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ABSTRACT

The proliferation of sensors brings an immense volume of spatio-temporal (ST) data in many domains
for various purposes, including monitoring, diagnostics, and prognostics applications. Data curation
is a time-consuming process for a large volume of data, making it challenging and expensive to deploy
data analytics platforms in new environments. Transfer learning (TL) mechanisms promise to mitigate
data sparsity and model complexity by utilizing pre-trained models for a new task. Despite the triumph
of TL in fields like computer vision and natural language processing, efforts on complex ST models
for anomaly detection (AD) applications are limited. In this study, we present the potential of TL
within the context of AD for the Hadron Calorimeter of the Compact Muon Solenoid experiment at
CERN. We have transferred the ST AD models trained on data collected from one part of a calorimeter
to another. We have investigated different configurations of TL on semi-supervised autoencoders of
the ST AD models—transferring convolutional, graph, and recurrent neural networks of both the
encoder and decoder networks. The experiment results demonstrate that TL effectively enhances the
model learning accuracy on a target subdetector. The TL achieves promising data reconstruction and
AD performance while substantially reducing the trainable parameters of the AD models. It also
improves robustness against anomaly contamination in the training data sets of the semi-supervised
AD models.
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Acronyms

AD Anomaly Detection
AUC Area under the Curve
CMS Compact Muon Solenoid
CNN Convolutional Neural Network
DL Deep Learning
DQM Data Quality Monitoring
ECAL Electromagnetic Calorimeter

FC Fully-Connected Neural Network
FPR False Positive Rate
GNN Graph Neural Network
GRAPHSTAD Graph Based ST AD model
HCAL Hadron Calorimeter
HB HCAL Barrel subdetector
HE HCAL Endcap subdetector
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HF HCAL Forward subdetector
HO HCAL Outer subdetector
HPD Hybrid Photodiode Transducers
KL Kullback-Leibler divergence
LHC Large Hadron Collider
LR Learning Rate
LS Luminosity Section
LSTM Long Short-Term Memory
MAE Mean Absolute Error
MSE Mean Squared Error
QIE Charge Integrating and Encoding
RBX Readout Box

RNN Recurrent Neural Network
SiPM Silicon Photo Multipliers
ST Spatio-Temporal
TL Transfer Learning
TS Time Series
TW Time Window
VAE Variational Autoencoder
γ Digi-occupancy Map
iη ieta axis of the HCAL channels
iϕ iphi axis of the HCAL channels
depth depth axis of the HCAL channels

1 Introduction

Spatio-temporal (ST) anomaly detection (AD) is one of the promising monitoring applications of deep learning (DL) in
several fields [1–7]. A unique quality of ST data is the presence of dependencies among measurements induced by the
spatial and temporal attributes, where data correlations are more complex to capture by conventional techniques [1].
A spatio-temporal anomaly can thus be defined as a data point or cluster of data points that violate the nominal ST
correlation structure of the normal data points. DL models dominate the recent AD studies, as AD models capture
complex structures, extract end-to-end automatic features, and scale for large-volume data sets [8–10]. The AD models
can broadly be categorized as: 1) supervised methods require labeled anomaly observations, and 2) unsupervised
approaches use unlabeled data and are more pragmatic in many real-world applications, as data labeling is tedious
and expensive. Unsupervised AD models trained with only healthy observations are often called semi-supervised
approaches. Semi-supervised AD models have accomplished promising performance in reliability, safety, and health
monitoring applications in several domains [8, 9, 11].

The deployment of ST DL models in a new environment is often circumscribed by the limited amount of clean data [12].
Data curation for DL modeling remains cumbersome and particularly challenging for temporal data despite abundant
availability. Transfer learning (TL) mechanisms have been proposed for DL models to mitigate the challenge of
data insufficiency; it accelerates model training and enhances accuracy [12–17]. It aims to achieve in-domain and
cross-domain learning by extracting useful information from the model or data of the source task and transferring it
to the target tasks [18, 19]. TL is widely employed in computer vision (e.g., a large image classifier trained on over
1000 classes with IMAGENET1K [20] is fine-tuned to classify a few types of fruit categories) [18] and natural language
processing (e.g., a BERT [21], initially trained on massive and diverse text corpus to learn general language features like
syntax and semantics is fine-tuned with smaller task-specific data sets, to specialize for question answering tasks) [19].
It has also been proposed for time series (TS) sensor data related to machine monitoring [13], electricity loads [14],
medical [15], dynamic systems [16], and ST data for crowd prediction [12, 17]. The TL on ST data for AD application
remains limited [10, 19].

Our study discusses ST AD modeling for the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider
(LHC) [22, 23]. The CMS experiment, one of the two high-luminosity general-purpose detectors at the LHC, consists
of a tracker to reconstruct particle paths accurately, two calorimeters: the electromagnetic (ECAL) and the hadronic
(HCAL) to detect electrons, photons and hadrons, and a muon system [23, 24]. The CMS experiment employs the Data
Quality Monitoring (DQM) system to guarantee high-quality physics data through online monitoring that provides
live feedback during data acquisition, and offline monitoring that certifies the data quality after offline processing [25].
The online DQM identifies emerging problems using reference distributions and predefined tests to detect known
failure modes using summary histograms, such as a digi-occupancy map of the calorimeters [26, 27]. A digi-occupancy
map contains the histogram record of particle hits of the data-taking channels of the calorimeters at the digitization
level. The CMS calorimeters may encounter problems during data taking, such as issues with the frontend particle
sensing scintillators, digitization and communication systems, backend hardware, and algorithms, which are usually
reflected in the digi-occupancy map. The growing complexity of detectors and the variety of physics experiments make
data-driven AD systems essential tools for CMS to automate the detection, identification, and localization of detector
anomalies [2, 28]. Recent efforts in DQM at CMS have presented DL for AD applications [2, 25, 28–31]. The synergy
in AD has thus far achieved promising results on spatial 2D histogram maps of the DQM for the ECAL [28, 29], the
muon detectors [31] and ST 3D maps of the HCAL [2].

Further study on TL for ST AD models, often involving combinations of spatial and temporal learning networks, is
essential considering the achievements of TL in other domains [19]. The recent ST DL models are hybrid and commonly
made of combinations of variants of convolutional neural networks (CNNs), recurrent neural networks (RNNs), graph
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neural networks (GNNs), and transformers for various data mining tasks [10, 12, 17, 32]. Our study investigates
the potential leverages and limitations of TL on ST semi-supervised AD models. We discuss the GRAPHSTAD
system [2]—an autoencoder model made of CNN, RNN, and GNN—to investigate TL for ST AD. The GRAPHSTAD
has been proposed for online DQM to automate monitoring of the HCAL channels through DL [2]; it captures abnormal
events using spatial appearance and temporal context on digi-occupancy maps of the DQM. The GRAPHSTAD employs
CNNs to capture the behavior of adjacent channels exposed to regional collision particle hits, GNNs to learn local
electrical and environmental characteristics due to a shared backend circuit of the channels, and RNNs to detect temporal
degradation on faulty channels. We have transferred a pre-trained GRAPHSTAD model on the source HCAL Endcap
(HE) subsystem into another target subsystem of the HCAL Barrel (HB) for the TL experiment. The HE and HB are
subdetectors of the HCAL; they are designed to capture hadron particles at different positions of the calorimeter. The
subdetectors share similarities but also have differences in design, technology, and configuration, such as detector
segmentations [33].

