the subgroup Z2 ⊂ D1[Td+1]. For the latter we require

more general considerations.

Returning to the general case, there are further defect operators which are genuine from

the perspective of the corner theory Td but non-genuine in the flavor brane theory Td+1.

The kernel of the mapping Dn corresponds to those defects which can end in the geometry

∂X◦, i.e., there exists a chain in ∂X◦ bounding the cycle, and wrapping branes on this chain

constructs boundaries of flavor defects. Using these loci we can build further defects (see

subfigure (ii) of figure 14). Motivated by these considerations we introduce the mixed defect

group derived from p -brane wrappings

Dmix[Td, Td+1] =
⊕

m

D
(m)
mix[Td, Td+1] with D

(m)
mix[Td, Td+1] =

⊕

p−n=m−2

(KerDn) |triv .

(3.34)

Our Running Example In our running example of M-theory on C3/Z2n we indeed

compute

D
(2)
mix[Td, Td+1] ∼= Z2 , (3.35)

and have therefore now accounted for the missing Z2 (and the symmetry operators wrapped

on the corresponding asymptotic cycles) which is geometrized as H3(∂X) ∼= Z2n mod 2 as

seen from the long exact sequence in relative homology of the pair ∂X◦, ∂2X◦.

Have we described the full set of non-endable defects? For the flavor brane theory Td+1

we have, as this theory is well-defined in isolation such that the methods of [71] directly

apply. For the corner theory Td we described the full set of defects constructed by wrapping
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non-compact cycles of ∂X . In appendix A we show that we have the short exact sequence

0 → Hn(∂X
◦)/Fn → Hn(∂X) → KerDn → 0 , (3.36)

for all examples we will consider, i.e., all cycles in Hn(∂X) are accounted for.

3.3 Bulk Sd+2 and Boundaries Bd+1, Td+1

We now discuss the symmetry theory Sd+2 with boundary theory Bd+1 explicitly by determin-

ing their field contents, actions and boundary conditions. This in particular improves on the

defect group discussion by giving a Dirac pairing for the groups in (3.30), which determines

the set of possible polarizations, and anomalies obstructing choices of polarizations. Both

of these will be characterized by interaction terms of the action. Once this bulk-boundary

system is discussed we turn to a similar analysis for Td+1.

3.3.1 Bulk Sd+2 and Boundary Bd+1

To begin, note that the symmetry theory Sd+2 with boundary theory Bd+1 is computed by

compactification of some supergravity theory on the fibration πIJ : ∂X◦ → I × J . Here,

compactification on the generic fibers ∂Xf ⋊∂S = ∂TK which are copies of ∂2X◦ computes

the symmetry theory of the flavor brane theory, at r = 0 and along the edge J , this fiber

degenerates to ∂E ⋊ ∂S0 which is topologically (after fattening) a copy of ∂X◦ determining

the boundary theory Bd+1. See figure 12. As such we will be concerned with compactification

on ∂2X◦ and ∂X◦.

Immediately we comment that the flavor symmetry theory Sd+2 is a standard absolute

symmetry theory as the relevant space ∂2X◦ = ∂TK is a smooth compact manifold. There-

fore, Sd+2 follows by considering the geometry TK normal to the flavor brane and applying

the prescription laid out in [13, 20, 26]. On the other hand, the space ∂X◦, associated with

the boundary theory Bd+1, is a manifold with boundary and the compactification, which

results in a relative symmetry theory, requires more care.

In both cases we give our analysis at the level of singular (co)homology.

Field Content

First, we determine the field content of Bd+1,Sd+2, then we discuss the boundary condition

Sd+2|Bd+1
, and from here turn to discuss the action of Bd+1,Sd+2. We begin our analysis by

clarifying the cocycles we expand fields in.
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The geometry determining the field content of Sd+2 is the smooth compact space ∂2X◦ and

fields follow by expanding the relevant supergravity fields in the cocycles F n = Hn(∂2X◦)

in standard fashion.

The geometry relevant for determining the field content of Bd+1 is the manifold with

boundary ∂X◦, or equivalently, a fattening of the exceptional fiber. Therefore, there are

two natural options for internal cocycles when expanding supergravity profiles, which are

Hn(∂X◦) and Hn(∂X◦, ∂2X◦). We will employ both simultaneously, and correct for an

“overcounting”. We say we reduce supergravity fields on

Hn(∂X◦, ∂2X◦) −→ Hn(∂X◦) , (3.37)

or equivalently

C
n = Hn(∂X◦, ∂2X◦)⊕Hn(∂X◦)/ ∼ , (3.38)

where we identify cocycles in (3.37) with their image. The mapping in (3.37) is taken from

the long exact sequence in relative homology for the pair ∂X◦, ∂2X◦.

Boundary Conditions

Now, with both the field content of Sd+2 and Bd+1 in hand we can formulate boundary

conditions between these. Boundary conditions are determined by the mappings

Hn(∂X◦) −→ Hn(∂2X◦) −→ Hn+1(∂X◦, ∂2X◦) , (3.39)

which relate the internal cocycles of the geometry resulting in relations of their spacetime

coefficients, the symmetry theory fields. Here, the cycles associated with fields of Sd+2 are

the central entry and they are mapped into / onto to cycles associated with fields of Bd+1.

Consider, for example, a supergravity field strength Gn+m of degree n+m. Let ω
(∂X◦)
n ∈

Hn(∂X◦) and ω
(∂2X◦)
n ∈ Hn(∂2X◦) be two cocycles such that the former is mapped onto the

latter. We make the expansions

Gn+m = B(∂X◦)
m ∪ ω(∂X◦)

n + . . .

Gn+m = B(∂2X◦)
m ∪ ω(∂2X◦)

n + . . .
(3.40)

with m-cocycle coefficients. The fields B
(∂2X◦)
m and B

(∂X◦)
m propagate in the bulk and bound-

ary theory Sd+2 and Bd+1 respectively. The first mapping in (3.39) implies

ω(∂X◦)
n |∂2X◦ = sω(∂2X◦)

n mod t , (3.41)
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with some integers s, t depending on the geometry, also possibly without the modulo condi-

tion. Therefore boundary conditions between the symmetry theory fields are

B(∂2X◦)
m

∣∣∣
Bd+1

= sB(∂X◦)
m mod t , (3.42)

in the natural normalization with respect to (3.39). Similarly, we can consider the pair

Gn+m = B
(∂X◦,∂2X◦)
m−1 ∪ ω

(∂X◦,∂2X◦)
n+1 + . . .

Gn+m = B(∂2X◦)
m ∪ ω(∂2X◦)

n + . . .
(3.43)

which, following analogous steps as described above, now for the second map in (3.39), gives

the relation

ω(∂2X◦)
n = p

[
∂/∂r yω

(∂X◦,∂2X◦)
n+1

] ∣∣∣∣∣
Bd+1

mod q , (3.44)

for some integers p, q again depending on the geometry and possibly without the modulo

condition. This relation on the internal cocycles translates into following boundary condition

for the symmetry theory fields

[
∂/∂r yBm

(∂2X◦)

]∣∣∣∣∣
Bd+1

= pBm
(∂X◦,∂2X◦) mod q , (3.45)

for some integers p, q depending on the geometry. Here r is the coordinate of the half-space

I which is the coordinate normal to the boundary theory Bd+1.

Exactness in the central entry in (3.39) implies that (3.42) and (3.45) lead to a complete

set of boundary conditions in the sense of section 2.

Boundary Degrees of Freedom

Let us now discuss the intrinsic degrees of freedom of the boundary theory Bd+1, i.e., the

degrees of freedom not fixed by the boundary conditions of lines (3.42) and (3.45). Recall

that the field content of Bd+1 derives via reduction on cocycles

Hn(∂X◦, ∂2X◦) −→ Hn(∂X◦) , (3.46)

boundary conditions eat up degrees of freedom according to the flanking terms

Hn−1(∂2X◦) −→ Hn(∂X◦, ∂2X◦) −→ Hn(∂X◦) −→ Hn(∂2X◦) , (3.47)
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by exactness the unconstrained / intrinsic fields descend precisely from the reduction on the

image of the mapping (3.37), i.e., the cocycles

Hn(∂X◦, ∂2X◦) ⊂ Hn(∂X◦) , (3.48)

which are the cocycles vanishing along ∂2X◦ and are not related to Hn−1(∂2X◦) associated

with flavor field content. In the symmetry theory Bd+1 the associated degrees of freedom

are not fixed by the bulk symmetry theory Sd+2, remaining free to fluctuate, and are path

integrated.

Overall the path integral of the symmetry theory pair Sd+2,Bd+1 is given by a path

integral over all fields of Sd+2, as result from reduction along Hn(∂2X◦), and all fields of Bd+1

as result from the reduction along Hn(∂X◦, ∂2X◦) → Hn(∂X◦). The field space integrated

over is subject to identifications induced by Hn(∂X◦) → Hn(∂2X◦) → Hn+1(∂X◦, ∂2X◦)

which set the boundary conditions. The path integral, after identifications are made, is over

the full set of flavor brane fields and those intrinsic to Bd+1 determined by Hn(∂X◦, ∂2X◦) ⊂

Hn(∂X◦).

Our Running Example Consider M-theory on C3/Z2n(1, 1, 2n − 2). In an electric

frame this theory as a Zn 1-form symmetry. However, the (co)homology groups ∂2X◦, ∂X◦

only feature instances of Z2 and Z2n subgroups, and naively the background field for the Zn

1-form symmetry, obtained via expansions of the type (3.43), seems absent. However, we

compute

Im
(
H2(∂X◦, ∂2X◦)→ H2(∂X◦)

)
= Zn (3.49)

which we interpret to mean that the boundary modes of Bd+1, which are left to fluctuate

after the boundary conditions to the bulk Sd+2 have been imposed, precisely capture the

background fields for the Zn 1-form symmetry. In this sense these degrees of freedom are

only manifest after imposing boundary conditions and are ultimately localized to Bd+1.

Interactions

Interaction terms of the symmetry theories Sd+2,Bd+1 reflect anomalies of the theories

Td, Td+1 respectively. In our setup Sd+2 is an absolute symmetry theory while Bd+1 is relative

thereto and as such the interaction terms for Sd+2 are computed via standard reduction using

the differential cohomology ring of ∂2X◦ much as in [13, 20, 72].

However, as Bd+1 is relative to Sd+2 and the geometry playing the role of the closed space

∂2X◦ for the latter is now replaced with the manifold with boundary ∂X◦, we need to revisit
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the computation of the interaction terms for Bd+1. We describe an approximation to this

problem in integral cohomology.

For this recall that following (3.39) we discussed derivation of the field content and

boundary conditions for the bulk-boundary system Sd+2, Bd+1. Key was the insight that

supergravity fields are expanded both in cohomology groups Hn(∂X◦) and Hn(∂X◦, ∂2X◦)

or, more precisely, in differential cocycles projecting to these groups. As such, reducing the

terms of a supergravity theory the internal integrals are determined from a cup products

and linkings of these two groups of cocycles.

With this let us first focus on the case of discrete symmetries. In this case, in a cohomol-

ogy approximation, the final pairing is a linking. The relevant linking form in (co)homology

is
ℓ∨ : TorHn(∂X

◦)× TorHM−n−1(∂X
◦, ∂2X◦) → Q/Z ,

ℓ : TorHn+1(∂X◦)× TorHM−n(∂X◦, ∂2X◦) → Q/Z ,
(3.50)

where M = dim ∂X◦ = dim ∂X = dimX − 1. These forms follow from Poincaré-Lefschetz

duality and the universal coefficient theorem which respectively assert

TorHM−n−1(∂X
◦, ∂2X◦) ∼= TorHn+1(∂X◦) ∼= TorHn(∂X

◦)∨ , (3.51)

giving a non-degenerate pairing.

Such quadratic pairings give rise to discrete BF -like couplings when reducing p-form

fields of the supergravity theory on H∗(∂X◦) and H∗(∂X◦, ∂2X◦). See Appendix B of [26]

for how the discrete BF terms reduce from the kinetic terms of the p-form fields. More

generally, the coefficients in the Lagrangian of Bd+1 are proportional to

ℓ(ω1 ∪ · · · ∪ ωk, ω
′
1 ∪ · · · ∪ ω′

k′) ∈ Q/Z , (3.52)

where ωi with i = 1, . . . , k and ω′
i′ with i′ = 1, . . . , k′ where are cocycles such that their

cup product is an element of Hn+1(∂X◦) and HM−n(∂X◦, ∂2X◦) respectively. The linking

(3.52) is thus determined from various cohomology rings and their linking forms and generally

straightforwardly computable. Generally only an integer multiple of the coefficient appearing

in the Lagrangian of Bd+1 can be computed in this manner and (3.52), for example in the

context of M-theory compactifications, this often needs to be divided by a combinatorial

factor of 2, 3 or 6. In principle, such a refinement requires the use of index theory or

differential cohomology which we defer to future work, however in cases we will present

there is a work around based on self-consistency considerations.

We can make similar remarks for continuous abelian symmetries, where now the relevant
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pairings are the intersection pairings

i∨ : FreeHn(∂X
◦)× FreeHM−n(∂X

◦, ∂2X◦) → Z ,

i : FreeHn(∂X◦)× FreeHM−n(∂X◦, ∂2X◦) → Z ,
(3.53)

with Free H∗ ≡ H∗/TorH∗ and analogously for cohomology. We again obtain BF -like

couplings from reducing the kinetic terms for the p-form fields as well as higher order terms

analogous to (3.52). For instance, let us consider reducing M-theory on some ∂X◦ such that

Hn(∂X◦) ≃ HM−n(∂X◦, ∂2X◦) is non-zero. Then the relevant 11D kinetic term for the C3

potential is proportional to
1

GN

∫

11D

G4 ∧ ∗G4 (3.54)

where we have included the 11D Newton’s constant GN . We can rewrite this action as

∫

11D

(G4 ∧ h7 +GN h7 ∧ ∗h7) (3.55)

after using the Lagrange multiplier h7. After reducing G4 and h7 on some ωn ∈ Hn(∂X◦)

and ω′
M−n ∈ HM−n(∂X◦, ∂2X◦) respectively, we obtain a term in the action of Bd+1

K

∫
(G4−n ∧ h7−M+n +GN h7−M+n ∧ ∗h7−M+n) (3.56)

where K ≡ i(ωn, ω
′
M−n) is the intersection number. After taking a decoupling limit from

the gravitational degrees of freedom, GN → 0, we see that we reduce to the same BF -like

terms that have appeared in recent proposals for describing SymTFT for U(1) symmetries

[16, 18–20]. The conceptual difference is that there are no gauge fields valued in R in sight

in our construction. This apparent conceptual mismatch is mended by simply noting that

all of the observables in Bd+1 are invariant under G4−n → G4−n + dc3−n and h7−M+n →

h7−M+n+dc6−M+n, i.e. only dependence of the cohomology class of the fields are observable,

not the particular representatives. Given such a redundancy, it would appear that one

could regard G4−n as an R-valued gauge potential and h7 as a U(1) curvature, or vice-versa

although no honest R-valued gauging has appeared at any step.