We have provided insights on TL using various training modes with different network hierarchies of the autoencoder of
the GRAPHSTAD system. The experiment has demonstrated the potential of TL when applied to the feature extraction
encoder and the reconstruction decoder networks with different fine-tuning mechanisms on the target dataset. We have
also examined the impact of within and across time-windows RNN state preservation on ST reconstruction when TL is
employed during model inferencing. The TL has achieved promising ST reconstruction and AD while reducing the
trainable parameters and providing better robustness against anomaly contamination in the training dataset. Our study
demonstrates the efficacy of ST TL in overcoming training data sparsity and model training computation.

We discuss the related work in TL and the CMS DQM system in Section 2. We describe our data sets in Section 3 and
the experiment AD and TL methodologies in Section 4. Section 5 presents the performance evaluation and discussion
of the results. We provide the conclusion and review the impact of our results in Section 6.

2 Background

This section discusses TL in DL models and provides an overview of the DQM system of the CMS experiment.

2.1 Transfer Learning on Deep Learning

In the last decade, the effectiveness of DL in handling large data sets has caught the attention of both academia and
industry. Its ability to learn nonlinear behavior, along with end-to-end automatic feature extraction, allows it to find
complex patterns within high-dimensional large data sets. However, most DL models are complex and require extensive
data sizes for modeling, which can be expensive and time-consuming to curate, especially in the case of temporal
data. Transfer learning approaches, which incorporate pre-trained models into new tasks, are potential solutions for
developing DL models when clean data is limited [13–16].

Transfer learning is a paradigm where knowledge from a source pre-trained model on different domains (e.g., different
data sources or data sets) or tasks (e.g., different model applications) is utilized to improve the efficacy of a target
model [18]. The TL techniques in the literature can broadly be categorized into various taxonomies [18]. One of the
typical categorizations is based on the similarity of the task and domain between the source and target [19, 34, 35]:
1) inductive TL: the source and target tasks are different but their domains may remain the same, 2) transductive TL:
the tasks remain the same, but the domains are different, and 3) unsupervised TL: similar to inductive transferring on
different but related tasks with unlabeled data sets. TL can be carried out on 1) model parameters, where all or some
parameters are transferred from a pre-trained source model, and 2) data, where all or part of the source domain data
instances are utilized to train the target model. In this study, TL signifies the use of learned network parameters (weights
and biases from a source model pre-trained on adequate data sets) on a target model for a related task on a different data
set, with or without fine-tuning of the parameters [35]. The target data set may be smaller than the source data set.

Computer vision and natural language processing applications have hugely benefited from TL [18, 19]. The recent
successes of generative models on image and sequential data have ameliorated the adoption of TL methods on several
applications [19]. The notable contribution of TL is significant in transferring feature extraction networks (encoders)
that are trained on immense data sets with very expensive computation grids. Robustly extracted features reduce the
model complexity and training cost of the fine-tuned decision networks while enhancing accuracy. We refer to such TL
mechanism as freeze and fine-tune approach. Although abundant studies are available for images and language text, TL
is relatively less explored for temporal data, such as sensor measurement data sets [34, 35]; TS data sets are not readily
available or accessible on the internet, unlike images and texts, and the data sets are often multidimensional and so
diverse that require domain-specific knowledge for data curation and preparation.
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TL on temporal data has been investigated in applications such as machine monitoring [13], electricity loads [14],
medical [15], and dynamic systems [16]. Shao et al. [13] employ a freeze and fine-tune TL to improve the training speed
and accuracy using pre-trained very deep convolutional networks model on machine sensor data converted into image
format by a wavelet transformation to obtain time-frequency distributions. The initial network layers of the pre-trained
model (the feature extraction networks) are frozen, whereas the lower layers (decision networks) are fine-tuned. Laptev
et al. [14] have frozen the temporal long short-term memory (LSTM) networks while training only the forecasting
fully-connected neural networks (FC) on an electricity power consumption data set. The authors have demonstrated
the effectiveness of TL in learning different TS signal patterns and its robustness against noise on a small training
data set. Gupta et al. [15] discuss TL on a deep-gated recurrent unit for multivariate classification for clinical data
sets. The authors adopted pre-trained models on several classification tasks to provide generic features for simpler
linear logistic regression models on new target tasks. They have shown that models trained with TL outperformed
task-specific models, and are more robust to the size of labeled data. Boulle et al. [16] have investigated the potential
of TL on fully convolutional networks and residual neural networks for chaotic TS classification in dynamic systems.
They trained the models on a given chaotic signal pattern and tested them on different chaotic univariate signals. Wen et
al. [35] present MU-NET to employ TL from univariate U-NET network to multivariate AD task using a freeze and
fine-tune TL approach. They applied the pre-trained U-NET to each multivariate input variable for feature extraction
when scaling it to the MU-NET.

There are also a few efforts in adopting TL for ST data [12, 17, 36]. Wang et al. [17] have applied TL for cross-city
crowd-flow prediction where feature extraction CONVLSTM network of the forecasting model trained on one city
is fine-tuned on another city data set. Wang et al. [12] present an end-to-end TL framework for cross-domain urban
crowd-flow prediction using a deep adaptation mechanism on CONVLSTM networks. The deep adaptation network
matches the embedding representations of the source and target domain distributions to learn the transferable features
between two domains [12, 37]. Guo et al. [36] fine-tune an autoencoder for a store recommendation system from a
model trained on a different city data set.

Recent DL models built on hybrids of CNNs [3, 38, 39], RNNs [40, 41], and GNNs [4, 41] have gained momentum for
TS and ST data in AD and other data mining applications [10, 12, 17, 32]. Thus far, most TL studies focus on feature
extraction encoding networks and predominantly on forecasting tasks [37]. We have studied the transferability of CNN,
GNN, and RNN networks on both the encoder and decoder networks of an ST autoencoder and qualitatively evaluated
the effectiveness of the TL on reconstruction and AD tasks.

2.2 The Hadron Calorimeter of the CMS Detector

Figure 1a shows the CMS experiment and the HCAL detector inside CMS [23,24]. The calorimeters of the CMS detector
are highly segmented to improve the accuracy of energy-deposition profile-measurement and particle identification [23,
24, 42]. The segmentation geometry of the detector is represented using η and ϕ spaces which correspond to pseudo-
rapidity and azimuth, respectively (as shown in Figure 1b). The z-axis lies along the incident beam direction, ϕ is
azimuthal angle between the x and y axis, and η is calculated from the polar angle θcm between z and xy−plane as:

η = − ln(tan(θcm/2)) (1)

where the x, y, and z are orthogonal axis of the the cylinder, the θcm is the center-of-mass scattering angle, and the ln
is a natural log function. The η − ϕ space corresponds to a rectangular coordinate system representing an outgoing
particle’s direction from the center of the detector (where the collision occurs). Particles traveling in the same direction
lie near each other in η − ϕ space.

Figure 2a illustrates the four major subdetectors of the HCAL covering different segments in the CMS detector: the
HB, the HE, the HCAL Outer (HO), and the HCAL Forward (HF). Since this study’s data sets are from the LHC
Run-2 collision experiment, we will describe below the HCAL system configurations from 2018. The HB and HE
are sampling calorimeters with a brass absorber and active plastic scintillators to measure the energy depositions [24].
The subdetectors surround the ECAL and are fully immersed within the strong magnetic field of the solenoid: the
HB are joined hermetically with the barrel extending out to |η| = 1.4, and the HE covering the overlapping range
1.3 < |η| < 3.0 (as shown in Figure 2b). The HF is located 11.2 meters from the interaction point and extends the
pseudo-rapidity coverage (overlapping with the HE) from |η| = 2.9 to |η| = 5. The central shower containment in the
region |η| < 1.26 is improved with the HO, an array of scintillators located outside the magnet.

The front-end electronics of the HCAL, responsible for sensing and digitizing optical signals of the collision particles, are
divided into sectors of readout boxes (RBXes) that house the electronics and provide voltage, backplane communications,
and cooling. The use cases of our study, the HE and HB, consist of 36 RBXes arranged on the plus (HE[HB]P) and
minus (HE[HB]M) hemispheres of the CMS detector. The frontend acquisition systems transmit the photons produced
in the plastic scintillators through the wavelength-shifting fibers to the Silicon photomultipliers (SiPMs) [HE] or the
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(a)

(b)

Figure 1: Schematic of the CMS detector: a) CMS with its major systems [42], and b) geometry axes and angles of the
CMS with respect to collision intersection point [43].

hybrid photodiode transducers (HPD) [HB] [24]. Each RBX houses frontend electronics that include four digitization
readout modules (RMs), the next-generation clock and control module), and the calibration unit [24]. Each RM is made
of SiPMs [HE] or HPD [HB], a SiPM control card, and four readout charge integrator and encoder (QIE) cards, each
with several QIE chips and field programmable gate array (FPGA) modules. A QIE chip integrates charge from one
SiPM [HE] or HPD [HB] at 40 MHz, and the FPGA serializes and encodes the data from the QIE chips (channels).

2.3 The CMS Data Quality Monitoring

The collision data of the LHC is organized into runs where each run contains thousands of luminosity sections (also
called lumisections). A lumisection (LS) corresponds to approximately 23 seconds of data taking and comprises
hundreds or thousands of collision events containing particle hit records across the CMS detector. The DQM system in
CMS provides feedback on detector performance and data reconstruction; it generates a list of certified runs for physics
analyses and stores it in the "Golden JSON" [25]. The DQM employs online and offline monitoring mechanisms: 1) the
online monitoring is real-time DQM during data acquisition, and 2) the offline monitoring provides the final fine-grained
data quality analysis for data certification after 48 hours since the collisions were recorded. The online DQM populates
a set of histogram-based maps on a selection of events and provides summary plots with alarms that DQM experts
inspect to spot problems. The digi-occupancy map is one of the histogram maps generated by the online DQM, and it
contains particle hit histogram records of the particle readout channel sensor of the calorimeters. A digi, also called a hit,
is a reconstructed and calibrated collision physics signal of the calorimeter. Several errors can arise in the calorimeter
affecting the frontend particle sensing scintillators, the digitization and communication systems, the backend hardware,
or the algorithms. These errors appear in the digi-occupancy map as holes, under- or over-populated, or saturated
bins. Previous efforts by Refs. [2, 25, 29–31] demonstrate the promising AD efficacy of using digi-occupancy maps for
calorimeter channel monitoring using machine learning. Our GRAPHSTAD [2] has extended the efforts in AD for the
HCAL with ST modeling of the 3D digi-occupancy maps of the DQM. The GRAPHSTAD incorporates both CNN
and GNN [46, 47] to capture Euclidean and non-Euclidean spatial characteristics, respectively, and RNN for temporal
learning for the HCAL channels.

3 Dataset Description

We utilized digi-occupancy data of the online DQM system of the CMS experiment to train and validate our models.
The data contains healthy digi-occupancy maps with a 20 fC minimum threshold and were selected from certified good
collision runs as referred to by the "Golden Json" of CMS. The digi-occupancy data sets were collected in 2018 during
the LHC Run-2 collision experiment with the received luminosity per lumisection up to 0.4 pb−1, and the number of
events up to 2250. The source and target data sets contain three-dimensional digi-occupancy maps for the HE and HB
subsystems of the HCAL, respectively (as shown in Figure 3). The similarities between the source and target data sets
and tasks have been established to be essential factors that impact the performance of TL [35].
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(a)

(b)

Figure 2: The subdetectors of the HCAL: a) longitudinal view of the HB, HE, HF, and HO subdetectors on CMS [44],
and b) longitudinal view of one quadrant of CMS with segmentation angle specifications of the η, where the origin
denotes the interaction point [24, 45].

The digi-occupancy map contains a particle hit count of the calorimeter readout channels for a given period of time.
The HCAL covers a considerable volume of CMS and has a fine segmentation along three axes (iη ∈ [−32, . . . , 32],
iϕ ∈ [1, . . . , 72] and depth ∈ [1, . . . , 7]). The iη and iϕ denote integer notation of the towers covering ranges of η
and ϕ of the CMS detector, respectively [24]. The digi-occupancy measurement corresponds to a hit record of the
readout channels at the segmentation positions. The source system HE covers |iη| ∈ [16, . . . , 29], iϕ ∈ [1, . . . , 72]
and depth ∈ [1, . . . , 7], whereas the target system HB takes |iη| ∈ [1, . . . , 16], iϕ ∈ [1, . . . , 72] and depth ∈ [1, 2] (as
shown in Figure 3). One of the key differences between the HE and HB in the 2018 LHC collision run was the frontend
data acquisition optical-to-electrical technology, i.e., the HE was upgraded to SiPMs with QIE11 technology, and the
HB utilized HPD with QIE8. We summarize the comparison of the digi-occupancy maps of the source and target data
sets in Table 1.

4 Methodology

This section presents the GRAPHSTAD modeling and the experiment setups for the transfer learning study.
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(a)

(b) (c)

Figure 3: A sample digi-occupancy map (year=2018, RunId=325170, LS=15): a) digi-occupancy map for the HEHB,
b) the source system HE channels are placed in |iη| ∈ [16, . . . , 29], iϕ ∈ [1, . . . , 72], and depth ∈ [1, . . . , 7], and c) the
target system HB channels are placed in |iη| ∈ [1, . . . , 16], iϕ ∈ [1, . . . , 72], and depth ∈ [1, 2]. The missing sector at
the top-left (HE) corresponds to the two failed RBX sectors during the 2018 collision runs.

Table 1: Description of source and target data sets.
Dataset Technology Channels/RBX No. of RBX Segmentation Sample Size
Source (HE) SiPM 192 36 |iη| ∈ [16, . . . , 29], iϕ ∈ [1, . . . , 72],

depth ∈ [1, . . . , 7]
20,000

Target (HB) HPD 72 36 |iη| ∈ [1, . . . , 16], iϕ ∈ [1, . . . , 72],
depth ∈ [1, 2]

7000
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4.1 Data Preprocessing

This section describes the data preprocessing stages of the proposed approach, i.e., digi-occupancy renormalization and
graph-adjacency matrix generation.

4.1.1 Digi-occupancy Map Renormalization

We apply digi-occupancy renormalization in the data preprocessing stages to normalize the values for the variation in
the luminosity and the number of event configurations of the collision experiments [2]. The digi-occupancy (γ) map
data of the HCAL varies with the received luminosity (β) and the number of events (ξ) (as shown in Figure 4). The per
channel γs(i) can range γs(i) = [0, ξs], where s denotes the sth LS (3D map) on the data set and the i denotes the ith

channel in the sth map. The ξs is usually adjusted with the βs but not always. The β and γ are retrieved from different
systems on the existing CMS system; directly accessing the β for the real-time γ AD monitoring requires further effort.
We renormalize the maps (γs → γ̂s) by the ξs to have a consistent interpretation of the γ maps across lumisections:

γ̂s =
γs
ξs

(2)

The remaining impact of the βs is left to be learned by the AD model. Moreover, the non-linearity at the LHC (when ξ
remains high while γ drops following β) creates unpredictable spikes; renormalization of the γ with only the ξ does not
entirely avoid the issue, and the spikes may affect the training performance of a temporal model. We employ additional
reversible renormalization before and after invoking the AD model to mitigate the non-linearity of the digi-occupancy
spatial data. The renormalization exploits the symmetric property of the iη and depth (the γ values are less diverse
along the iϕ axis) and divides the input γ of the channels per each iη and depth by their median values and reverse the
action on the model output.