3.3.2 Bulk Sd+2 and Boundary Td+1

We now turn to discuss the boundary conditions imposed on Sd+2 by the relative theory

Td+1 associated to the singular locus S \S0. Generically, these will be enriched Neumann

boundary conditions in the sense of [15].
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To say more, let us specialize to the case in which Td+1 is an infrared free gauge theory

as will be the case whenever S \S0 is an ADE singularity in M-theory. In taking the IR

limit, localizing the dynamics of our system to d dimensions, the flavor brane gauge coupling

decreases g → 0. As a result we find a copy of Horowitz’s non-Abelian BF theory [73]

localized to Td+1 in the limit, as previously noted in [19]. In addition, the twisted normal

geometry to S \S0 leads to additional topological terms in the flavor brane fields localized

to Td+1.

Our Running Example Consider M-theory on C3/Z2n(1, 1, 2n− 2). The orbifold con-

tains an su2 singularity supported on C/Zn and the normal geometry C2/Z2 thereof is acted

on by a Zn monodromy along paths linking the tip of the cone C/Zn. The 7D super-Yang-

Mills theory supported on C/Zn has a corresponding background profile turned on. To obtain

the 6D KK theory, for which Td functions as an end of the world brane, we compactify on

the circle parametrized by the angular argument of C/Zn (this results in a radius dependent

gauge coupling, see our discussion around (2.2)). The KK theory contains massless fields or-

ganizing into a 6D su(2) super-Yang-Mills theory and the non-trivial normal geometry gives

rise to an additional topological term. In the limit g → 0 we have the overall contribution

2π

∫

Rr≥0×R1,4

tr

(
f2
2π
∪

h4

2π

)
−

2π

6n

∫

Rr≥0×R1,4

tr

(
f2
2π
∪

f2
2π
∪

f2
2π

)
, (3.57)

to the 6-dimensional edgemode theory Td+1. Here f2 is the non-abelian field strength of the

6D su(2) SYM theory, h4 is a Lagrange multiplier and r is the radial coordinate of C/Zn.

We discuss the geometry and the derivation of (3.57), using a IIA dual frame and the Wess-

Zumino couplings on the world volume of a D6-brane stack in section 4 which is similar to

the steps leading to (3.56).

3.4 Boundary and Corner Conditions B, B̃

So far we have discussed our various (d + 2)-dimensional constructions in a local patch

centered on the theory Td which realizes an interface theory between the edges Td+1,Bd+1

and, simultaneously, a corner theory to Sd+2. With this, we now discuss the remaining edges

and corners to Sd+2.
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We begin with the open cheesesteak

B
(r,1)
d+1

Sd+2

Td+1

Bd+1

Td

B
(0,1)
d

(3.58)

which contains two more pieces of data, the boundary B
(r,1)
d+1 and the corner B

(0,1)
d serving as

boundary conditions to Bd+1,Sd+2 respectively. Upon specifying these we achieve an absolute

theory in d+1 dimensions (KK theories in our top down constructions), i.e., collapsing (3.58)

along the vertical x⊥-direction we achieve the system:

QFTd+1

EOWd (3.59)

Here EOWd is the end of the world theory. Clearly B
(r,1)
d+1 sets the global form of the absolute

theory QFTd+1 and similarly B
(0,1)
d+1 will select the spectrum of defects localized to EOWd.

Whenever we have a limit isolating the d-dimensional dynamics we see that B
(r,1)
d+1 will set

the global form of the flavor symmetry associated with Td+1.

Let us now consider setups where such a limit exists and has been taken. Upon imposing

additional boundary conditions at r = 1 we obtain an absolute QFTd from EOWd and the

overall symmetry data is organized as:

B
(r,1)
d+1

Sd+2

Td+1

Bd+1

Td

B
(0,1)
d

B
(1,x⊥)
d+1

B
(1,0)
d

B
(1,1)
d

(3.60)

We group the gapped / free edges and corners into the tuple

B̃ =
(
B
(1,0)
d ,B

(1,x⊥)
d+1 ,B

(1,1)
d ,B

(r,1)
d+1 ,B

(0,1)
d

)
. (3.61)

Let us focus on the boundary condition B
(1,x⊥)
d+1 first and give an argument and a consis-

48



tency check that it is Fourier dual to the boundary condition B
(r,1)
d+1 . This also fully fixes the

corner B
(1,1)
d as the interface realizing this Fourier transformation.

The argument is based on considering a small neighborhood of the corner B
(1,1)
d where the

edges B
(1,x⊥)
d+1 and B

(r,1)
d+1 meet. There, consider a field B of Sd+2 with, for example, Dirichlet

boundary conditions imposed by B
(r,1)
d+1 , i.e., the field B restricted to this edge vanishes. The

field B is a cochain and then, near the boundary B
(r,1)
d+1 , we can expand it as B = B′ ∪ dx⊥,

with some cochain B′ in one degree lower. Next, assuming continuity in a neighborhood of

the corner, approach the boundary condition supporting B
(1,x⊥)
d+1 , here B = B′ ∪ dx⊥ is now

compatible with Neumann boundary conditions, the Fourier dual boundary conditions.

For the consistency check start with the sandwich (B
(r,1)
d+1 ;Sd+2; Td+1) which describes an

absolute QFT in dimension d + 1. Then, the boundary conditions B
(r,1)
d+1 picks out a subset

of genuine defects, the remaining defects are instead realized as non-genuine defects. Start

by constructing the non-genuine defect via an extended operator of Sd+2 which runs at

r = const. This defect can not terminate at B
(r,1)
d+1 , otherwise it would be genuine, hence

we need to run it to a different boundary to realize the desired non-genuine defect. This is

achieved by taking a turn at some value of x⊥ and then continue extending the defect along

the direction parametrized by r:

B
(1,x⊥)
d+1

B
(1,1)
d B

(r,1)
d+1

x⊥

r (3.62)

In order to realize the non-genuine defect in the QFT we must be able to terminate the

defect at B
(1,x⊥)
d+1 , i.e., Neumann boundary conditions along B

(r,1)
d+1 are consistent with Dirichlet

boundary conditions at B
(1,x⊥)
d+1 .

Overall, the triple (B
(r,1)
d+1 ;B

(1,1)
d ;B

(1,x⊥)
d+1 ) is seen to be associated to the global form of the

flavor brane theory Td+1 and fixed by either of the two edges. For this reason we can focus

on B
(r,1)
d+1 and in subsection 3.4.1 we discuss how the geometry X determines B

(r,1)
d+1 .

With this, we turn to discuss the corners B
(0,1)
d ,B

(1,0)
d which are respectively interfaces

between edges Bd+1, Td+1 and B
(r,1)
d+1 ,B

(1,x⊥)
d+1 , where the latter pair is gapped or free. We

characterize the corners via the boundary conditions they impose on these edges.

We give this characterization in terms of a defect analysis in subsection 3.4.2. For instance
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we determine the fate of bulk operators of the edges (which possibly extend into Sd+2) when

pushed into B
(0,1)
d (see subfigure (i), (ii) of figure 15). We also determine which of the defects,

that can not be deformed away from the edges, can be terminated at B
(0,1)
d (see subfigure (iii),

(iv), (v) of figure 15). These two considerations cover how the defect / symmetry operators

of the edges B
(r,1)
d+1 ,Bd+1 interact with B

(0,1)
d . Identically we study the other corners.

Finally, we note that in our geometric constructions it is extremely natural to deform the

closed cheesesteak (3.60) by contracting the edge B
(r,1)
d+1 and stacking the corner B

(0,1)
d ,B

(1,1)
d

resulting in B
(1,1),∗
d . Overall this contraction leads to:

Sd+2

Td+1

Bd+1

Td

B
(1,x⊥)
d+1

B
(1,0)
d

B
(1,1),∗
d

(3.63)

Let us motivate this contraction by consideing figure 12 where we execute the homotopy

TS ∼ X . In the figure the contraction of the edge lifts to contraction of the blue neighbor-

hoods, simultaneously growing the purple neighborhood. The new corner B
(1,1),∗
d can then

be analyzed as sketched above. We group the gapped / free edges and corners into the tuple

B =
(
B
(1,0)
d ,B

(1,x⊥)
d+1 ,B

(1,1),∗
d

)
. (3.64)

3.4.1 Global Form of Flavor Symmetries and (B
(r,1)
d+1 ;B

(1,1)
d ;B

(1,x⊥)
d+1 )

We now give a geometric characterization of B
(r,1)
d+1 setting the global form of Td+1. Recall,

the vertical direction in (3.58) is parametrized by x⊥ which is the direction normal to both

the flavor brane and normal to the radial direction r in the geometry X . As such defects

which run along x⊥ at constant r, see subfigure (i) of figure 13, are engineered by brane

wrappings on cycles at constant radius. The wrapping loci are characterized by elements of

Hn(∂X). Now, given a class in Hn(∂X) we have the mapping

Rn : Hn(∂X)→ Hn(TK , ∂TK ) (3.65)

defined by intersection with the tube TK . The image under this map corresponds, via all

possible brane wrappings, to the defect operators which can end on B
(r,1)
d+1 . In particular,

unlike in the standard SymTFT discussion, B
(r,1)
d+1 is fixed by the geometry and not subject
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B
(r,1)
d+1

Bd+1

B
(0,1)
d B

(r,1)
d+1

Bd+1

B
(0,1)
d

B
(r,1)
d+1

Bd+1

B
(0,1)
d B

(r,1)
d+1

Bd+1

B
(0,1)
d

B
(r,1)
d+1

Bd+1

B
(0,1)
d B

(r,1)
d+1

Bd+1

B
(0,1)
d

(i)

(ii)

(iii) (iv)

B
(r,1)
d+1

Bd+1

B
(0,1)
d

(v)

Figure 15: Defect deformations and configurations determining properties of the corner

B
(0,1)
d . The snaked lines indicate defect / symmetry operators, shaded brown square in (v)

also indicates a defect operator. Defects can be trivial in the (d+ 2)-dimensional bulk, e.g.,

subfigure (i) includes the case in which a genuine operator of Bd+1 is deformed into B
(0,1)
d .
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X◦ ∂X◦

Σ1

Σ2

Figure 16: Resketch of subfigure (ii) of figure 9. The space X◦ = X \ TS , delineated by the

blue lines, is “at infinity” with respect to the tubular neighbourhood TS centered on the

singular locus S . Topological boundary condition are imposed at ∂TS . They are determined

by the topology of X◦. Flavor defects in the flavor brane local model are given by brane

wrappings of Σi∩TS . They can only occur in combinations permitted by X◦, i.e., they must

extend to a cycle (brown) beyond ∂TS . Boundary conditions which imply other collection

of defects are obstructed by the geometry.

to a choice. We sketch in figure 16 how flavor defects lift to X , beyond the lcoal model TK .

Our Running Example Consider the 5D SCFT engineered by M-theory on C3/Z2n.

This SCFT has an su2 flavor brane corresponding to an A1 singularity at z1, z2 = 0. In [74],

see also [75,76], the flavor symmetry of the 5D SCFT was computed to be SO(3), which we

interpret to be the global form of the flavor brane theory. We now show that the geometry

fixes the boundary condition B
(r,1)
d+1 such that no genuine non-endable flavor Wilson lines can

be constructed. For this note that, in the local model TK , such lines would be constructed

from M2-branes wrappings of cones over 1-cycles in H1(∂TK ). These cones are elements of

H2(TK , ∂TK ). The discussion around (3.65) can then be understood as the condition that

these cones result as a restriction of some 2-cycle in ∂X to TK . However, we have

H2(S
5/Z2n) = 0 , (3.66)

and therefore no such 2-cycles exist. Therefore, in the 6D KK flavor brane theory we must

therefore instead have the dual 3-form Z2 symmetry acting on defects constructed via M5-

brane wrappings. Indeed, we can wrap M5-branes on classes H3(S
5/Z2n) which restrict in

TK to the correct defect. Equivalently, from the perspective of the flavor brane, we have
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determined which of the cones

TorH2(TK , ∂TK ) ∼= TorH1(∂TK ) ∼= Z2 ,

TorH3(TK , ∂TK ) ∼= TorH2(∂TK ) ∼= Z2 ,
(3.67)

can be wrapped by M2-, M5-branes. The cycles in TorH1(∂TK ) and TorH2(∂TK ) link in

∂TK and are therefore the cycles from which mutually non-local defects are constructed.

In summary, the boundary condition B
(r,x⊥)
d+1 is such that the defects realized by p-brane

wrappings which can end on the boundary are isomorphic to

P = ⊕nPn , Pn =
⊕

p−n=m−1

ImRn , (3.68)

in the obvious notation.

3.4.2 Corners B
(0,1)
d ,B

(1,0)
d

We now characterize the corners B
(0,1)
d ,B

(1,0)
d through their interplay with defect / symmetry

operators. First, we consider the corner B
(0,1)
d which is present in both the open (3.58) and

closed (3.60) cheesesteak. The presented analysis will also immediately generalizes to the

very related corner B
(1,1),∗
d . We will find B

(0,1)
d to determine global properties of the end of

the world theory (3.59). Then, whenever a limit isolating the d-dimensional dynamics exists

the corner B
(1,0)
d is found to provide the missing information in setting the global form of the

resulting d-dimensional theory.

Corner B
(0,1)
d

We now argue that there is a choice of polarization to be made in specifying the corner

condition B
(0,1)
d .

First, recall that the projection πIJ , given in (3.20), maps copies of ∂X◦ onto both B
(0,1)
d

and points of the edge Bd+1. Viewing the coordinate x⊥ as parametrizing the decompression

dimension of a symmetry sandwich, it follows that B
(0,1)
d specifies which of the defects naive

defects D̃[Td], given in (3.31), can terminate at the corner. This choice of such defects is

not without constraints. Note, we have that B
(0,1)
d also is a boundary to the edge B

(r,1)
d+1 and

therefore B
(0,1)
d must permit the termination of all defects which can be deformed off Bd+1

into Sd+2 and which are simultaneously permitted to terminate on B
(r,1)
d (see subfigure (ii)

of figure 15). Equivalently, the endability of these defects at the corner B
(0,1)
d is inherited

from the connecting edge B
(r,1)
d+1 . This determines the endability of a subgroup of the naive
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defects D̃[Td] and the quotient, which remains unconstrained by this condition, is precisely

the defect group D[Td] defined in (3.30).

We conclude, the data specifying the corner condition B
(0,1)
d includes a choice of maximally

mutually local subgroup of the defect group D[Td], referred to as a polarization. See subfigure

(iii) of figure 15 for a sketch of the type of defects selected in this choice. There is also a

symmetry operator version of this analysis centered on considerations such as subfigure (i),

(iv) of figure 15.

We now discuss an extension of this notion of polarization, mixing structures of Td+1 and

Td, which geometrically will be a consequence of ∂2X◦ being a smooth compact manifold

and boundary to the smooth space ∂X◦. For convenience we restrict ourselves to discrete

data although we expect our considerations to hold more broadly. Our considerations will

also result in a Dirac pairing, filling a gap in the previous discussion.