Figure 4: Visualization of the dependency between digi-occupancy of the HB and run setting: the received luminosity
and the number of events per LS. The different colors correspond to different runs.

4.1.2 Adjacency Matrix Generation

We deploy an undirected graph network G(V,Θ) to represent the HCAL channels in a graph network based on their
connection to a shared RBX system. The graph G contains nodes υ ∈ V , with edges (υi, υj) ∈ Θ in a binary adjacency
matrix A ∈ RM×M , where M is the number of nodes (the channels). An edge indicates the channels sharing the same
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RBX as:

A(υi, υj) =

{
1, if Ω(υi) = Ω(υj)

0, otherwise
(3)

where Ω(υ) returns the RBX identification of the channel υ. There are approximately 7000 for the HE and 2600 for the
HB channels in a graph representation of the digi-occupancy map. We retrieved the channel to RBX mapping from the
2018 HCAL’s calorimeter segmentation map.

4.2 Anomaly Detection Mechanism

We denote the autoencoder model of the AD system as F . It takes ST data X ∈ RT×Niη×Niϕ×Nd×Nf as a sequence in
a time window tx ∈ [t− T, t], where Niη ×Niϕ ×Nd is the spatial dimension corresponding to the iη, iϕ, and depth
axes, respectively, and Nf is the number of input variables (Nf = 1 as we monitored only a digi-occupancy quantity in
the spatial data). The Fθ,ω : X → X̄ , parametrized by θ and ω, attempts to reconstruct the input ST data X and outputs
X̄ . The encoder network of the model Eθ : X → Z provides low-dimension latent space, Z = Eθ(X ), and the decoder
Dω : Z → X̄ , reconstructs the ST data from Z , X̄ = Dω(Z) as:

X̄ = F(X ) = D(E(X )) (4)

Anomalies can live for a short time on a single digi-occupancy map, or persist over time, affecting a sequence of maps.
Aggregated spatial reconstruction error is calculated over a time window T using mean absolute error (MAE) to capture
a time-persistent anomaly as:

ei,MAE =
1

T

t∑
t′=t−T

|xi(t
′)− x̄i(t

′)| (5)

where xi ∈ X and x̄i ∈ X̄ are the input and the reconstructed digi-occupancy of the ith channel. We standardized
ei,MAE to homogenize the reconstruction accuracy variations among the channels when generating the anomaly score
ai as:

ai =
ei,MAE

σi
(6)

where σi is the standard deviation of the ei,MAE on the training data set. The standardized anomaly score allows us to
use a single AD decision threshold α for all the channels in the spatial map. The anomaly flags are generated after
applying α to the anomaly scores (ai > α). The α can be tuned to control the detection sensitivity.

The use-case GRAPHSTAD autoencoder model is made of CNN, GNN, and RNN networks; it employs CNN and
GNN with a pooling mechanism to extract relevant features from spatial DQM data followed by RNN to capture
temporal characteristics of the extracted features (see Figure 5). It integrates variational layer [48] at the end of
the encoder for regularization of autoencoder overfitting by enforcing continuous and normally distributed latent
representations [49–52]. We refer readers to [2] for the mathematical formulation and architecture discussion of the
GRAPHSTAD autoencoder model.

We trained the autoencoder on healthy digi-occupancy maps (without significant anomaly contamination, see Section 3)
of the target HB system. We normalized the spatial data per channel into a [0, 1] for effective model training across the
variations in calorimeter channels. We utilized a mean squared error (MSE) loss function as:

LMSE =
1

M

∑
i

(xi − x̄i)
2 (7)

where xi and x̄i is the input and the reconstructed values of the normalized γ̂ of the ith channel, respectively, and M is
the total number of channels. The variational layer of the autoencoder (denoted as VAE in Figure. 5) regularizes the
training MSE loss using the Kullback-Leibler divergence (KL) distance DKL [48] to achieve the normally distributed
latent space as:

L = argmin
W∈R

{
LMSE − λDKL [N (µz, σz),N (0, I)] + ρ∥W∥22

}
(8)

where N is a normal distribution with zero mean and unit variance, and ∥.∥22 is a squared Frobenius norm of L2

regularization for the trainable model parameters W [53]. The λ = 0.003 and ρ = 10−7 are tunable regularization
hyperparameters. We finally employed the Adam optimizer [54] for training.
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Conv3D: 3D convolutional neural network; GCN: graph convolutional neural networks; Deconv3D: 3D deconvolutional neural
networks; BN: batch normalization; LSTM: long short-time memory recurrent networks; FC: fully-connected neural networks.

Figure 5: The architecture of the proposed autoencoder for the GRAPHSTAD system [2]. The GNN and CNN are spatial
feature extraction on each time step, and the RNN network captures the temporal behavior of the extracted features.
The feature extraction encoder incorporates the GNN for backend physical connectivity among the spatial channels,
CNN for regional spatial proximity of the channels, and RNN for temporal behavior extraction. The reconstruction
decoder contains RNN and deconvolutional neural networks to reconstruct the spatio-temporal input data from the low
dimensional latent features.

4.3 Transfer Learning Approach

Model parameter TL generally consists of four basic steps: 1) selection of a source task with a related modeling problem
and an abundance of data where we can exploit the mapping knowledge from the inputs to outputs, 2) development
of the source model that performs well in the source task, 3) transfer source model to target model where whole or
part of the source model is employed as part of the target model, and 4) fine-tuning the target model on the target
dataset if necessary. We present knowledge transfer on GRAPHSTAD autoencoder models, i.e., trained AD model
on digi-occupancy maps of the source HE subsystem is transferred to the target HB subsystem. Brute-forcing the
knowledge from the source into the target irrespective of their divergence and thorough investigation of the several
network building modules would cause certain performance degeneration, impacting the original data consistency in the
target domain [18].

We have thus investigated several transferring cases when employing the TL on two principal model training phases:
the initialization and training phases.

1. Init mode: the trainable network parameters (weights and bias) of the source model are transferred into the
target model initialization. The target model is further trained on the target HB dataset, fine-tuning.

2. Train mode: The model parameters of the source model are directly reused as the final inference parameters of
the target model; the parameters are frozen and excluded from fine-tuning on the target HB dataset.

Let M(Ψ,Ω) be an AD model with parameters Ψ and Ω affected and not affected by TL, respectively, and Me(Ψe,Ωe)
and Mb(Ψb,Ωb) are the source and target models for the HE and HB, respectively. The TL modes T can be formulated
mathematically as:

T
init mode

: Mb(Ψe,Ωb) →
fine-tuning

Mb(Ψ
′

e,Ω
′

b)

T
train mode

: Mb(Ψe,Ωb) →
fine-tuning

Mb(Ψe,Ω
′

b)
(9)

where the superscript
′

denotes the parameters that are updated after fine-tuning the Mb model on the target dataset.

The GRAPHSTAD autoencoder is made of CNNs and GNNs with a pooling mechanism to extract relevant features
from high dimensional spatial data followed by RNNs to capture temporal characteristics of the extracted features (as
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shown in Figure 5). Table 2 presents the TL mechanisms we apply to the different deep networks of the encoder and
decoder to study the impacts on ST digi-occupancy map reconstruction and AD accuracy. We analyze the effect of RNN
state preservation within and across time windows. We further investigate the TL to a variation in training iterations and
learning rate scheduling methods. The discussion includes the impact of the TL on model accuracy, overfitting, and
training stability.

Table 2: Transfer learning experiment configurations.

Config. Init Mode Train Mode (on Target Dataset)
Notation Description Notation Description

1 RANDOM Target model is initialized randomly No-TL
Complete training (fine-tuning)

2

TL-4

Target model is initialized randomly,
except the spatial learning networks
(CNN and GNN) transferred from
the source model

No-TL
3 TL-1 The GNN of the encoder is frozen

(not fine-tuned)
4 TL-2 The CNN of the encoder is frozen
5 TL-2d The CNN of the decoder is frozen
6 TL-3 The CNN and GNN of the encoder

are frozen
7 TL-4 The CNN and GNN of the encoder,

and the CNN of the decoder are
frozen

8
TL-7

All the spatial and temporal learning
networks (CNN, GNN, and RNN)
of the target model are initialized by
TL from the source model

TL-5 The CNN, GNN and the RNN of the
encoder are frozen

9 TL-6 The CNN and GNN of the encoder,
and the RNN of the decoder are
frozen

TL - Transfer learning is applied.
TL-1: ENCODER[GNN], TL-2: ENCODER[CNN], TL-2d: DECODER[CNN], TL-3: ENCODER[CNN, GNN], TL-4: EN-
CODER[CNN, GNN], DECODER[CNN], TL-5: ENCODER[CNN, GNN, RNN], TL-6: ENCODER[CNN, GNN, RNN],
DECODER[RNN], TL-7: ENCODER[CNN, GNN, RNN], DECODER[RNN], TL-8: ENCODER[CNN, GNN, RNN], DE-
CODER[CNN, RNN].

The implementation of parameter transferring on DL networks can be accomplished in two ways: 1) start with the
source model and then reset (remove and add) the networks that are not included in the TL, and 2) start with the
target model with random initialization and update the parameter values of the networks included in the TL from the
corresponding source networks. The first approach is widely utilized in DL TL literature and employed for feature
extraction; however, it may not be suitable for flexibly choosing layers at different hierarchies, as the target models
might have slight variations. Several configuration setups of the autoencoder are derived from the spatial configuration
of the input 3D map, which differs for the source HE and target HB systems—e.g., variation in the depth spatial
dimension between HE and HB. We have found the second approach more convenient for our study, as we intend to
apply TL on different networks of the encoder and decoder of the autoencoder model.

5 Results and Discussion

This section will discuss the results of the TL on different network layers of the GRAPHSTAD autoencoder models. We
will investigate the TL on reconstruction accuracy, trainable parameter reduction, and AD performance on the target HB
digi-occupancy map dataset. We applied TL for model initialization (init mode) without and with fine-tuning (train
mode) on the target HB dataset. We trained the models on NVIDIA Tesla V100 with 4 GPUs using 4000 digi-occupancy
maps from LS 1 to 500 and evaluated the around 3000 maps from LS from 500 to 1500. We utilized 20% of the training
dataset (the last time stamps) for validation loss calculation during training to determine the best states for the models.
We set the learning rate at 0.001 and the batch size at 6 to train the models with five lumisections per time window.

5.1 Spatio-Temporal Reconstruction Performance

We will discuss below the LMSE performance of TL applied on spatial (CNNs and GNNs) and temporal (RNNs)
learning networks. We will also briefly present comparison results on the learning rate scheduling choice.
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5.1.1 Transfer Learning on Spatial Learning Networks

We have assessed the transferability of the DL AD model at the initialization and inference phases for the spatial
learning networks (CNNs and GNNs) on both the encoder and decoder networks on different numbers of training
epochs (see Figure 6). The TL has reduced the reconstruction error LMSE of healthy maps by 32.5% to 20.7% when
the number of epochs is varied from 75 to 200 (as shown in Figure 6b). The minimum gain of 13% is achieved at epoch
150, just before the performance of the no-TL model starts to saturate. The complete fine-tuning, TL for initialization
followed by fine-tuning the whole network, accomplished around 20% improvement. The LMSE generally decreases,
while the relative TL gain roughly decreases as the epoch increases to 150. The results are not entirely unexpected; the
DL models may tend to improve performance as the training epoch increases, reducing the gap caused by the difference
in initialization and training mechanism. When the epoch increased beyond 150, the randomly initialized model (no-TL)
achieves only slight improvement, whereas the LMSE continues to drop for the TL models—increasing the relative gain
of the TL. TL for initialization of all the spatial learning networks of the autoencoder (init mode = TL-4) and fine-tuning
only the decoder while freezing the encoder (train mode = TL-3) achieves the best improvement, from 26% to 32.5%.
The TL gain of the GNNs is limited compared to CNNs; the CNNs are the primary networks that learn the input spatial
data and have 15 times more parameters than GNNs in the use-case GRAPHSTAD autoencoder model. Transferring
and freezing the CNNs of the encoder (TL-2 and TL-3) exhibit stable performance on repeated experiments.

(a)

(b)

Figure 6: Reconstruction performance evaluation (LMSE) of the TL on spatial networks across multiple number of
epochs: a) Test MSE loss and the bars show the dispersion of five repeated experiments, and b) the average relative
difference of the Test MSE loss with respect to the no-TL. The TL is applied with init mode on the encoder and decoder
(TL-4: ENCODER[CNN, GNN], DECODER[CNN]) and train mode on the encoder using TL-1: ENCODER[GNN],
TL-2: ENCODER[CNN], and TL-3: ENCODER[CNN, GNN]. The no-TL model starts to saturate at epoch > 150.
Table 3 provides the average and best model ST reconstruction performance, the LMSE . Inference TL on the decoder
networks without fine-tuning Training Mode = TL-2d fails to reconstruct the target data adequately. In an autoencoder
architecture, the encoder maps the input into low dimensional latent space (information compression), while the decoder
attempts to reconstruct (information expansion) the target data from the latent. The decoder networks thus require
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fine-tuning on the target dataset to adjust its parameters to the target reconstruction effectively. Boulle et al. [16] have
investigated TL on DL for a univariate chaotic TS classification model; they argued that BN without fine-tuning limits
the transferability of CNNs. The scaling and shifting parameters for BN and bias parameters are estimated from the
training dataset and strongly correlate to the data. We have further studied TL on the decoder when the BN layer and
the bias parameters of the CNNs are fine-tuned on the target dataset. The LMSE is substantially reduced, accuracy
improved, by 50% as compared to the frozen decoder (see Table 4). The reconstruction error is still 20 times higher
than the without TL model, indicating the CNNs of the decoder also require fine-tuning to achieve reasonable accuracy.
The results demonstrate the promising leverage of TL for autoencoder model initialization on both feature extraction
encoder and reconstruction decoder networks, whereas fine-tuning with the target data set is essential for the decoder
networks.