We begin by studying extension properties of various defect operators. Consider the long

exact sequence in relative homology of the pair ∂2X◦, ∂X◦:

. . . → Hn+1(∂X
◦)

ιn+1

−−−→ Hn+1(∂X
◦, ∂2X◦)

∂n−−→ Hn(∂
2X◦)

n
−−→ Hn(∂X

◦) → . . . .

(3.69)

The image of the mapping ∂n is associated with defects of the type:

B
(r,1)
d+1

Bd+1

B
(0,1)
d

(3.70)

which when constructed via a p-brane wrapping have dimension p+1−(k+1+1) = p−k−1.

A multiple of such defects can lie in the kernel of the map ∂n (their bulk part trivializes),

and by exactness in the image of ιn+1, and such defects are then of the same dimension and

localized to the edge:
B
(r,1)
d+1

Bd+1

B
(0,1)
d

(3.71)

In turn, multiples of such defects can then lie in the kernel of ιn+1 and result from bulk
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defects of the following type pushed onto the edge Bd+1:

B
(r,1)
d+1

Bd+1

B
(0,1)
d

(3.72)

The natural link pairings between all these defects then follow from dualities in algebraic

topology. We have, by Poincaré duality and the universal coefficient theorem, the isomor-

phism

TorHk(∂
2X◦) ∼= TorHn−k−2(∂

2X◦)∨ , (3.73)

where n = dim ∂X◦ = dim ∂2X◦+1 and G∨ = Hom(G,U(1)) denotes the Pontryagin dual of

a group G. Similarly we also have, by Poincaré-Lefschetz duality and the universal coefficient

theorem, the isomorphism

TorHk(∂X
◦) ∼= TorHn−k−1(∂X

◦, ∂2X◦)∨ . (3.74)

These dualities extend to mappings in the sequence, i.e., the mappings

TorHk(∂
2X◦) → TorHk(∂X

◦)

TorHn−k−1(∂X
◦, ∂2X◦) → TorHn−k−2(∂

2X◦) ,
(3.75)

are related by duality. One consequence of this is that every extension relation of type

(3.70) → (3.71), for some p-brane construction of a defect, in accompanied by the extension

relation of type (3.71)→ (3.72) for the electromagnetically dual q-brane. The linkings (3.73)

and (3.74) then compute the Dirac pairings for such pairs compatible with these extension

properties.

Our Running Example Consider the above for the 5D SCFT engineered by M-theory

on C3/Z2n. For this geometry the long exact sequence above decomposes into four exact

subsequences (see appendix A). They are

0 → H2(∂X
◦, ∂2X◦) → H1(∂

2X◦) → H1(∂X
◦) → 0

0 → Z
1 7→ (n,1)
−−−−−−→ Z⊕ Z2

(a,b) 7→ a+nb
−−−−−−−−→ Z2n → 0 ,

(3.76)
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and

0 → H3(∂
2X◦) → H3(∂X

◦) → H3(∂X
◦, ∂2X◦) → H2(∂

2X◦) → 0

0 → Z
1 7→n
−−−−→ Z

1 7→ 2
−−−−→ Z2n

1 7→ 1
−−−−→ Z2 → 0 ,

(3.77)

together with a trivial sequence in degree 4, 5 and 0 which we omit here. Now, consider the

defect group of electric line operators constructed by wrapping M2-branes on a cone over

elements in H1(∂X
◦) ∼= Z2n modulo Z2, i.e., Zn. We see that n copies of any defect line is

zero in Zn but possibly non-zero in Z2n and if non-trivial can be deformed to a genuine line

operator of type (3.72) . Similarly, consider a defect of type (3.72) which projects to fill the

full 2-plane and is constructed by wrapping an M5-brane on a cone over a 3-cycle given by a

family of cycles H2(∂
2X◦) ∼= Z2 capped off by relative cycle in H3(∂X

◦, ∂2X◦). Two copies

of this defect trivialize in the bulk of the 2-plane but remain non-trivial on the edge.

Overall, we see that the defect group of electric lines and magnetic surfaces, individually

isomorphic to Zn, are extended both to Z2n. Physically, this can be interpreted as the

defect group of the electric lines and magnetic surfaces if we were to gauge the su2 flavor

symmetry. Equivalently, the above reflects aspects of the 2-group symmetry of the 5D SCFT

which informs on how to combine the defect groups of the SCFT and the flavor brane theory.

Let us push the example further, given the interpretation in the previous paragraph we

expect a Dirac pairing on Z2n×Z2n. Indeed, geometrically we will argue it to be determined

via linking of the groups H1(∂X
◦) and H3(∂X

◦, ∂2X◦) ∼= H3(∂X). We compute this pairing:

H1(∂X
◦)×H3(∂X

◦, ∂2X◦) → Q/Z

Z2n × Z2n → Q/Z

(a, b) 7→ −
ab

2n
.

(3.78)

This reduced to the standard Dirac pairing on the lines and surfaces of D[Td] by restriction.

From the above we see that the lines are to be identified as the Zn obtained from Z2n after

modding by n and the surfaces result as the Zn subgroup of Z2n. The latter gives a factor

of 2, we thus have

Zn × Zn → Q/Z

(a, b) 7→ −
ab

n
,

(3.79)

for the 5D defect group of electric lines and magnetic surfaces.

Corner B
(1,0)
d

56



We now argue that there is no second choice of polarization to be made in specifying

the corner condition B
(1,0)
d of the closed cheesesteak, however we need to impose boundary

conditions for fields localized to Td+1.

First, recall that the projection πIJ , given in (3.20), maps copies of the locus K = ∂S

onto both B
(0,1)
d and points of the edge Td+1. Points of the other edge B

(1,x⊥)
d connecting to

B
(0,1)
d are mapped onto by copies of ∂2X◦ which collapses to K when x⊥ → 0. In principle,

the previous analysis now simply repeats with this altered starting point, however, due to our

particular choice of decomposition ∂X = ∂X◦ ∪ TK , see (3.10), we have that the mappings

Hn(∂
2X◦) = Hn(∂TK )→ Hn(TK ) ∼= Hn(K ) , (3.80)

are surjective. Consequently, the geometry projecting to the corner supports no additional

cycles and no additional defects are localized to the edge Td+1 for which we would have to

specify a polarization. More precisely, lifting Td+1 we have less cycles
19 for our constructions

as the above mapping can have a kernel, and overall the set of defects admissible to terminate

at B
(1,0)
d is inherited from the boundary conditions imposed along B

(1,x⊥)
d+1 .

Recall next that Td+1 constitutes an enriched Neumann boundary condition for the bulk

Sd+2, as such we also need to impose boundary conditions for the degrees of freedom related

to this “enrichment”. This problem is fairly situational, depending the degrees of freedom

along Td and we defer a careful treatment of this question to future work. However, we note,

by way of example, that these boundary conditions of Td+1 at B
(1,0)
d are not independent

from our defect discussion.

Our Running Example Consider the 5D SCFT engineered by M-theory on X =

C3/Z2n in an electric polarization. The support of a defect constructed from a M2-brane

wrapping over a cone on a free generator of H1(∂
2X◦) ∼= Z ⊕ Z2, away from the singular

locus S , is visualized as:

Td+1

Td

B
(1,x⊥)
d+1

B
(1,0)
d

(3.81)

19Such statements of course depend on the (co)homology theory employed. Here, we are working with
singular (co)homology, which however is expected to be too coarse in non-smooth settings. A next better
approximation would be the orbifold cohoomology of Chen and Ruan [77], we defer this to future work.
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Under the mapping (3.80) the cross section of the wrapped cone does not trivialize and we

obtain the non-trivial defect:

Td+1

Td

B
(1,x⊥)
d+1

B
(1,0)
d

(3.82)

In the original geometry we have fully submerged the M2-brane in the ADE locus associ-

ated with the 7D super-Yang-Mills flavor brane theory. Locally, the IIA dual frame of this

configuration is a D2-brane inside of a D6-brane, i.e., in the infrared limit of the KK theory

(3.82) is an instanton string involving the non-abelian world-volume gauge field of Td+1 with

field strength f2. See (3.57) for a discussion of some of the worldvolume dynamics in the

infrared limit. Therefore, we have a consistency condition, the boundary condition for the

world volume gauge field at B
(1,0)
d must be such that instanton strings can terminate there.

3.5 Further Comments

Finally, let us make some comments on how our considerations generalize. In general settings

the singular locus S splits into a disjoint union of connected loci. Each of these can contain

subloci along which the generic singularity worsens. When we have a nesting as in (3.5) this

happens multiple times and our constructions generalizes to yield a symmetry theory Sd+m

for each connected component where m = I + 1 is the length of the respective chain (3.5).

In the total geometry these then glue together to a SymTree of cheesesteaks extrapolating

the considerations in [26].

For instance, when the generic singularity worsens at multiple disjoint loci in S once then

the resulting structure can be viewed as glued from the open cheesesteak we have discussed

here. It constitutes a building block.

We demonstrate this in terms of an example. Consider the geometry X = (C2 × T 2)/Z4

(also see the discussion in [78]) where the torus has complex structure τ = i. Denote the

coordinates of C2 by z1, z2 and that of T 2 by z3. We consider the weight vector (1, 1, 2) and

can rewrite the quotient as

X = (C2 × T 2)/Z4 = (C2/Z2 × T 2)/Z2 , (3.83)
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(i) : X → T 2/Z2

C2/Z2

(ii) (iii)

Figure 17: In subfigure (i) we sketch the space (C2×T 2)/Z4 as projection onto a T 2/Z2 base

with generic fiber C2/Z2. The T 2/Z2 base has four orbifold points modeled on C/Z2 which

locally, in the total space, are associated with patches modeled on C3/Z4. In subfigure (ii)

we show the support of the resulting symmetry theory, consisting of four open cheesesteaks

glued together along a common spine. In subfigure (iii) we collapse the four blue edges,

resulting in a collection of four 2-simplices glued along a common 1-face.

to see that the space consists of an su2 singularity along T 2/Z2. The latter is topologically

a sphere with four points modeled on C/Z2. There, in the total geometry, the singularity is

modeled on C3/Z4 with weight vector (1, 1, 2) which is exactly our running example C3/Z2n

for the case n = 2 (see subfigure (i) figure 17). Conversely, we can view X as glued together

from four patches modeled on C3/Z4. To each of these we can associate an open cheesesteak

which we then glue along a junction, see subfigure (ii) figure 17. We can also degenerate

subfigure (ii) to subfigure (iii) resulting in a structure given by four 2-simplices glued along

a 1-face.

4 Illustrative Examples in d = 5, 4

We now give some illustrative examples. These will be minimally supersymmetric theories

in 5D and 4D engineered via an exceptional holonomy cone X = Cone(∂X) in M-theory.

Much of the extra dimensional analysis will be deferred to appendix A and we focus here

mostly on specifying the two symmetry theories Sd+2 and relative to it Bd+1, and the flavor

brane theory Td+1, i.e., we specify the full neighborhood of the corner mode Td.

The extra-dimensional input we start with will be the long exact sequence in relative

cohomology for the pair ∂X◦, ∂2X◦ which reads

. . . → Hn(∂X◦, ∂2X◦) → Hn(∂X◦) → Hn(∂2X◦) → . . . (4.1)
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and the Chern-Simons term20 of 11D supergravity

2π

∫

M11

(
−
1

6

C3

2π
∪
G4

2π
∪
G4

2π
+

1

48

C3

2π
∪
[
p2(M11)− p1(M11)

2/4
])

, (4.2)

where G4 = dC3 is the field strength of the M-theory 3-form C3 and pi(M11) are the Pon-

tryagin classes of M11. We have normalized G4/2π to have integral periods.

We structure our analysis by first describing various geometric features of the internal

geometryX and its singularities S , and discuss the flavor brane theory Td+1 via its relation to

the world volume theory of a D6-brane in a IIA dual frame. Then we address the field content

of the pair Sd+2,Bd+1 and the boundary condition imposed by the latter on the former. From

here we turn to discuss the Lagrangian governing the interactions and anomalies.

Once the neighborhood of the corner mode Td is discussed we turn to specify the boundary

conditions B, B̃. Overall we will focus in the various examples on different features. For the

5D examples we focus on discrete symmetries and 2-group symmetries. For the 4D examples

we focus on continuous symmetries.

4.1 Example: 5D SCFTs

M-theory on the Calabi-Yau orbifold cone X = C3/ZN engineers a large class of 5D su-

perconformal field theories, see e.g., [79] as well as the more recent [80–86]. Here we are

considering a faithful Γ ∼= ZN group action

(z1, z2, z3) 7→ (ωm1z1, ω
m2z2, ω

m3z3) , (4.3)

on C3 parametrized by z1, z2, z3 with m1 +m2 +m3 = 0 mod N and ω = exp(2πi/N).

To frame our discussion to follow, we being by considering the singularities S ⊂ X

and describe the pair (∂X◦, ∂2X◦). First, from the group action, we read that the orbifold

cones C3/ZN = Cone(S5/ZN) have a codimension 6 singularity at their tip and up to three

codimension 4 singularities at zi, zj = 0. The latter are supported on a copy of C/ZN

parametrized by the coordinate which does not vanish. As such the asymptotic singular locus

K ⊂ ∂X = S5/ZN consists of up to three disjoint circles and the tubular neighborhood

TK ⊂ ∂X is a disjoint union of up to three 4-disk bundles with circle base. The 4-disks

are singular and modeled on a neighborhood of the origin of an A-type ADE singularity.

20Although the differential cohomology uplift of these terms are a more appropriate starting point, see for
example [13,72], we restrict our considerations to ordinary cohomology which we will find to be sufficient in
most instances. We defer the more careful treatment to future work.
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Excision of the singularities then gives the smooth 5-dimensional manifold with boundary

∂X◦ = ∂X\TK and therefore ∂2X◦ is a smooth closed 4-dimensional manifold which projects

onto K with 3-dimensional lens space fibers.

From here, compute the long exact sequence in relative cohomology for the pair (∂X◦, ∂2X◦)

(see Appendix A for details). The sequence reads

Hk(∂X◦, ∂2X◦) Hk(∂X◦) Hk(∂2X◦)

k = 0 0 → Z → Z|K | →

k = 1 Z|K |−1 → 0 → Z|K | −→

k = 2 Z|K | → Γ∨ → Γ∨
fix →

k = 3 0 → Z|K | → Z|K | ⊕ Γfix →

k = 4 Γ → Z|K |−1 → Z|K | →

k = 5 Z → 0 → 0 →

(4.4)

where Γ = ZN and Γfix ⊂ Γ is the subgroup generated by all group elements which have fixed

points on S5. We denote the Pontryagin dual of an abelian group G by G∨ = Hom(G,U(1)).

Concretely we have,

Γfix
∼= Zg

∼= Zg1 × Zg2 × Zg3 (4.5)

with coprime product g = g1g2g3 and gi = gcd(mi, N). We denote the number of connected

components of K by |K | = 1, 2, 3 where the precise value depends on the weights mi which

we assume to have chosen such that |K | ≥ 1.