Table 3: Average ST reconstruction LMSE performance of TL on spatial networks at epoch = 200.
MSE Loss ∆MSE w.r.t Init=RANDOMInit Mode Train Mode Train Validation Test Train Validation Test

Average Performance
RANDOM No-TL 2.650× 10−04 2.750× 10−04 3.361× 10−04 – – –
TL-4 No-TL 2.200× 10−04 2.250× 10−04 2.666× 10−04 -17.0% -18.2% -20.7%
TL-4 TL-3 1.775× 10−04 1.775× 10−04 2.489× 10−04 -33.0% -35.5% -25.9%
TL-4 TL-2 1.725× 10−04 1.800× 10−04 2.463× 10−04 -34.9% -34.5% -26.7%
TL-4 TL-1 2.075× 10−04 2.125× 10−04 2.604× 10−04 -21.7% -22.7% -22.5%
TL-4 TL-2d 8.902× 10−03 7.380× 10−03 1.530× 10−02 3259.2% 2583.6% 4452.2%

Best Model (on Test Loss)
RANDOM No-TL 2.400× 10−04 2.600× 10−04 3.085× 10−04 – – –
TL-4 No-TL 2.100× 10−04 2.100× 10−04 2.569× 10−04 -12.5% -19.2% -16.7%
TL-4 TL-3 1.700× 10−04 1.700× 10−04 2.451× 10−04 -29.2% -34.6% -20.5%
TL-4 TL-2 1.700× 10−04 1.800× 10−04 2.420× 10−04 -29.2% -30.8% -21.6%
TL-4 TL-1 2.000× 10−04 2.100× 10−04 2.502× 10−04 -16.7% -19.2% -18.9%
TL-4 TL-2d 8.88× 10−03 7.37× 10−03 1.5255× 10−02 3600.0% 2734.6% 4844.9%

TL-1: ENCODER[GNN], TL-2: ENCODER[CNN], TL-2d: DECODER: [CNN], TL-3: ENCODER[CNN, GNN], TL-4: EN-
CODER[CNN, GNN], DECODER[CNN], TL-5: ENCODER[CNN, GNN, RNN]), TL-6: ENCODER[CNN, GNN, RNN], DE-
CODER[RNN], TL-7: ENCODER[CNN, GNN, RNN], DECODER[CNN, RNN].

Table 4: Average ST reconstruction LMSE performance of TL on spatial networks, decoder with init mode=TL-4 at
epoch = 200.

Train Mode MSE Loss ∆MSE w.r.t TL− 2d
Train Validation Test Train Validation Test

TL-2d 8.902× 10−03 7.380× 10−03 1.530× 10−02 – – –
TL-2d / [BN] 4.403× 10−03 3.767× 10−03 7.200× 10−03 -50.5% -48.9% -53.0%
TL-2d / [BN, BIAS] 4.405× 10−03 3.760× 10−03 7.354× 10−03 -50.5% -49.1% -51.9%

TL-2d: DECODER[CNN], TL-4: ENCODER[CNN, GNN], DECODER[CNN], and / denotes without.

5.1.2 Transfer Learning on Temporal Learning Networks

We have investigated TL on the temporal RNNs (LSTM layers) on both the encoder and decoder networks together
with the spatial learning networks (CNNs and GNNs). We utilize the best performing TL from the above TL on spatial
networks investigation, fine-tuning with train mode = TL-4 when conducting the TL experiment on temporal networks.

Table 5 presents the LMSE when TL is applied to the ST networks at epoch = 200. We have evaluated models with
RNN states preserved only within five maps in a time window, states are reset for each time window. Transferring
RNNs has not accomplished performance gain. When the TL involves freezing the RNNs of the decoder for inference
on the target data (train mode: TL-6) the performance suffered substantially, increasing the test LMSE by more than
50% despite the reduction of the training LMSE by 34%. A close investigation has revealed that the issue lies with
RNN state resetting during inference. Figure 7 illustrates that the model is struggling to reconstruct the first time step
in the time windows (TWs). This is caused by the model’s reliance solely on the input map for the first time step
reconstruction with reset states, while the states are adjusted and improved for the following time steps (see Figure 7a).
This behavior is not entirely unexpected; the RNNs are trained on the source dataset, and employing them directly on
the target data set (without taking advantage of the localized temporal information) for the first map in a TW would be
challenging. We have further evaluated the models by preserving the RNN states across time windows that leverage the
model reconstruction accuracy; it utilizes previous states even for the first maps in the TWs (see Figure 7b).
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Table 5: ST reconstruction LMSE performance of TL on ST networks, without RNN states preservation at epoch = 200.
MSE Loss ∆MSE w.r.t Init=RANDOMInit Mode Train Mode Train Validation Test Train Validation Test

Average Performance
RANDOM No-TL 2.650× 10−04 2.750× 10−04 3.361× 10−04 – – –
TL-4 TL-3 1.775× 10−04 1.775× 10−04 2.489× 10−04 -33.0% -35.5% -25.9%
TL-7 TL-5 1.775× 10−04 1.800× 10−04 2.496× 10−04 -33.0% -34.5% -25.7%
TL-7 TL-6 1.725× 10−04 4.325× 10−04 5.054× 10−04 -34.9% 57.3% 50.4%

Best Model (on Test Loss)
RANDOM No-TL 2.400× 10−04 2.600× 10−04 3.085× 10−04 – – –
TL-4 TL-3 1.700× 10−04 1.700× 10−04 2.451× 10−04 -29.2% -34.6% -20.5%
TL-7 TL-5 1.700× 10−04 1.800× 10−04 2.457× 10−04 -29.2% -30.8% -20.4%
TL-7 TL-6 1.500× 10−04 4.600× 10−04 4.697× 10−04 -37.5% 76.9% 52.2%

TL-3: ENCODER[CNN, GNN], TL-4: ENCODER[CNN, GNN], DECODER[CNN], TL-5: ENCODER[CNN, GNN, RNN]), TL-6:
ENCODER[CNN, GNN, RNN], DECODER[RNN], TL-7: ENCODER[CNN, GNN, RNN], DECODER[CNN, RNN].

(a)

(b)

Figure 7: Digi-occupancy map reconstruction on a sample ST data of the test-set. The model was trained using
TL-6 (ENCODER[CNN, GNN, RNN], DECODER[RNN]), and the inference was executed: a) without, and b) with
LSTM states preservation across time-windows. The autoencoder operates on ST γ maps, but the curves in these plots
correspond to the aggregate renormalized γ per LS to illustrate the model’s reconstruction performance in handling the
fluctuation across lumisections.
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Figure 8 illustrates the LMSE on multiple epochs for the RNN networks with and without RNN states preservation
across TWs. The plots illustrate a significant improvement by preserving the states on the frozen decoder RNNs (train
mode = TL-6); the lower epochs have higher gaps among repeated experiments, and the stabilization gets better at
higher epochs. State preservation across TW has a limited impact when the target dataset fine-tunes the decoder RNNs
(the train mode: TL-5). We have summarized the TL performance in Table 6.

(a)

(b)

Figure 8: Reconstruction performance (LMSE) evaluation of the TL on the ST networks. The TL is applied to train the
encoder and decoder with TL-5: (ENCODER: [CNN, GNN, RNN]), and TL-6: (ENCODER: [CNN, GNN, RNN],
DECODER: [RNN]). Test MSE loss on a) non-preserved LSTM states that reset for each time window, and b) preserved
LSTM states across consecutive time windows. The bars show the dispersion of five repeated experiments.

5.1.3 Applying Learning Rate Scheduling

The models reach saturation after epoch > 150 as illustrated in the previous plots in Figure 6a and Figure 8b for the
models trained without TL and with TL, respectively. Learning rate (LR) scheduling mechanisms, e.g., lowering the
LR when the loss gets flat or fast convergence methods, could improve the performance to mitigate training saturation.
We have investigated the impact of scheduling on the TL by training the model with super-convergence one-cyclic LR
scheduling [55] at epoch = 200. The LR scheduling sets the LR according to a one-cycle policy that anneals the LR
from an initial LR to some maximum LR (max_lr = 0.001) and then from that maximum LR (min_lr = 4× 10−7) to
some minimum LR. We utilized a cosine annealing mechanism along with the other settings of the scheduler, provided
in Table 7, for our experiment. We kept the default values of the remaining hyperparameters of the scheduler1.