In M-theory the codimension 4 singularities of S engineer 7D super-Yang-Mills theories

which intersect at the codimension 6 singularity where a 5D SCFT is supported. In our

examples each 7D super-Yang-Mills theory can be analyzed locally in the geometry, where

it is associated with an A-type ADE singularity, and be described dually by a D6-brane in

IIA. With respect to each such 7D sector the 5D SCFT is a codimension two defect and its

insertion into the 7D theory turns on a non-trivial background field profile in the 7D bulk.

We can analyze this profile by noting that in the geometry the 7D super-Yang-Mills theory is

supported on R1,4×(C/ZK \ {0}), for some K, with normal geometry C2/(ZN/ZK). Along a

path linking the puncture in C/ZK \ {0} this normal geometry is acted on by a monodromy.

In the IIA dual frame this monodromy is captured by a holonomy for the RR 1-form field

C1 which interacts with the D6-brane world volume theory via the Wess-Zumino coupling

2π

6(2π)3

∫
C1 ∪ tr ((f2 − B2) ∪ (f2 −B2) ∪ (f2 − B2)) , (4.6)
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7D7D

7D

5D

(i)

6D6D

6D

5D

(ii)

T (f)
d+1=6

T (c)
d=5

(iii)

Figure 18: Sketch of the relative theories in 5D, 6D, 7D for C3/ZN in M-theory. In (i) we

sketch the 5D SCFT as a defect in three 7D super-Yang-Mills theories supported on the 5D

spacetime times three cones meeting at their apex. In (ii) we KK reduce these cones to their

radial half lines. Folding (iii) we arrive at (ii). The relative flavor brane theory is a disjoint

union of the three sets of 6D KK theories.

where f2 is the non-abelian field strength on the D6-brane stack and B2 is the NSNS 2-form.

We will consider backgrounds with the NSNS 2-form turned off. Upon KK reducing on

concentric circles S1 linking the puncture in C/ZK \ {0} the above setup reduces to a 6D

KK theory with a massless 6D super-Yang-Mills sector containing the coupling

2πq

6

∫
tr

(
f2
2π
∪

f2
2π
∪

f2
2π

)
, (4.7)

with period q =
∫
S1 C1 which is some rational number constrained by Kq ∈ Z. The disjoint

union over these 6D theories is then the relative flavor brane theory Td+1 and the corner

theory Td realizes an end of the world brane thereof, with d = 5, here the 5D SCFT.

The KK reduction is not strictly necessary, however, it is favorable to collapse the system

into a bulk and boundary in adjacent dimensions when discussing their symmetries. Further,

let us already mention here that in taking the IR limit which localizes the dyanmics of the

system to d dimensions we will need to carefully consider which bulk operators Sd+2 remain

as symmetry operators for the resulting d-dimensional QFT.
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4.1.1 Field Content of Sd+2,Bd+1

We begin with deriving the field content of Sd+2. We expand the supergravity field strength

G4 in classes of Hn(∂2X◦). We have, see (4.4) for the basis of cocycles of the expansion,

G4 =

|K |∑

i=1

(
H

(i)
4 ∪ 1(i) +H

(i)
3 ∪ v1,(i) +B

(i)
2 ∪ t2,(i) +

B
(i)
1 ∪ t3,(i) +H

(i)
1 ∪ v3,(i) +H

(i)
0 ∪ vol4,(i)

)
,

(4.8)

where i runs over the flavor branes and Hn, Bn denotes an abelian U(1) field strength of

degree n and abelian discrete background field in degree n respectively, and vn, tn denote

free, torsional integral coycles of degree n respectively. The field content of Sd+2 is

(H
(i)
0 , H

(i)
1 ) , (H

(i)
3 , H

(i)
4 ) , and (B

(i)
1 , B

(i)
2 ) , (4.9)

where we indicated KK pairs and grouped continuous and discrete fields. In order to make

the order of the discrete fields explicit we also write B
(Zgi )

k for a degree k cocycle of order gi

or group these into B
(Γ∨

fix
)

2 ≡ B
(Zg)
2 . Therefore, using the isomorphism (4.5) we equivalently

have the expansion

G4 =

|K |∑

i=1

(
H

(i)
4 ∪ 1(i) +H

(i)
3 ∪ v1,(i) +B

(Zg)
2 ∪ t2+

B
(Zg)
1 ∪ t3 +H

(i)
1 ∪ v3,(i) +H

(i)
0 ∪ vol4,(i)

)
,

(4.10)

replacing the triplet of doublets (B
(i)
1 , B

(i)
2 ) with (B

(Zg)
1 , B

(Zg)
2 )

Next we discuss the field content of Bd+1. We expand the supergravity field strength G4

in classes of Hn(∂X◦, ∂2X◦) and Hn(∂X◦). We have

G4 = G4 ∪ 1 +B
(ZN )
2 ∪ s2 +

|K |∑

i=1

G
(i)
1 ∪ u3,(i) +

|K |−1∑

j=1

G
(j)
0 ∪ u4,(j)

+

|K |−1∑

j=1

F
(j)
3 ∪ w1,(j) +

|K |∑

i=1

F
(i)
2 ∪ w2,(i) +B

(ZN )
0 ∪ r4 ,

(4.11)

where i again runs over the flavor branes, j over some of their differences, and Gn, Fn

denote abelian U(1) field strengths of degree n. Further, we have the discrete symmetry

background fields B
(ZN )
0 , B

(ZN )
2 . The cohomology classes un, (wn) and sn, (rn) are free and
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torsional (relative) integral cohomology classes of ∂X◦ respectively. The field content is

G
(j)
0 , G

(i)
1 , F

(i)
2 , F

(j)
3 , G4, and B

(ZN )
0 , B

(ZN )
2 , (4.12)

where we have grouped continuous and discrete fields respectively. These fields are subject

to identifications as specified by the mapping ιn : Hn(∂X◦, ∂2X◦)→ Hn(∂X◦).

Let us make these identifications explicit for the case |K | = 1. In this case we drop the

index i as it takes a single value and delete the fields labelled j from the spectrum as this

index runs over the empty set. Then we only have the single identification

|Γ∨
fix|B

(Γ∨)
2 = F2

gB
(ZN )
2 = F2 ,

(4.13)

where in the second line, equivalent to the first, we have made the group orders explicit via

Γ∨ ∼= ZN and Γ∨
fix
∼= Zg. All fields take values in U(1); this is the natural normalization

given we are relating discrete and continuous fields. The identification constrains F2 to take

finitely many values, isomorphic to (Γ/Γfix)
∨, and with this constraint in place the above

simply correspond to the subgroup relation (Γ/Γfix)
∨ ⊂ Γ∨.

Let us recall the derivation of (4.13). Denote by w2 and s2 the 2-cocycles generating the

groups H2(∂X◦, ∂2X◦) ∼= Z and H2(∂X◦) ∼= Γ∨ respectively. Applying ι2 we have

F2 ∪ w2 7→ F2 ∪ ι2(w2) = F2 ∪ gs2 (4.14)

which we compare to B
(ZN )
2 ∪ s2, multiplying through by g we conclude that F2 and gB

(ZN )
2

are to be identified. See the discussion following (3.46) for more details.

In addition we have dual fields resulting from similar expansions for G7. For example,

the discrete fields resulting from this expansion are

B
(Zg)
5 , and B

(ZN )
2 , B

(ZN )
3 . (4.15)

These fields are analyzed identically to those derived from G4.

4.1.2 Boundary Condition of Sd+2|Bd+1

The relative symmetry theory Bd+1 realizes a boundary condition for Sd+2. Restricting a

field Sd+2 to the support of Bd+1 we can relate the corresponding internal cycles, given they

now embed into the same geometry, a copy of ∂X◦, via the mappings Hn(∂X◦)→ Hn(∂2X◦)
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and Hn(∂2X◦) → Hn+1(∂X◦, ∂2X◦). The former mapping is degree preserving and relates

cocycles of Bd+1 and Sd+2 in identical degree. The latter mapping relates cocycles in adjacent

degrees. See the discussion surrounding (3.39) for more details.

We make these boundary conditions explicit for the case |K | = 1. We have the degree

preserving boundary conditions for fields from expansions along Hn(∂2X◦) and Hn(∂X◦)

given by

H4

∣∣
Bd+1

= G4

H3

∣∣
Bd+1

= 0

B
(Zg)
2

∣∣
Bd+1

= (N/g)B
(ZN )
2[

(N/g)H1 +B
(Zg)
1

]∣∣∣
Bd+1

= G1

H0

∣∣
Bd+1

= 0 ,

(4.16)

where we denote restriction to the support of Bd+1 at r = 0 by |Bd+1
. Next, the degree lowering

boundary conditions for fields from expansions along Hn(∂2X◦) and Hn+1(∂X◦, ∂2X◦) are

given by (
∂/∂r yH4

)∣∣∣
Bd+1

= 0

(
∂/∂r yH3

)∣∣∣
Bd+1

= (N/g)F2

(
∂/∂r yB

(Zg)
2

)∣∣∣
Bd+1

= 0

(
∂/∂r y

[
H1 +B

(Zg)
1

])∣∣∣
Bd+1

= B
(ZN )
0

(
∂/∂r yH0

)∣∣∣
Bd+1

= 0 .

(4.17)

Let us discuss some of these boundary conditions in greater detail. For example, how are

the identification and boundary condition

gB
(ZN )
2 = F2 ,

(
∂/∂r yH3

)∣∣∣
∂
= (N/g)F2 , (4.18)

consistent? The fields F2, H3 are valued in U(1), hence the latter boundary condition fixed

F2 up to a ZN/g phase. This phase is then fixed by the former identification. The field F2 is

completely eaten up. Next, how are the pair of boundary conditions

[
(N/g)H1 + B

(Zg)
1

]∣∣
∂
= G1 ,

(
∂/∂r y

[
H1 +B

(Zg)
1

])∣∣∣
∂
= B

(ZN )
0 , (4.19)

compatible? The naively first condition fixed H1 up to a ZN/g phase. However, the first
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term in the first condition can be compensate by the second term extending the undermined

ZN/g phase to a ZN phase shared between the pair H1, B
(Zg)
1 . This phase then determines

the profile for B
(ZN )
0 by the second condition.

Next we ask: what are the fields of Bd+1 which are not constrained by the bulk fields Sd+2,

i.e., the degrees of freedom propagating as boundary modes in Sd+1? On general grounds

we argued that these result from the image of the mapping Hn(∂X◦, ∂2X◦) → Hn(∂X◦).

In the case |K | = 1 we thus find a single field (and its magnetic dual) propagating in Bd+1

which is:

B
(ZN/g)

2 ≡ B
(Γ/Γfix)

∨

2 ≡ gB
(Γ∨)
2 . (4.20)

It is well-known that the defect group of lines constructed from wrapped M2-branes of

the 5D SCFTs engineered by C3/Γ is isomorphic to Ab(Γ/Γfix) [71, 87]. We have found the

corresponding background field to be localized to Bd+1. This is compatible with our defect

group analysis in section 3 which here results in the defect group D1[Td] ∼= Ab(Γ/Γfix).

We also immediately recover the results of the 2-group analysis of [75,76] for the case of

5D SCFTs engineered by C3/Γ with Γ ∼= ZN . The fields B
(Zg)
2 , B

(ZN )
2 , B

(ZN/g)

2 are related by

the short exact sequence

0 → (Γ/Γfix)
∨ → Γ∨ → Γ∨

fix → 0 ,

0 → ZN/g → ZN → Zg → 0 ,
(4.21)
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which is here realized by the boundary conditions21

B
(ZN/g)

2 = B
(ZN )
2 , B

(Zg)
2 |Bd+1

= (N/g)B
(ZN )
2 , (4.26)

and the relation (4.20). These determined the 2-group sequence (see [58])

0 → ABd+1

∼= ZN/g → ÃBd+1

∼= ZN → G̃Td+1

∼= SU(g) → GTd+1

∼= PSU(g) → 1 (4.27)

where ABd+1
is the 1-form symmetry group, ÃBd+1

the naive 1-form symmetry group, G̃Td+1

the naive simply connected continuous 0-form flavor symmetry group and G̃Td+1
the 0-form

flavor symmetry group of the 5D SCFT. Making the split

0 → ABd+1

∼= ZN/g → ÃBd+1

∼= ZN → ÃBd+1
/ABd+1

∼= ZN/g → 0

0 → Z(G̃Td+1
) ∼= ZN/g → G̃Td+1

∼= SU(g) → GTd+1

∼= PSU(g) → 1 ,
(4.28)

we decompose the 4-term sequence into two short exact sequences each associated with an

edge of the cheesesteak. Here Z(G̃Td+1
) is the center of the simply connected Lie group G̃Td+1

and we have

ÃBd+1
/ABd+1

∼= Z(G̃Td+1
) (4.29)

mediated via the d+ 2 dimensional bulk. We summarize the discussion by indicating where

21We briefly review our normalization and notation conventions. In this section all fields, including discrete
fields, are valued in U(1). The relation between the normalizations for a discrete field B of order K is

BU(1) =
2π

K
BZK . (4.22)

This has consequences for how fields associated with a short exact sequence

1 → Z
(a)
K → Z

(b)
M → ZM/ZK

∼= Z
(c)
M/K → 1 , (4.23)

relate. Here K divides M and the exponents denote the fields we associate to these groups now. When
normalized to take values in finite groups the sequence implies

aZK =
M

K
bZM , cZM/K

=

[
bZM mod

M

K

]
. (4.24)

When normalized with values in U(1) we have instead

aU(1) = bU(1) , KbU(1) = cU(1) . (4.25)

We remind that our notation in this section will be B
(G)
d for a degree d cocycle of order |G| valued in U(1).

In particular to exact sequence we associate relations such as (4.25). For instance, in (4.16) and (4.17) no
‘mod’ appears. This is the preferred convention when discrete fields mix with continuous fields.
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the various piece of data are found within the cheesesteak:

2-group

ÃBd+1
Z(G̃Td+1

) ∼= ÃBd+1
/ABd+1

gTd+1

GTd+1
ABd+1

(4.30)

Reading the figure bottom to top, we have first the boundary conditions realizing the specified

symmetries, the naive superstructures, and at the bottom we labelled the edge Td+1 with

the Lie algebra of G̃Td+1
and indicated that the corner theory Td+1 has a 2-group symmetry.

An isomorphic labelling is:

2-group

ZNZg

sug

PSU(g) ZN/g

(4.31)

4.1.3 Actions of Sd+2,Bd+1

The action for Sd+2 is determined from reduction of 11D supergravity on ∂2X◦. For illustra-

tive purposes we again focus on the case |K | = 1. In the general cases we have |K | copies

of the following discussion, one for each flavor brane. From the Chern-Simons term C3G4G4

we find

Sd+2 ⊃ −
1

6(2π)3

[
6α

∫
H4 ∪B

(Zg)
1 ∪ B

(Zg)
2 + 3β

∫
H3 ∪ B

(Zg)
2 ∪ B

(Zg)
2

+ 6γ

∫
H0 ∪H4 ∪ C3 + 6δ

∫
H1 ∪H3 ∪ C3

]
,

(4.32)
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where dC3 = H4. The flavor brane is an sug singularity and therefore, [13, 88],

α/2 = β/2 = −
g − 1

2g
mod 1 . (4.33)

We also have γ = δ = 1 as these are computed to a trivial pairing and a base-fiber intersection

respectively. We focus here on the discrete fields B
(Zg)
1 and B

(Zg)
2 which also come with the

canonical single derivative terms

Sd+2 ⊃
g

2π

∫ (
B

(Zg)
1 ∪ dB

(Zg)
5 +B

(Zg)
2 ∪ dB

(Zg)
4

)
. (4.34)

derived following [26, 72]. The interpretation of these interactions are discussed in detail

in [13, 26, 28]. The terms above are those of 7D super-Yang-Mills theory KK reduced on

a circle. Geometrically, this is a non-trivial consequence of the cohomology ring of ∂2X◦,

which is a twisted fiber product of a 3D lens space over a circle, being isomorphic to the

cohomology ring of the direct product of this base and fiber. Physically, this is matched by

the monodromy term (4.7) having no consequence for the symmetries of the flavor theory.

Indeed, it is a total derivative and can be expressed as a term exclusively supported on the

support of the 5D SCFT locus living on the boundary to the 6D flavor theory.

The action for Bd+1 is determined from reduction of 11D supergravity on ∂X◦. This re-

duction can be performed directly from geometry, and is further constrained to be compatible

with the boundary conditions (4.16) and (4.17) and the bulk action (4.32). For example,

apply the boundary conditions

B
(Zg)
2

∣∣
∂
= (N/g)B

(ZN )
2 ,

(
∂/∂r yB

(Zg)
1

)∣∣∣
∂
= B

(ZN )
0 ,

B
(Zg)
5

∣∣
∂
= (N/g)B

(ZN )
5 ,

(
∂/∂r yB

(Zg)
4

)∣∣∣
∂
= B

(ZN )
3 ,

(4.35)

to the term (4.34) to find the single derivative boundary term

Bd+1 ⊃
N

2π

∫ (
B

(ZN )
0 ∪ dB

(ZN )
5 +B

(ZN )
2 ∪ dB

(ZN )
3

)
, (4.36)

where the cocycles maintaining degree contribute a factor of N/g. As an example performed

directly via geometry consider the coupling

6S(c)
d+1=6 ⊃ −2πǫ

(
N/g

2π

)2(
N

2π

)∫
B

(ZN/g)

2 ∪ B
(ZN/g)

2 ∪ B
(ZN )
2

= −2πǫ

∫
B̃

(ZN/g)

2 ∪ B̃
(ZN/g)

2 ∪ B̃
(ZN )
2 ,

(4.37)
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where the tilde now indicates a change in normalization to discrete fields taking values in

ZN/g and ZN . The change in normalization makes it clear that ǫ is computed by the triple

product

H2(∂X◦, ∂2X◦)×H2(∂X◦, ∂2X◦)×H2(∂X◦) → Q/Z

Z× Z× Γ∨ → Q/Z

(1, 1, 1) 7→ ǫ = ℓ
(
ω
(∂X◦, ∂2X◦)
2 ∪ ω

(∂X◦, ∂2X◦)
2 , ω

(∂X◦)
2

)

(4.38)

where the cup product ∪ : H2(∂X◦, ∂2X◦) ×H2(∂X◦, ∂2X◦) → H4(∂X◦, ∂2X◦) ∼= Γ maps

into a finite group and ℓ denotes a linking form. Upon modding out the kernel, by using the

isomorphism TorH2(∂X) ∼= H2(∂X◦, ∂2X◦)/H1(∂2X◦) ∼= (Γ/Γfix)
∨, we can also consider

TorH2(∂X)× TorH2(∂X)× TorH2(∂X◦) → Q/Z

(Γ/Γfix)
∨ × (Γ/Γfix)

∨ × Γ∨ → Q/Z

(1, 1, 1) 7→ ǫ = ℓ
(
ω
(∂X)
2 ∪ ω

(∂X)
2 , ω

(∂X◦)
2

) (4.39)

where the cup product ∪ : H2(∂X) × H2(∂X) → H4(∂X) ∼= Γ is determined from the

previously considered cup product. Next, we compute the triple product,

ǫ =
(L1

m)
3

gL3
M

, (4.40)

where we have m = (m1, m2, m3) and M = (N,m1, m2, m3) and Lk
m, L

k
M are some combina-

torial factors (see Appendix A.3.2 for details).

Note that (Γ/Γfix)
∨ ∼= ZN/g is the 1-form symmetry group and Γ∨ ∼= ZN is the 1-

form symmetry group extended by the 1-form symmetry of the flavor brane. This unrefined

anomaly is therefore finer than the pure 5D 1-form symmetry self-anomaly, which is recovered

by restricting to a subgroup (Γ/Γfix)
∨ ⊂ Γ∨.

For example, in our illustrative example of M-theory on C3/Z2n, where we have M =

(2n, 1, 1, 2n−2) and m = (1, 1, 2n−2), we compute ǫ = 1/n compatible with the pure 1-form

anomaly gǫ = 2ǫ = 2/n compute in [13].

4.1.4 Summary for the Example of M-theory on C3/Z2n(1, 1, 2n− 2)

Let us summarize the overall cheesesteak for the example of M-theory on C3/Z2n with weights

(1, 1, 2n− 2). We focus on the discrete data. See figure 19 for a summary where we present
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Relative 5D SCFT6D SYM + f 3
2 -term + . . .

2n2π ∫
B (Z

2n )
2

∪
dB (Z

2n )
3

+
. . .

BC for B
(Z2n)
2 , B

(Z2n)
3

Dirichlet BC for B
(Z2)
2

Neumann BC for B
(Z2)
4

2
2π

∫
B

(Z2)
2 ∪ dB

(Z2)
4

B (Z
2 )2

|∂ =
nB (Z

2n )
2

, (
∂/∂r

yB (Z
2 )4 ) ∣∣∣
∂ =

B (Z
2n )

3
+ . . .

. . .

Figure 19: Sketch of some features of the cheesesteak for M-theory on C3/Z2n(1, 1, 2n− 2)

related to the 5D defect groups of lines and surfaces. We have Γ∨ ∼= Z2n and (Γ/Γfix)
∨ ∼= Zn

and Γ∨
fix
∼= Z2.

the cheesesteak with the edge B
(r,1)
d+1 collapsed.

The flavor symmetry22 of the 5D SCFT is SO(3) as determined by the boundary condi-

tions B
(1,x⊥)
d+1 (green edge) which fixes the global form of the flavor brane theory Td+1 (red

edge). The relative symmetry theory Bd+1 (purple edge) with discrete fields of order 2n adds

defects such that the lines and 3-surfaces present in the bulk Sd+2 (grey face), individually

isomorphic to Z2, are extended to Z2n as characterized by the boundary conditions Sd+2|Bd+1
.

The polarization for these additional defects is determined at B
(1,1),∗
d (grey dot). This polar-

ization is constrained by B
(1,x⊥)
d+1 . Finally, the 5D SCFT is an end of the world theory to the

6D flavor brane (red dot). Overall we have the actions:

Sd+2 =
2

2π

∫ (
B

(Z2)
1 ∪ dB

(Z2)
5 +B

(Z2)
2 ∪ dB

(Z2)
4

)
−

1

2(2π)2

∫
H4 ∪B

(Z2)
1 ∪B

(Z2)
2

+
1

2(2π)2

∫
H3 ∪B

(Z2)
2 ∪ B

(Z2)
2 + . . .

Bd+1 =
2n

2π

∫ (
B

(Z2n)
0 ∪ dB

(Z2n)
5 +B

(Z2n)
2 ∪ dB

(Z2n)
3

)
−

4π

3n

(
2n

2π

)3 ∫
B

(Z2n)
2 ∪B

(Z2n)
2 ∪B

(Z2n)
2

+ . . . ,

(4.41)

where we wrote out the data associated with discrete symmetries. Here made replacements

22Here we ignore possible mixing of this 0-form symmetry with the R-symmetry and the structure group
of the tangent bundle.
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using 2B
(Z2n)
2 = B

(Zn)
2 to achieve a cubic term in Bd+1 which permitted us the give the

refined anomaly, the coefficient of the (B
(Z2n)
2 )3 term. The latter follows from the 1-form

self-anomaly being 2/6n, hence we know that 2 × ǫ/6 = 2/6n mod 1 and therefore either

ǫ = 1/6n or ǫ = 1/6n+1/2. Additionally, from Zn embedding into a larger Z2n we know that

ǫ/6 must follow from a pure triple Z2n anomaly term (as written above) by field redefinition,

and reversing back to B
(Zn)
2 we have ǫ = 1/6n.

4.2 Example: 4D Chiral Matter

We now turn to an example of a free 4D theory. From the associated extra-dimensional

construction we will find many continuous symmetries, and one key question will be which

of these remain, once the 4D dynamics have been isolated.

To begin, let WP3 denoted the weighted projective space with projective coordinates

z1, z̄2, z3, z̄4 carrying weights N1, N1, N2, N2 respectively with N1, N2 coprime. In M-theory

the cone

X = Cone(WP3) , (4.42)

which is conjectured to admit a G2-holonomy metric, engineers a 4D N = 1 chiral super-

field Φ in the bifundamental representation (N1,N2)N1+N2
of a non-abelian flavor symmetry

algebra suN1
⊕ suN2

⊕ u1 [47–49]. See also [89–91] for related discussions in the context of

intersecting D6-branes and their lifts to G2 spaces.

We consider the singularities of X . There are two codimension four A-type ADE loci

(flavor branes) with Lie algebras suN1
and suN2

, wrapping z3, z4 = 0 and z1, z2 = 0 respec-

tively. These ADE loci extend radially and enhance to a codimension-7 singularity at the

tip of the cone. The full singular locus is the union of these cones

S = Cone(P1
12) ∪ Cone(P1

34) = R3
N1
∪ R3

N2
. (4.43)

Here P1
12 and P1

34 are parametrized by z1, z2 and z3, z4 respectively, and give R3
Ni

which

support C2/ZNi
ADE singularities. We have the disjoint union K = P1

12∪P
1
34 and the chiral

superfield Φ is supported at the tip of the cone.

The IIA dual of this geometry are two stacks of N1, N2 D6-branes intersecting supersym-

metrically at an angle in R6. Their worldvolume lifts to the codimension four locus R3
N1
∪R3

N2

and their intersection point lifts to the tip of the cone.

Going forward we focus on the case (N1, N2) = (N, 1). The discussion generalizes

straightforwardly to coprime pairs (N1, N2). We can also consider pairs (N1, N2) with
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gcd(N1, N2) 6= 1, in these cases however the geometry X changes, becoming a global quotient

of an already singular cone [48], and our analysis will need to be slightly modified.

In any case, while the IIA dual still contains two sets of D6-branes the M-theory uplift

only contains a single A-type ADE locus with Lie algebra suN , the single D6-brane uplifts to

a smooth patch of the geometry. We now have K = P1
12 and S = R3

N where the singularity

worsens from codimension four to codimension seven at the origin of R3
N .

From here we see that the 6-dimensional manifold with boundary ∂X◦ = WP3\Tube(P1
12)

retracts onto the 2-sphere P1
34 and that the closed 5-dimensional manifold ∂2X◦ is given by a

bundle over P1
12 with lens space fibers S3/ZN (see Appendix A for details). With this input

we compute the long exact sequence of the pair (∂X◦, ∂2X◦), which reads:

Hn(∂X◦, ∂2X◦) Hn(∂X◦) Hn(∂2X◦)

n = 0 0 → Z → Z →

n = 1 0 → 0 → 0 −→

n = 2 0 → Z → Z →

n = 3 0 → 0 → Z →

n = 4 Z → 0 → 0 →

n = 5 0 → 0 → Z →

n = 6 Z → 0 → 0 →

(4.44)

The IIA dual already illuminated some of the physical aspects, however we will be in-

terested in the 5D KK theory Td+1 obtained by reducing Cone(K ) to a half-line by KK

reducing the theory on the ADE flavor brane on the link K .

To understand this 5D KK theory, recall that in M-theory the codimension four sin-

gularities of S engineers 7D suN super-Yang-Mills theory. The defect at the tip of the

cone, corresponding to the intersection of the single otherwise disjoint D6-brane, sources a

background field configuration for this super-Yang-Mills theory. This background profile is

analyzed geometrically, noting that the M-theory circle restricted to P12 twists with unit

monopole number. In the IIA dual frame this is captured by a flux for the RR 1-form field

C1, with field strength F
(RR)
2 through P12, i.e., the 10D supergravity background we are

considering is such that ∫

P12

F
(RR)
2 = 2π . (4.45)

There are now two D6-brane Wess-Zumino terms on the stack of D6-branes which give rise
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to interesting terms given such a background. They are

∫

N×D6

F
(RR)
2 ∧

tr (a1 ∧ f2 ∧ f2)

24π2
=

∫

N×D6

F
(RR)
2 ∧ CS

(1)
5 (a1) ,

∫

N×D6

C3 ∧
tr (f2 ∧ f2)

8π2
=

∫

N×D6

C3 ∧Θ
(1)
4 (f2)

(4.46)

where f2 is an suN field strength with connection a1. Here CS
(1)
5 denotes a level 1 5D Chern-

simons term and Θ
(1)
4 denotes a unit monopole density. KK reducing the C3 field contributes

a u1 gauge field A1 and overall we obtain from the above interactions two terms:

∫
tr (a1 ∧ f2 ∧ f2)

24π2
,

∫
A1 ∧

tr (f2 ∧ f2)

8π2
. (4.47)

The gauge fields A1, a1 combine to a 5D uN gauge field.

One consequence of the 5D suN Chern-Simons term, i.e., the first term in (4.47), is that

the center symmetry of the suN sector of the 5D KK theory is completely broken. This

clearly matches (4.44) where the cohomology groups of ∂2X◦ were found to be torsion-free.

One consequence of the 5D instanton density interaction, the second term (4.47), is that we

have anomaly inflow onto the 4D theory, matched by a chiral fermion [49].

With this we have now described the 4D chiral superfield Φ as an end of the world theory

Td to a 5D KK theory Td+1. We now turn to discuss the symmetries of this bulk-edge system

via their respective symmetry theories Sd+2,Bd+1.