1https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.OneCycleLR.html
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Table 6: ST reconstruction LMSE performance of TL on ST networks with RNN state preservation.

Init Mode Training Mode MSE Loss Trainable Parameters
Reduction (%)Value ∆(%) w.r.t Init=RANDOM

At epoch = 75
RANDOM No-TL 3.826× 10−04 –
TL-4 No-TL 3.180× 10−04 -16.9% 0.00%
TL-4 TL-2 2.686× 10−04 -29.8% -2.23%
TL-4 TL-1 3.082× 10−04 -19.5% -0.17%
TL-4 TL-3 2.705× 10−04 -29.3% -2.39%
TL-7 TL-5 2.667× 10−04 -30.3% -8.38%
TL-7 TL-6 2.577× 10−04 -32.6% -97.77%

At epoch = 200
RANDOM No-TL 3.085× 10−04 – –
TL-4 No-TL 2.569× 10−04 -16.7% 0.00%
TL-4 TL-2 2.420× 10−04 -21.6% -2.23%
TL-4 TL-1 2.502× 10−04 -18.9% -0.17%
TL-4 TL-3 2.451× 10−04 -20.5% -2.39%
TL-7 TL-5 2.457× 10−04 -20.4% -8.38%
TL-7 TL-6 2.389× 10−04 -22.6% -97.77%

TL-1: ENCODER[GNN], TL-2: ENCODER[CNN], TL-3: ENCODER[CNN, GNN], TL-4: ENCODER[CNN, GNN], DE-
CODER[CNN], TL-5: ENCODER[CNN, GNN, RNN], TL-6: ENCODER[CNN, GNN, RNN], DECODER[RNN], TL-7: EN-
CODER[CNN, GNN, RNN], DECODER[CNN, RNN].

Table 7: Hyperparameter setting of one-cyclic LR scheduler.
Hyperparameter Value Description
max_lr 0.001 Upper learning rate boundaries in the cycle.
steps_per_epoch train_data_size/batch_size The number of steps per epoch to train for.
total_steps steps_per_epoch× epochs The total number of steps in the cycle.
div_factor 25 Determines the initial learning rate via initial_lr =

max_lr/div_factor.
final_div_factor 102 Determines the minimum learning rate via min_lr =

initial_lr/final_div_factor.

Table 8 shows that the LR scheduling has improved the LMSE compared to the fixed LR (provided in Table 6) by
19% and 13% for init mode = RANDOM, and the train mode = TL-6 models, respectively. With respect to the model
without TL, the relative improvement from TL is approximately 9% with the LR scheduling, which is lower than the
22.6% achieved with the fixed LR. The results are in accord with Figure 6b, following the projection of closing in the
performance difference as the number of epochs increases past Epoch > 150 with resolved saturation on the init mode
= RANDOM. The cyclic LR scheduling method requires more configuration tuning effort to improve the performance
depending on the model and dataset compared to fixed LR or other simpler LR scheduling approaches.

Table 8: ST reconstruction LMSE performance of TL with learning rate scheduling mechanism at epoch = 200.

Init Mode Training Mode MSE Loss
Value ∆(%) w.r.t Init=RANDOM

RANDOM No-TL 2.500× 10−04 –
TL-4 No-TL 2.400× 10−04 -4.0%
TL-4 TL-3 2.460× 10−04 -1.6%
TL-7 TL-5 2.283× 10−04 -8.7%
TL-7 TL-6 2.286× 10−04 -8.6%

TL-3: ENCODER[CNN, GNN], TL-4: ENCODER[CNN, GNN], DECODER[CNN], TL-5: ENCODER[CNN, GNN, RNN], TL-6:
ENCODER[CNN, GNN, RNN], DECODER[RNN], TL-7: ENCODER[CNN, GNN, RNN], DECODER[CNN, RNN].

5.2 Anomaly Detection Performance

Machine learning studies performed thus far in the CMS DQM system primarily employed the simulated anomalies
data to evaluate the effectiveness of the developed AD models [2, 29]; a small fraction of the DQM data is affected by
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real anomalies and is limited to be used for model validation. We have validated the AD models on synthetic anomalies
simulating real channel anomalies of the HCAL. We generated synthetic anomalies simulating dead, hot, and degraded
channels, and injected them into healthy digi-occupancy maps of the test dataset. We formulate the simulated channel
anomalies using:

γa = RDγh, RD ̸= 1 (10)
where γa and γh are the digi-occupancy of the generated anomaly channel and its corresponding expected healthy
reading, respectively. The RD is the degradation factor, and the simulated anomalies are defined as:

Dead Channel : γa = RDγh = 0, RD = 0

Degraded Channel : 0 < γa = RDγh < γh, 0 < RD < 1

Noisy-Hot Channel : γh < γa = RDγh ≤ ξ, RD > 1

Fully-Hot Channel : γh < γa = ξ

(11)

The algorithm that generates the synthetic anomaly samples involves three steps: 1) selection of a random set of LSs
from the test set, 2) random selection of spatial locations φ for each LS, where φ ∈ [iη × iϕ× depth] on the HB axes
(see Figure 3c), and 3) injection of the simulated anomalies into digi-occupancy maps of the LSs. The simulated
anomalies include dead, degraded, noisy-hot, and fully-hot channels. We kept the same spatial locations of the generated
different anomaly types for consistency. We evaluated the performance on several classification metrics using three
anomaly thresholds set to capture 90%, 95%, and 99% of the injected anomalies.

We have evaluated the AD accuracy on 14,000 digi-occupancy maps (2000 maps for each anomaly type) for the dead
(RD = 0%), decaying channel anomalies (RD = [80%, 60%, 40%, 20%]), noisy hot (RD = 200%), and fully hot
(γa = ξ) channels. We have investigated persisting channel anomalies that affect consecutive maps in a time window.
We have processed 70,000 digi-occupancy maps, including five history maps in the time window for each of the 14,000
maps; we generated 1.17% abnormal channels in the 70,000 maps.

We compare the AD performance of models without TL and the best TL from Table 8, i.e., without TL (init mode =
RANDOM) and with TL (train mode = TL-6). Table 9 presents the AD accuracy of the models on the dead, degrading,
fully hot, and noisy hot channel abnormalities. Both models perform well in the area under the receiver operating
characteristic curve (AUC) and false positive rate (FPR). The FPR exhibits slight variance between the two models;
the TL model significantly improves dead and fully hot channel detection but performs slightly lower for noisy hot
channels. Figure 9 illustrates the FPR score across all the anomaly types where the TL model outperforms the without
the TL model in RD < 1. The relatively lower precision at 70% for the RD = 80% demonstrates that there are still a
few anomalies challenging to catch, although the FPR is very low due to the accurate classification of numerous healthy
channels (as shown in Figure 10). A channel operating at 80% is mostly an inlier or very close to the healthy operating
ranges, and detecting such anomaly becomes even more difficult when the expected γ of the channel is very low. The
FPR has significantly improved by 80% when the amount of the captured anomaly is reduced to 95%. Figures 11 and 12
demonstrate anomaly localization capability on a sample injected channel anomaly with the different anomaly types;
Figures 11 and 12 demonstrate the ability of our algorithm to locate the anomalies on a sample that has been injected
with different anomaly types in some channels (4 < iη < 11 and 11 < iϕ < 19); the TL model accomplishes better
localization on the fully hot channels with less dispersion in its anomaly score values.