4.2.1 Field Content of Sd+2,Bd+1

We begin with the field content of Sd+2. We expand the supergravity field strength G4 in

classes of Hn(∂2X◦). We have

G4 = H4 ∪ 1+H2 ∪ v2 +H1 ∪ v3 , (4.48)

where i runs over the flavor branes and Hn denotes abelian U(1) field strength of degree n

and vk denote cohomology classes of degree k. The field content of Sd+2 consists purely of

abelian field strengths

H1, H2, H4 . (4.49)

Next we discuss the field content of Bd+1. We expand the supergravity field strength G4
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in classes of Hn(∂X◦, ∂2X◦) and Hn(∂X◦). We have

G4 = G0 ∪ u4 + F4 ∪ 1+ F2 ∪ w2 . (4.50)

Here Gn, Fn denote abelian U(1) field strengths of degree n. The classes un, (wn) are free

(relative) integral cohomology classes of ∂X◦ respectively. The field content of Bd+1 is

G0, F2, F4 . (4.51)

There are no equivalence relations / identifications due to the mappings ιn : Hn(∂X◦, ∂2X◦)→

Hn(∂X◦) as these are all trivial. Equivalently, the edge Bd+1 supports no degrees of freedom

which are not inherited via restriction from the bulk.

Let us comment on a distinguishing feature of H2. Geometrically, this field strength is

associated to an internal 2-cocycle which is mapped onto via restriction of the 2-cocycle gen-

erating H2(TK ). Conversely, when attempting to build the defects acted on by this 0-form

symmetry, we would wrap an M2-brane on a cone over the 2-cycle generating H2(∂
2X◦) =

H2(∂TK ). However, this 2-cycle does not trivialize under the inclusion ∂TK →֒ TK ob-

structing this construction. Therefore, H2 should be interpreted as the background profile

to the u1 field strength of A1 [47].

4.2.2 Boundary Conditions Sd+2|Bd+1

The relative symmetry theory Bd+1 realizes a boundary condition for Sd+2. Restricting a

field Sd+2 to the support of Bd+1 we can relate the corresponding internal cycles, given they

now embed into the same geometry, a copy of ∂X◦, via the mappings Hn(∂X◦)→ Hn(∂2X◦)

and Hn(∂2X◦) → Hn+1(∂X◦, ∂2X◦). The former mapping is degree preserving and relates

cocycles of the Bd+1 and Sd+2 in identical degree. The latter mapping relates cocycles in

adjacent degrees.

We make these boundary conditions explicit. We have degree preserving boundary con-

ditions for fields from expansions along Hn(∂2X◦) and Hn(∂X◦) given by

H2

∣∣
Bd+1

= F2

H4

∣∣
Bd+1

= F4

(4.52)

where we denote restriction to the support of Bd+1 at r = 0 by |Bd+1
. Next, degree lowering

boundary conditions for fields from expansions along Hn(∂2X◦) and Hn(∂X◦, ∂2X◦) are
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2
N · u1

A

Figure 20: Anomaly flow in the corner patch centered on the 4D corner mode theory. The

gauge anomalies of a chiral fermion are determined from inflow along the edges connecting

to the corner. A bulk anomaly A flows onto the edges.

given by (
∂/∂r yH1

)∣∣∣
Bd+1

= G0 . (4.53)

See section 3.3 for general discussion.

4.2.3 Actions of Sd+2,Bd+1

The action for Sd+2 determined from reduction of 11D supergravity on ∂2X◦. From the

Chern-Simons term C3G4G4 we find

Sd+2 ⊃ −2π

∫
C3

2π
∪
H2

2π
∪
H1

2π
, (4.54)

where locally dC3 = H4. Similarly, reducing C3G4G4 on ∂X◦, we find

Bd+1 ⊃ −2π

∫
C ′

3

2π
∪

F2

2π
∪
G0

2π
−

2π

6

∫
A1

2π
∪

F2

2π
∪

F2

2π
, (4.55)

where locally dC ′
3 = F4 (see Appendix A for details). The first term contribution to Bd+1 can

be derived from the flavor symmetry theory and the boundary conditions (4.52) and (4.53).

The above realizes various instances of anomaly inflow. Gauge transformations of C3

are anomalous, due to the flavor symmetry theory term of line (4.54), and contribute a

boundary term which is cancelled by the induced gauge transformation of C ′
3 and the term

(4.55). Recall we simply have C3|Bd+1
= C ′

3. Similarly, the 4D chiral fermion lives at the

boundary of both Bd+1 and the flavor brane Td+1. Gauge transformations of A1 then give a

u
3
1 anomaly of a 4D chiral fermion and the su

2
N · u1 anomaly which all must be cancelled by

the corner mode.

We compute the above anomalies via Stokes’ theorem. Consequently, anomalies flow in
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adjacent dimensions, i.e., they flow from the flavor symmetry theory Sd+2 onto its boundaries,

the relative symmetry theory Bd+1 and the flavor brane Td+1, and they flow from Sd+1 and

Td+1 onto their end of the world theory Td (see figure 20).

5 Conclusions

In this paper we have studied a top down motivated generalization of SymTFTs / SymThs

which unifies and extends earlier bottom up approaches. We have proposed a filtration of

the symmetries of a QFT to higher-dimensional systems which eventually terminates in a

fully gapped bulk theory. In this approach, one views the SymTFT / SymTh of the original

QFT as obtained from a regulated limit of some broader class of QFTs. Each such bulk

QFT has its own SymTFT / SymTh, and filtering this structure repeatedly terminates. The

original relative QFT now sits at a corner of a larger manifold with corners. Edges and faces

of this higher-dimensional system can in principle support either gapped or gapless degrees

of freedom.

While motivated by top down considerations, we have given a purely bottom up construc-

tion. From this perspective, the top down approach serves more as a guide in making various

“canonical” choices in the construction. We have also presented some string / M-theory based

examples which both motivate and illustrate this basic construction. In particular, in the

case of 5D SCFTs with a continuous flavor symmetry, we have shown that there is a fully

gapped bulk SymTFT, but one which lives in more than six dimensions. As another exam-

ple, we showed that even in seemingly “simple” systems such as a collection of N free chiral

multiplets there is a surprisingly rich topological structure once the physics of the associated

flavor symmetries is fully taken into account. In the remainder of this section we discuss

some avenues of future investigation.

At the level of explicit computations, we have shown that there is a canonical way to

read off triple product structures directly from geometry. An important subtlety here is that

the original M-theory interaction term likely supports a choice of refinement in this product

structure, analogous to the refinement of the link pairing observed in related field theoretic

and geometric computations which enters in passing, for example, from Chern-Simons theory

to Spin-Chern-Simons theory. It would be interesting to develop this refinement of link

products since it will provide additional data on the structure of anomalies in the strongly

coupled QFTs engineered via geometry.

The primary examples considered in this paper have involved a QFT with a continuous

flavor symmetry. More broadly, however, one can consider a strongly coupled edge mode
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theory coupled to a bulk system which is itself strongly coupled. Explicit examples of this

sort were constructed in [67]. It would be quite interesting to determine the associated

relative symmetry theories with edges and corners which govern such systems.

A related comment is that especially in lower-dimensional systems, the dynamics of

the bulk system is often a strongly interacting system in its own right. Determining the

associated relative symmetry theories for this class of systems would also be quite interesting.

One of the general lessons from this work is that in top down realizations of generalized

symmetries, the bulk symmetry theory is often more intricate than just a TFT in one higher

dimension. Related considerations were also observed in the context of “SymTree” construc-

tions where one has a collection of SymTFTs glued together along non-topological junc-

tions [26]. It would be natural to investigate broader generalizations of such treelike struc-

tures, but now where the branches themselves are also decompressed to a higher-dimensional

gapped system of the sort considered in this paper.

Another well-motivated generalization involves including possible time dependent effects,

as captured by the celestial topology of a string background (in the sense of [31]). This has

mainly been developed in the case where the bulk consists of gapped bulk theories which

interact across an interface theory. It would be natural to extend this to more general

situations where the higher-dimensional bulk system is again a relative symmetry theory.

Related considerations apply to non-supersymmetric intersecting brane configurations. In

this setting notions such as “edges and corners” will likely also need to be revisited to take

into account time dependent phenomena.

Finally, while these structures are best defined in limits where the effects of gravity are

switched off, it is of course interesting to study the consequences of recoupling them to

gravity, much as in [78] (see also [92]). The very fact that flavor branes of a local model are

often shared across multiple throats suggests a generalization of the cutting and gluing of

local models presented here.
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A Fibrations, Sequences and Products

In this Appendix we present the top down derivation of some results stated in section 4. Our

starting point will be a purely geometric M-theory background Md ×X with d-dimensional

spacetime Md. The non-compact geometry X = Cone(∂X) will be a special holonomy cone

engineering minimally supersymmetric theories. Concretely, we considered the two examples

• X = Cone(WP3) with WP3 a weighted projective space whose projective coordinates

z1, z̄2, z3, z̄4 have weights N,N, 1, 1 respectively. This space engineers a 4d N = 1 chiral

superfield Φ in the fundamental representation of an uN flavor algebra.

• X = C3/Z2n = Cone(S5/Z2n) where the complex coordinates z1, z2, z3 have weights

1, 1, 2n−2 respectively. This space engineers a 5D SCFT with SU(n)n IR gauge theory

phase.
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and generalizations thereof.

A.1 Families of ADE Singularities

The geometries X both exhibit singular loci consisting of a single irreducible component of

non-compact codimension 4 ADE singularities of A-type which enhance at the tip of the

cone X to a maximal codimension singularity. In both cases the geometries will belong to

larger classes of examples with multiple non-compact codimension 4 singularities of A-type

which we touched on in section 4.

As ADE singularities appear in both examples, let us begin here with their definition

and recall their symmetries. An ADE singularity is a quotient singularity of the form XΓ =

R4/Γ where Γ is a finite subgroup of SU(2)L acting on R4 via rotations as induced by the

identification SO(4) = SU(2)L × SU(2)R/Z2. The isometry / symmetry group of an ADE

singularity is therefore inherited from the natural SO(4) action, it is:

Sym(XΓ) = SU(2)R × ΛΓ . (A.1)

Here ΛΓ is the subgroup of SU(2)L conjugating Γ to itself. For A-type singularities Λ ≡

ΛZN
= U(1)⋉ Z2 consisting of diagonal matrices in SU(2)L and complex conjugation23.

The geometries X we consider contain an ADE locus whose normal geometry is twisted

by symmetries U(1) ⊂ ΛZN
. We refer to this twist as a Λ-twist and characterize it as follows.

A-type ADE singularities take the form xy = zN for some integer N ≥ 2. When viewing the

ADE locus S \S0 as a family of ADE singularities x, y, z become local functions on S \S0.

As the symmetry subgroup Λ commutes with Γ = ZN the coordinates x, y, z individually

twist to sections of a line bundle. If x twists to a section of L, then y and z are sections of L−1

and the trivial line bundle respectively. The Λ-twist is specified by L which is determined

by its connection AΛ with curvature FΛ.

How does this twist enter our physical considerations? The smooth compact manifold

∂2X◦ always takes the form of a fibration with fiber S3/ZN and base K = ∂S , i.e.,

S3/ZN →֒ ∂2X◦ → K . (A.2)

The Λ-twist specifies this fibration. Whenever the ADE singularity in M-theory admits a

23Complex conjugation corresponds to the outer automorphism of the A-type Lie algebras associated to
the ADE singularity via the McKay correspondence. For D- and E-type singularities Λ consists solely of the
outer automorphisms of the respective Lie algebras.
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dual description as a D6-brane in IIA we further have

AΛ = C1 , dC1 = FΛ , (A.3)

for the RR 1-form field C1 on the D6-brane worldvolume, i.e., the Λ-twist locally specifies a

M-theory circle bundle. Further, the Λ-twist constrains how the fibration ∂2X◦ → K can

be filled radially to the fibration ∂X◦ → Cone(K ) = S . It specifies how the generic fiber

degenerates to an exceptional fiber ∂E projecting to the tip of the cone Cone(K ). For the

two examples picked out above we have:

• X = Cone(WP3) with WP3 a weighted projective space whose projective coordinates

z1, z̄2, z3, z̄4 have weights N,N, 1, 1 respectively. The generic fiber S3/ZN collapses to

S2 = (S3/ZN )/U(1) where U(1) is the Hopf circle.

• X = C3/Z2n = Cone(S5/Z2n) where the complex coordinates z1, z2, z3 have weights

1, 1, 2n − 2 respectively. The generic fiber S3/Z2 collapses to (S3/Z2)/Zn = S3/Z2n

where Z2,Z2n are subgroups of the U(1) Hopf circle.

We now describe the geometry of a family of examples containing the above pair of examples

in more detail and derive the long exact sequences which formed the starting point of our

analysis in section 4. Of course when S \S0 has multiple disconnected components (flavor

branes) then considerations similar to the above apply.

A.2 Fibrations and (Co)Homology

We in turn analyze the topology of the fibrations πS : ∂TS → S and πI : ∂TS → I of the

two geometries:

• X = Cone(WP3) with WP3 a weighted projective space whose projective coordinates

z1, z̄2, z3, z̄4 have weights N1, N1, N2, N2 with gcd(N1, N2) = 1. This space contains up

to two flavor branes.

• X = C3/ZN = Cone(S5/ZN ) where the complex coordinates z1, z2, z3 have weights

k1, k2, k3 respectively. This space contains up to three flavor branes.

A.2.1 X = Cone(WP3)

We consider two cases.

81



Case 1: X = Cone(WP3) and (N1, N2) = (N, 1)

First, consider the fibration πS : ∂TS → S . The generic fibers projecting to the

codimension 4 ADE locus R3 \ {0} = S \S0 are lens spaces S3/ZN . We claim that at the

origin the exceptional fiber is ∂E = S2 and that S2 is related to the generic fiber by the Hopf

projection S3/ZN → S2. The starting point in establishing ∂E = S2 is the characterization

∂E = ∂X◦|retract , (A.4)

derived on general grounds near (3.18). As such, we first describe a parametrization of the

link ∂X = WP3 geared towards excising the singularities supported at P1
12 and, subsequently,

describing the deformation retraction.

Choosing the weights of a U(1)-action appropriately we clearly have WP3 = S7/U(1).

With this we consider the fibration24 S7 → I = [−1,+1] with generic fiber S3
+ × S3

−. At

the edges ±1 of the base interval the spheres S3
± collapse and the generic fiber degenerates

to S3
∓ respectively. The torus action respects this fibration and we obtain the fibration

WP3 → I = [−1,+1] with generic fiber S3
+ × S3

−/U(1) where the quotient identifies the

Hopf circles of S3
±. The exceptional fibers are now S3

∓/U(1) = S2
∓ respectively. One of these

2-spheres, for example S2
−, supports the ADE singularities and upon excision the remaining

space can be deformation retracted onto the other 2-sphere S2
+, hence topologically ∂E = S2.

Next, we discuss the fibration πI : ∂TS → I which follows by flipping the radial shells

S2 ⊂ R3 of the ADE locus of the base for πS into the fiber. The generic fiber at radius

r 6= 0 is therefore S3
+ × S3

−/U(1). At r = 0 one of the 3-spheres collapses, again resulting in

the exceptional fiber ∂E = S2.

Case 2: X = Cone(WP3) and N1, N2 > 1

First, consider the fibration πS : ∂TS → S . The generic fibers projecting to the two

codimension 4 ADE loci R3
Ni
\ {0} ⊂ S are lens spaces S3/ZNi

. We claim that at the origin

the exceptional fiber is a real 5-dimensional manifold ∂E , which is circle fibered as

S1 →֒ ∂E → S2
1 × S2

2 , e = N2volS2
1
−N1volS2

2
, (A.5)

where e denotes the Euler class of the fibration. Via the Gysin sequence one then straight-

24This is the natural generalization of the 2-torus fibration of the 3-sphere upon replacing the complex
plane C with the quaternions H.
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forwardly computes the (co)homology groups25

Hn(∂E ) ∼= {Z,Zg,Z,Z⊕ Zg, 0,Z}

Hn(∂E ) ∼= {Z, 0,Z⊕ Zg,Z,Zg,Z} .
(A.9)

All of this follows immediately from the discussion of case 1 by noting that if both S2
± support

singularities then ∂X◦ deformation retracts to S3
+ × S3

−/U(1) which is described as above.

We are interested in the case g = 1, for which all torsion groups trivialize

Hn(∂E ) ∼= {Z, 0,Z,Z, 0,Z}

Hn(∂E ) ∼= {Z, 0,Z,Z, 0,Z} .
(A.10)

from our discussion of generators in the general case, we see that generating (co)cycles in

degree 2, 3 pair to (the top class) 1 via (the cup product) intersection. This determines the

ring structure completely.

Next, we discuss the fibration πI : ∂TS → I which follows by essentially doubling the

discussion of case 1. The generic fiber at r 6= 0 is the disjoint union of a pair of 5-manifolds

∂E ⊔ ∂E . (A.11)

25Let us also determine explicit representatives for generator of the homology groups Hn(∂E ). First,
H1(∂E ) is generated by the circle fiber. Studying the Gysin sequence we find

〈N2

g
S2
1 +

N1

g
S2
2

〉
= H2(∂E ) . (A.6)

For this consider the image in the Gysin sequence of H3(∂E ) and apply Poincaré duality. Here we mean
there exists a 2-cycles in H2(∂E ) which projects to the base cycle (N2/g)S

2
1+(N1/g)S

2
2 and, to keep notation

light, we have not given this 2-cycle a new name. Similarly, one determines H3(∂E ) ∼= Zg⊕Z as, respectively,

〈N1

g
S3
1/ZN1

−
N2

g
S3
2/ZN2

〉
⊕ 〈lS3

1/ZN1
+ kS3

1/ZN2
〉 = H3(∂E ) . (A.7)

Here the lens spaces are the fibers of S3/ZNi →֒ ∂E → S2
i . From this presentation we also have that there

is a g-fold covering of the base. We denote this 2-cycle of ∂E as gS2
i for which we have gS2

i · S
3/ZNj = gδij .

This gives the check that indeed the free, torsional generators in degree 2 and 3, respectively, do not intersect,
as it must be by general theory. Next, k, l are integers such that kN1+ lN2 = g. This follows from the Gysin
sequence, as the matrix, which appears in a basis change,

(
N1/g −N2/g
l k

)
(A.8)

must have have determinant ±1, otherwise the new basis is ‘too coarse’, only spanning an integral sublattice.
Note we can always redefine generators to their negative, hence we have chosen without restricting ourselves
+1. The generators of H0, H5 are the point and ∂E respectively.
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C2/ZN R3

R3

FΛ = volS2

Figure 21: Sketch of the local model TS for case 1 with S = R3 and Xf = C2/ZN and

E = R3 and the Euler class FΛ specifying the Λ-twist for the tube TS within theG2-holonomy

cone X = Cone(WP3).

At r = 0 these are identified to give a single copy of ∂E . Topologically ∂TS is therefore

simply the cylinder ∂TS = R× ∂E .

The Λ-twist

Next, let us characterize the Λ-twist.

Case 1: Here, we can construct an interesting U(1)-bundle from the above by collecting

all Hopf circles in the generic fibers ∂Xf = S3/ZN over R3 \ {0} = S \ S0. From the

geometry we see that this U(1)-bundle has unit Euler class when restricted to a 2-sphere

linking the origin26. The connection AΛ, defined on the ADE locus R3 \ {0}, has curvature

2-form satisfying
dFΛ

2π
= δ(x) volR3 , (A.12)

where x ∈ R3. The topology of the boundary of tubular neighbourhood TS is completely

specified by the 4-plet (S , ∂Xf , ∂E , AΛ) which we depict in figure 21.

Case 2: In this case the above structure simply doubles. There are two components to

S \S0, each a copy of R3 \{0} similar to above. To each we associated a U(1)-bundle which

we can characterize by two connections A
(Ni)
Λ with curvatures

dF
(N1)
Λ

2π
= δ(x)N2 volR3

N1

, d
F

(N2)
Λ

2π
= −δ(x)N1 volR3

N2

. (A.13)

26This is easily understood in the dual IIA frame which consists of a stack of N D6-branes supersymmet-
rically intersecting a single D6-brane. In our discussion we have centered coordinates on the N D6-branes
and the Euler class is counting the number of transverse D6-branes intersecting this stack at the origin.
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The topology of ∂TS is still characterized by the 4-plet (S , ∂Xf , ∂E , AΛ) where Xf now

makes reference to the pair of singularity models C2/ZNi
, respectively over the two compo-

nents of S \S0, and AΛ describes their twisting as specified by the pair of connections A
(Ni)
Λ

on each of these components. These two fibrations then glue along one exceptional fiber.

The Long Exact Sequence in Relative (Co)Homology

It will also be useful to determine long exact sequences in relative (co)homology of the

pair (∂X◦, ∂2X◦). We do so for case 1. Here ∂X◦ has a single boundary component given

by ∂TK = ∂2X◦ = S3/ZN ⋊ S2 with (co)homology groups (A.10). Together with the fact

that ∂X◦ deformation retracts to S2 we have the homology sequence:

Hn(∂TK ) Hn(∂X
◦) Hn(∂X

◦, ∂TK )

n = 6 0 → 0 → Z →

n = 5 Z → 0 → 0 →

n = 4 0 → 0 → Z →

n = 3 Z → 0 → 0 →

n = 2 Z → Z → 0 −→

n = 1 0 → 0 → 0 →

n = 0 Z → Z → 0

(A.14)

The cohomology sequence is:

Hn(∂X◦, ∂TK ) Hn(∂X◦) Hn(∂TK )

n = 0 0 → Z → Z →

n = 1 0 → 0 → 0 −→

n = 2 0 → Z → Z →

n = 3 0 → 0 → Z →

n = 4 Z → 0 → 0 →

n = 5 0 → 0 → Z →

n = 6 Z → 0 → 0 →

(A.15)
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A.2.2 X = Cone(S5/ZN) = C3/ZN

We begin by discussing some orbifold data of X = C3/ZN . Let ZN
∼= Γ ⊂ SU(3) act

faithfully on C3 as generated by

(z1, z2, z3) 7→ (ωm1z1, ω
m2z2, ω

m3z3) (A.16)

where ω is a primitive N -th root of unity and the integers mi satisfy m1 + m2 + m3 = 0.

Introduce gi = gcd(mi, N), then the faithfulness of the action implies that the gi are pairwise

coprime. The singular locus of C3/Γ consists of up to 3 cones of codimension 4 A-type ADE

singularities. The apexes of these 3 cones coincide and support a codimension 6 singularity.

The cones are cut out by setting two of three coordinates of C3 to vanish and are parametrized

by the third coordinate zi modulo Γ. The i-th singular locus is characterized by the short

exact sequence

0 → Γfix,i
∼= Zgi → Γ ∼= ZN → Γ/Γfix,i

∼= ZN/gi → 0 (A.17)

where Γfix,i is the subgroup of Γ folding the singularity. The ADE singularity is therefore of

type Agi−1 and supported on the real 2-dimensional cone, parametrized by zi,

SΓfix,i
= C/(Γ/Γfix,i) ⊂ C3/Γ . (A.18)

Traversing once around the origin of SΓfix,i
the normal geometry is glued back with twist

Γ/Γfix,i which has a well-defined action on C2/Γfix,i.

We now consider the asymptotic ∂X = S5/Γ. The cones supporting ADE singularities

intersect ∂X in a circle Ki = S1
i /(Γ/Γfix,i) where S1

i is thought of as parametrized by the

argument of zi. The total singular locus of ∂X is

K ≡ ∪iKi (A.19)

consisting of up to three circles. We denote by |K | the number of circles. We further define

∂X◦ ≡ ∂X \ TK where TK is an open tubular neighborhood of K in ∂X . With this ∂X◦

is 5-dimensional manifold with boundary. The boundary of ∂TK has up to three connected

components denoted ∂TKi
. Each component takes the form of a lens space fibered over a

circle, we write ∂TKi
= S3/Γfix,i ⋊ Ki where traversing the circle Ki the fiber S3/Γfix,i is

twisted by Γ/Γfix,i. Finally, we introduce the subgroup of Γfix ⊂ Γ generated by all elements
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C/Zn

C2/Z2 C2/Z2n

e2πi/n

Figure 22: We depict S = C/Zn and Xf = C2/Z2 and E = C2/Z2n and Hol(AΛ) = e2πi/n

for the Calabi-Yau cone X = C3/Z2n.

with fixed points in S5 and straightforwardly we have

Γfix =
∏

i

Γfix,i
∼= Zg1g2g3 . (A.20)

Let us consider the case |K | = 1. We denote the nontrivial Γfix,i by Γfix
∼= Zg. In this case

the fibration X → S is straightforward. Take for example S to be cut out by z1, z2 = 0.

Then X → S is realized by projecting onto the third coordinate. The normal geometry

jumps from C2/Γfix to C2/Γ with Γ ∼= ZN . In this case the fibrations πS : ∂TS → S and

πI : ∂TS → Rr≥0 are inferred straightforwardly via restriction.

The fibration πS : ∂TS → S has a generic lens space fiber S3/Γfix and an exceptional

fiber ∂E = S3/Γ. See figure 22 for the example with weights (1, 1, 2n − 2). The fibration

πI : ∂TS → Rr≥0 has as generic fiber a circle worth of lens space S3/H and as exceptional

fiber also ∂E = S3/Γ.

In the general case with |K | > 1 we do not have a better characterization than ∂E =

∂X◦|retract. Away from the codimension 6 singularity the fibrations πS , πI have a disjoint

union of |K | fibers with similar structure as in the |K | = 1 case.

The Λ-twist

Next, let us characterize the Λ-twist. Consider the k-th flavor brane fixed by the subgroup

Γfix,k ⊂ Γ. Transporting the local model of the singularity X
(k)
f
∼= C2/Γfix,k once around the

origin of the base C/(Γ/Γfix,k) it is glued back to itself twisted by Γ/Γfix,k
∼= ZN/gk . This

is the Λ-twist which here takes the form of an exp(2πimk/N) monodromy. The connection

A
(k)
Λ , defined on C/(Γ/Γfix,k) \ {0} is therefore flat with curvature

F
(k)
Λ =

i

2
mkδ(z3)dz3 ∧ dz̄3 , (A.21)
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where dz3 = da + idb with a = re z3 and b = im z3 and thus F
(k)
Λ = mkδ(a)δ(b)da ∧ db.

Indeed, the holonomy of A
(k)
Λ over the circle ℓ1k = S1/(Γ/Γfix,k) of the cone C/(Γ/Γfix,k) is

Hol(A
(k)
Λ ) = exp

(
2πi

∫

ℓ1k

A
(k)
Λ

)
= exp

(
2πi

∫

C/(Γ/Γfix,k)

FΛ

)
= exp

(
2πimk

N

)
. (A.22)

Boundary (Co)Homology

We begin by computing the (co)homology of ∂2X◦. The smooth compact space ∂2X◦ is

a disjoint union of |K | spaces. We therefore focus on one component and consider the k-th

component ∂2X◦
k associated with the k-th flavor brane. We compute

Hn(∂
2X◦

k)
∼= {Z,Zgk ⊕ Z,Zgk ,Z,Z} ,

Hn(∂2X◦
k)
∼= {Z,Z,Zgk ,Z⊕ Zgk ,Z} .

(A.23)

It then follows

Hn(∂
2X◦) =

|K |⊕

k=1

Hn(∂
2X◦

k) , Hn(∂2X◦) =

|K |⊕

k=1

Hn(∂2X◦
k) . (A.24)

The groups (A.23) immediately follow from the fact that the homology groups of a space

fibered over a circleM → S1 with fiber F and monodromy homology mappings fn : Hn(F )→

Hn(F ) are determined from the short exact sequence (obtained as subsequences of a Mayer-

Vietoris long exact sequence)

0 → coker(fn − 1) → Hn(M) → ker(fn−1 − 1) → 0 . (A.25)

In our case, only the Hopf circle experiences a monodromic shift, however these shifts do not

alter its homology class, hence fn = 1 in all degrees n. The maps fn do not determine the

cohomology ring in general, note however, that we can continuously decrease the discrete

shift to zero, ‘untwisting’ the monodromy in the process. The cohomology ring is preserved

under such deformations, we learn that the cohomology ring of ∂2X◦
k is identical to that of

the direct product space S1 × S3/Γfix,k.

We next compute the (co)homology of ∂X = S5/Γ. To begin, following [93], we take

a more general perspective (which will help when considering linkings, setting n = 2 later)

and note that the orbifold

Cn+1/Γ , Γ ∼= ZN , (z1, . . . , zn) ∼ (ωm1z1, . . . , ω
mn+1zn+1) , (A.26)
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with ω a primitive N th root of unity and m = (m1, . . . , mn+1) ∈ Zn+1
≥0 an integer weight

vector, naturally occurs as a patch of the weighted projective space

WCPn+1
N,m1,...,mn+1

, (A.27)

with homogenous coordinates [z0 : z1 : · · · : zn+1]. For this, observe that z0 = 0 cuts out the

weighted projective space WCPn
m1,...,mn+1

. Then, taking the set theoretic difference we find

WCPn+1
N,m1,...,mn+1

−WCPn
m1,...,mn+1

= Cn+1/Γ . (A.28)

This is equivalent to noting that, in the construction of WCPn+1
N,m1,...,mn+1

as a CW complex

with exactly one cell in even degrees, we can arrange for the final cell to be modelled on

the orbifold Cn+1/Γ, glued to WCPn
m1,...,mn+1

. Consequently, the weighted projective space

WCPn+1
N,m1,...,mn+1

can be presented as the gluing

WCPn+1
N,m1,...,mn+1

= Cn/Γ ∪S2n+1/Γ L
n+1
m1,...,mn+1

(A.29)

where L n+1
m1,...,mn+1

is topologically a copy of the partial resolution of Cn+1/Γ obtained by

resolving the tip to the (less) singular space WCPn
m1,...,mn+1

.

Given weight vectors M = (N,m) and m = (m1, . . . , mn+1) there exist integers Lk
M , Lk

m

such that the cohomology rings of the two weighted projective spaces are generated as

H∗(WCPn+1
M ) = Z〈1, L1

Mu, L2
Mu2, . . . , Ln+1

M un+1〉 ,

H∗(WCPn
m) = Z〈1, L1

mu, L
2
mu

2, . . . , Ln
mu

n〉 ,
(A.30)

and, in even degree with u of degree 2, taking the quotient we find the lens space cohomology

ring

H∗(S2n+1/Γ) =
Z〈1, L1

mu, L
2
mu

2, . . . , Ln
mu

n〉

Z〈L1
Mu, L2

Mu2, . . . , Ln+1
M un+1〉

, (A.31)

with the quotient is in fixed degree. In odd degree this is supplemented by H2n+1(S2n+1/Γ) ∼=

Z. Further, it implicitly also contains various linking forms by formally extending the cup

product to degree n+1 and taking the quotient by Ln+1
M un+1 at face value. The integers LM

k

and Lm
k are given by

Lb
k = lcm

({
bi0 . . . bik

gcd(bi0 , . . . , bik)

}

0≤bi0<···<bik≤|b|

)
, (A.32)

where b is either of the weight vectors M,m of length |b| = n+ 2, n+ 1 respectively.
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For example, consider the case n = 2 with S5/Γ. Then we have the torsional groups

H2(S5/Γ) ∼= ZL1
M/L1

m

∼= (Γ/Γfix)
∨ , H4(S5/Γ) ∼= ZL2

M/L2
m

∼= Γ . (A.33)

Here, it follows fromm1+m2+m3 = 0 mod N and the assumption of a faithfully acting group

action that gcd(m1, m2, m3, N) = 1 and gcd(mi, mj , N) = 1. This implies L2
m = m1m2m3

and L2
M = Nm1m2m3 and L2

M/L2
m = N = |Γ|. We also immediately compute the cup

product and linking pairing, and their combination into a triple product

∪ : H2(S5/Γ)×H2(S5/Γ) → H4(S5/Γ)

(rL1
mu, sL

1
mu)
∼= (r, s) 7→ rs(L1

m)
2u2 ∼= rs(L1

m)
2/L2

m ,

Link : H2(S5/Γ)×H4(S5/Γ) → Q/Z

(rL1
mu, sL

2
mu)
∼= (r, s) 7→ rsL1

mL
2
mu

3 ∼= rs(L1
mL

2
m/L

3
M) ,

Triple : H2(S5/Γ)×H2(S5/Γ)×H2(S5/Γ) → Q/Z

(rL1
mu, sL

1
mu, tL

1
mu)
∼= (r, s, t) 7→ rst(L1

m)
3u3 ∼= rst(L1

m)
3/L3

M .

(A.34)

which rewritten on generators given in (A.31) and using the above isomorphisms become

∪ : (Γ/Γfix)
∨ × (Γ/Γfix)

∨ → Γ (A.35)

(1, 1) 7→ (L1
m)

2/L2
m , (A.36)

Link : (Γ/Γfix)
∨ × Γ → Q/Z (A.37)

(1, 1) 7→ L1
mL

2
m/L

3
M , (A.38)

Triple : (Γ/Γfix)
∨ × (Γ/Γfix)

∨ × (Γ/Γfix)
∨ → Q/Z (A.39)

(1, 1, 1) 7→ (L1
m)

3/L3
M . (A.40)

For the concrete example C3/Z2n with weights (1, 1, 2n− 2), i.e., M = (2n, 1, 1, 2n− 2)

and m = (1, 1, 2n− 2), which gives

l1m = 2n− 2 , l2m = 2n− 2 ,

L1
M = n(2n− 2) , L2

M = 2n(2n− 2) , L3
M = 2n(2n− 2) ,

(A.41)
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we compute, now making the abelian groups (Γ/Γfix)
∨ ∼= Zn and Γ ∼= Z2n explicit

∪ : Zn × Zn → Z2n (A.42)

(1, 1) 7→ 2n− 2 = −2 mod 2n , (A.43)

Link : Zn × Z2n → Q/Z (A.44)

(1, 1) 7→ (2n− 2)2/(2n(2n− 2)) = −1/n mod 1 , (A.45)

Triple : Zn × Zn × Zn → Q/Z (A.46)

(1, 1, 1) 7→ (2n− 2)3/(2n(2n− 2)) = 2/n mod 1 . (A.47)

Long Exact Sequences in Relative (Co)Homology

We now compute some long exact sequence. We begin by discussing the smooth manifold

with boundary ∂X◦. By Poincaré-Lefschetz duality we have an isomorphism

Hk(∂X
◦) ∼= H5−k(∂X◦, ∂2X◦) . (A.48)

From here we have via excision

H5−k(∂X◦, ∂2X◦) ∼= H5−k(∂X,K ) . (A.49)

Overall studying the above groups we will come to an understanding of the (co)homology

of ∂X◦ with the ultimate goal of determining the relative cohomology sequence of the pair

(∂X◦, ∂2X◦).

We begin computing the long exact sequence in relative cohomology of (∂X,K ):

Hk(∂X,K ) Hk(∂X) Hk(K )

k = 0 0 → Z → Z|K | →

k = 1 Z|K |−1 → 0 → Z|K | ρ
−−→

k = 2 Z|K | → (Γ/Γfix)
∨ → 0 →

k = 3 0 → 0 → 0 →

k = 4 Γ → Γ → 0 →

k = 5 Z → Z → 0 →

(A.50)
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It immediately follows from the above Poincaré-Lefschetz and excision arguments that

Hk(∂X
◦) ∼= {Z,Γ, 0,Z|K |,Z|K |−1} . (A.51)

Here we introduced the map ρ : Z|K | → Z|K | with coker(ρ) = (Γ/Γfix)
∨. We will encounter

various geometric incarnations of the map ρ and conflate these in notation.

Finally let us address how we determined H2(∂X,K ). We can dualize the relative

sequence (A.50) to homology. The result is

Hk(K ) Hk(∂X) Hk(∂X,K )

k = 5 0 → Z → Z →

k = 4 0 → 0 → 0 →

k = 3 0 → Γ∨ → Γ∨ →

k = 2 0 → 0 → Z|K | ρ
−−→

k = 1 Z|K | → Γ/Γfix → Z|K |−1 →

k = 0 Z|K | → Z → 0

(A.52)

and the problem is mapped onto determining the relative homology group H2(∂X,K ) which

sits in

0 → H2(∂X,K)
ρ
−−→ Z|K | → Γ/Γfix → 0 (A.53)

and therefore ρ maps between free groups. Further, via excision and Poincaré-Lefschetz

duality, as above, we determine

Hk(∂X◦) ∼= {Z, 0,Γ∨,Z|K |,Z|K |−1} . (A.54)

Next we compute the long exact sequence in relative homology of the pair (∂X◦, ∂2X◦).

We have ∂2X◦ = ∂TK and the sequence reads:

Hk(∂TK ) Hk(∂X
◦) Hk(∂X

◦, ∂TK )

k = 5 0 → 0 → Z →

k = 4 Z|K | → Z|K |−1 → 0 →

k = 3 Z|K | → Z|K | → Γ∨ →

k = 2 H∨ → 0 → Z|K | ρ′

−−→

k = 1 Z|K | ⊕H → Γ → Z|K |−1 →

k = 0 Z|K | → Z → 0

(A.55)
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Here ρ′ followed by a projection to Z|K | has cokernel isomorphic to Γ/Γfix. However, the

initial ρ′ has cokernel Γ. Similarly, let us record the respective sequence in relative cohomol-

ogy:

Hk(∂X◦, ∂TK ) Hk(∂X◦) Hk(∂TK )

k = 0 0 → Z → Z|K | →

k = 1 Z|K |−1 → 0 → Z|K | ρ∨

−−→

k = 2 Z|K | → Γ∨ → Γ∨
fix →

k = 3 0 → Z|K | → Z|K | ⊕ Γfix →

k = 4 Γ → Z|K |−1 → Z|K | →

k = 5 Z → 0 → 0 →

(A.56)

Finally we identify the generator of H2(∂X◦). The long exact Mayer-Vietoris sequence

for the covering ∂X = ∂X◦ ∪ TK contains the restriction map H2(∂X) → H2(∂X◦). From

here, via the parametrization introduced in (A.31), we deduce

H2(∂X◦) =
〈 1

|Γfix|
L1
mu
〉/
〈L1

Mu〉 . (A.57)

A.3 Triple Products and Anomalies

We now discuss various geometric triple products which go on to determine coefficients in

the symmetry theories we compute in section 4.

A.3.1 X = Cone(WP3)

We begin by reformulating results of [49] in symmetry TFT formalism. Initially, the 4D

physical boundary conditions will be set by a single chiral superfield Φ with flavor symmetry

u1 as engineered in M-theory on the G2-holonomy cone X = Cone(P3). This cone exhibits a

single isolated codimension-7 singularity at its apex and therefore lies outside of the class of

theories studied throughout this paper, nonetheless, it will be instructive to analyze. From

here, we turn to more general cases with singular link.

Geometries with Smooth Links: Review

The symmetry theory for M-theory on X = Cone(P3) derives via the reduction of the 11D

supergravity Chern-Simons term on the P3 link of the geometry following [13]. In addition,
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one-derivative terms contribute, as derived in [26, 72]. The starting point for the former is

−
2π

6

∫
C3

2π
∪
G4

2π
∪
G4

2π
+

2π

48

∫
C3

2π
∪ (p2 − p21/4) , (A.58)

more precisely, its uplift to differential cohomology. Here pn denotes the n-th Pontryagin

class.

The cohomology ring of Pn is simply H∗(Pn) = Z[u]/un+1 with u ≡ u2 in degree 2. To

proceed with the reduction, one next makes the expansion

G4 = F2 ∪ v2 + . . . (A.59)

where F2 = dA1 is the field strength of the u1 flavor symmetry and evaluates the integral

over P3. These computations were completed in [49] and the resulting contribution to the

5D symmetry theory action is

Sd+1 ⊃ −
2π

6

∫
A1

2π
∪

F2

2π
∪

F2

2π
+

2π

24

∫
A1

2π
∪ p1 . (A.60)

The exterior derivative of the integrand is precisely the anomaly polynomial of an unit

charge chiral multiplet in 4D. Anomaly inflow is now formulated by noting that bulk gauge

transformations A1 → A1 + df0 lead to boundary terms which are required to cancel via the

physical boundary conditions. These boundary terms match the u31 and u1·p1 anomalies of a

chiral superfield and are therefore consistent with the codimension-7 singularity at the cone

apex supporting a chiral superfield.

Geometries with Singular Links

Next, we turn to discuss the case of a chiral superfield Φ transforming in the fundamental

representation the flavor algebra uN = suN ⊕u1, as discussed in section 4.2. First we naively

repeat the above computation of the u1 self-anomaly and then rephrase it with respect to the

pair ∂2X◦, ∂X◦. For this we require the cohomology ring of the relevant weighted projective

space WCP3 with weights N,N, 1, 1, the link of the geometry. The underlying groups are

isomorphic to those of ordinary weighted projective space, however, the ring structure differs,

it is given in (A.30). Here the two non-trivial cup products are given by

v2 ∪ v2 = v4 , v2 ∪ v4 = Nv6 . (A.61)
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This results in the symmetry theory contribution

−
2πN

6

∫
A1

2π
∪

F2

2π
∪

F2

2π
, (A.62)

which is, as expected, the anomaly of N chiral superfields.

The class v2 generating H2(∂X) restricts to the generator of H2(∂X◦) ∼= H2(∂2X◦).

Similarly, from long exact sequences we learn we have that v4 generating H4(∂X) is ∂v′3

with v′3 generating H3(∂2X◦). It follows that the triple product above is reproduced by the

pair of pairings

P 3
22 : H2(∂X◦)×H2(∂X◦) → H3(∂2X◦) ,

∪ : H3(∂2X◦)×H2(∂2X◦) → H5(∂2X◦) ,
(A.63)

where the latter is simply the cup product. The triple product setting the u
3
1 self-anomaly

is therefore
H2(∂X◦)×H2(∂X◦)×H2(∂X◦) → H6(∂X◦, ∂2X◦) ,

Z× Z× Z → Z ,

(a, b, c) → Nabc ,

(1, 1, 1) → N ,

(A.64)

where we used the isomorphism H5(∂2X◦) ∼= H6(∂X◦, ∂2X◦) and H2(∂2X◦) ∼= H2(∂X◦).

We immediately see, by virtue of the last group being a relative cohomology group, i.e., the

cocycle returns zero applied to chains in ∂2X◦, we are correctly describing a bulk effect.

Let us briefly describe the mapping P 3
22. We have v2∪v2 = 0 as an element of H4(∂X◦) =

0. By Poincaré-Lefschetz duality we learn that H4(∂X◦) ∼= H2(∂X
◦, ∂2X◦), i.e., v2∪v2 could

be dual to a 2-cycle in ∂2X◦. Applying Poincaré duality to this 2-cycle maps us to H3(∂2X◦).

The terms involving Pontryagin classes are more subtle to analyze and we refer it to

future work. They receives localized contributions from the singular locus beyond integral

cohomology contributions.

A.3.2 X = Cone(S5/ZN) = C3/ZN

Given the orbifold S5/Γ we computed in (A.34) the triple product

Triple : (Γ/Γfix)
∨ × (Γ/Γfix)

∨ × (Γ/Γfix)
∨ → Q/Z

(r, s, t) 7→ rst(L1
m)

3/L3
M .

(A.65)
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where H2(S5/Γ) ∼= (Γ/Γfix)
∨. However, the natural linking pairing

Link : H4(∂X)×H2(∂X◦) → Q/Z

Γ× Γ∨ → Q/Z .
(A.66)

maps from larger groups. We can therefore extend the triple pairing derived from the coho-

mology ring of ∂X , by replacing one of the H2(∂X) with H2(∂X◦), resulting in

T : (Γ/Γfix)
∨ × (Γ/Γfix)

∨ × Γ∨ → Q/Z

(r, s, t) 7→ rst(L1
m)

3/L3
M |Γfix| ,

(A.67)

which we evaluated using (A.57). Overall, we learn of a finer product. See also (4.38) where

we encountered a lift of this product.

For example, when M = (2n, 1, 1, 2n− 2) and m = (1, 1, 2n− 2), then we compute

T2n,1,1,2n−2 : (Γ/H)∨ × (Γ/H)∨ × Γ∨ → Q/Z

(r, s, t) 7→
(2n− 2)3

4n(2n− 2)
rst =

rst

n
.

(A.68)
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from Holography and Branes,” Phys. Rev. Lett. 130 no. 12, (2023) 121601,

arXiv:2208.07373 [hep-th].

[71] M. Del Zotto, J. J. Heckman, D. S. Park, and T. Rudelius, “On the Defect Group of a

6D SCFT,” Lett. Math. Phys. 106 no. 6, (2016) 765–786,

arXiv:1503.04806 [hep-th].

[72] I. Garcia Etxebarria and S. S. Hosseini, “Some aspects of symmetry descent,”

arXiv:2404.16028 [hep-th].

[73] G. T. Horowitz, “Exactly Soluble Diffeomorphism Invariant Theories,”

Commun. Math. Phys. 125 (1989) 417.
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