Figure 13 portrays the distribution of the reconstruction error (ei,MAE) and provides further illustration of the overlap
region between the healthy and faulty channels at the different degradation rates. We have observed a slight increase in
the reconstruction error of the healthy channels as the anomaly strength increases for the abnormal channels (the RD is
farther away from 100%); it is more pronounced when introducing hot channel anomalies with RD = 200%. Close
investigation reveals that the healthy channels have higher anomaly scores (filtered out from the anomaly injection
γa = RDγh > ξ) due to their proximity to the abnormal channels (as depicted in Figure 14). Since channels belonging
to the same RBX are positioned in proximity in the HB segmentation and share characteristics, the GRAPHSTAD
autoencoder exploits the correlation for spatial data reconstruction. The exacerbating effect in the presence of the hot
channels indicates the model’s ability to focus on the channel with higher values to perform the map reconstruction.

The degrading and dead channels are another major difference between the without and with TL models. The tails of
overlaps decrease on reconstruction error distribution of the normal and abnormal channels, the degrading channel as the
RD decreases, in both models (as shown in Figure 14). Table 9 shows the AD performance slightly deteriorates for the
dead channels (RD = 0%) compared to the degraded channel at RD = 20% defying expectation. Figure 14 illustrates
the reconstruction error of most anomalies increases, enabling enhanced separation between the normal and anomaly
channels except for a few dead channels that increase the FPR. The reconstruction error of the without-TL model drops
to zero for dead channels although the channels have higher reconstruction errors at RD = 20% (see Figure 13a); this
is caused by the presence of real dead channels in the training dataset at the location of [iη ∈ [−16,−15,−13], iϕ = 8,
depth = 1] (see Figure 15). Figure 15 depicts that the without-TL model reconstructs the real dead channels as normal
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Table 9: AD performance of TL on time-persistent abnormal channels.
Anomaly Type FPR (90%) FPR (95%) FPR (99%) AUC

Without-TL Model: (Init=RANDOM,Training=No-TL)
Degraded Channel (RD = 80%, γa = RDγh) 6.281× 10−04 1.519× 10−03 8.741× 10−03 0.993
Degraded Channel (RD = 60%, γa = RDγh) 5.991× 10−05 1.438× 10−04 8.242× 10−04 1.000
Degraded Channel (RD = 40%, γa = RDγh) 4.881× 10−05 5.628× 10−05 1.466× 10−04 1.000
Degraded Channel (RD = 20%, γa = RDγh) 5.870× 10−05 6.273× 10−05 7.342× 10−05 1.000
Dead Channel (RD = 0%, γa = 0.0) 6.636× 10−05 7.080× 10−05 8.331× 10−05 1.000
Fully-Hot Channel (γa = ξ, γa ̸= γh) 1.220× 10−04 1.317× 10−04 1.606× 10−04 1.000
Noisy-Hot Channel (RD = 200%, γa = RDγh) 3.300× 10−04 5.732× 10−04 1.765× 10−03 1.000

With-TL Model: (Init=TL-6, Training=TL-6)
Degraded Channel (RD = 80%, γa = RDγh) 5.019× 10−04 1.320× 10−03 6.527× 10−03 0.996
Degraded Channel (RD = 60%, γa = RDγh) 2.118× 10−05 9.642× 10−05 8.141× 10−04 1.000
Degraded Channel (RD = 40%, γa = RDγh) 1.614× 10−06 4.034× 10−06 7.161× 10−05 1.000
Degraded Channel (RD = 20%, γa = RDγh) 1.614× 10−06 3.833× 10−06 8.472× 10−06 1.000
Dead Channel (RD = 0%, γa = 0.0) 1.815× 10−06 4.236× 10−06 8.472× 10−06 1.000
Fully-Hot Channel (γa = ξ, γa ̸= γh) 0.000 6.051× 10−07 3.631× 10−05 1.000
Noisy-Hot Channel (RD = 200%, γa = RDγh) 1.380× 10−03 2.143× 10−03 4.099× 10−03 1.000

Figure 9: AD FPR on dead, degraded and noisy-hot channel. The anomaly flags are generated using thresholds that
capture 90%, 95%, and 99% of the anomaly channels.
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Figure 10: AD Precision on dead, degraded and noisy-hot channels. The anomaly flags are generated using thresholds
that capture 90%, 95%, and 99% of the anomaly channels.

with low reconstruction error, whereas the with-TL provides a high error which signifies it is detecting the channels
as anomalies. When the simulated dead anomalies are injected into the digi-occupancy maps near the real abnormal
channels, the without-TL model reconstructs them as normal characteristics in which the model fails to detect the
anomalies. The with-TL has thus achieved substantially better detection on the dead channels (see Figure 13b). The
results demonstrate transfer learning robustness when a semi-supervised model’s training dataset is contaminated with
real anomalies.

6 Conclusion

We have presented transfer learning on a spatio-temporal semi-supervised anomaly detection model. We have discussed
an anomaly detection model designed for Hadron Calorimeter channel monitoring using digi-occupancy maps of the Data
Quality Monitoring system. We have successfully transferred the spatio-temporal anomaly detection model, employing
convolutional, graph, and recurrent neural networks in an autoencoder architecture, from the source HCAL Endcap to
the HCAL Barrel subdetector. The study has provided insights into several transfer learning scenarios at the initialization
and training phases. We have successfully applied transfer learning to the encoder feature extraction networks and inner
networks of the decoder. The transfer learning has achieved a promising spatio-temporal reconstruction and anomaly
detection performance while proving a substantial reduction in trainable network parameters and enhancing robustness
against contamination in the training data sets. The study indicates that transfer learning can facilitate machine learning
development with limited cleaned training data and when expensive model training on large data sets is costly or
time-consuming. The choice of model training settings, such as the number of iterations, learning rate schedule, and
state preservation for recurrent neural networks during inference, can impact the transfer learning performance, in
addition to the similarity between the source and target data sets.
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(a)

(b)

(c)

Figure 11: Spatial reconstruction error (ei,MAE) maps on a sample digi-occupancy map (at depth = 1) with degraded
anomaly types: a) renormalized digi-occupancy map with simulated anomaly channels; the reconstruction error maps
of the b) without-TL model and c) with-TL model. The anomaly region is localized well with proportional strength to
the severity of the anomaly in both models.
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(a)

(b)

(c)

Figure 12: Spatial reconstruction error (ei,MAE) maps on a sample digi-occupancy map (at depth = 1) with dead,
noisy hot, and fully hot anomaly types: a) renormalized digi-occupancy map with simulated anomaly channels; the
reconstruction error maps of the b) without-TL model and c) with-TL model.
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(a)

(b)

Figure 13: Reconstruction error (ei,MAE) distribution of healthy and anomalous channels at different channel degra-
dation rates, excluding the real anomalies. The models are a) without-TL and b) with-TL models. The overlap region
decreases substantially as the channel deterioration increases for RD < 100%.
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Figure 14: Location embedding for channels with high reconstruction error, from the with-TL model, in the presence of
noisy hot channel anomalies. We applied t-SNE embedding [56] on spatio-temporal locations (LS, iη, iϕ, and depth) to
generate the two-dimensional representation. Normal channels with high reconstruction error occur in proximity to the
anomalous channels.

(a) (b)

Figure 15: Average reconstruction error (ei,MAE) per channel at depth = 1 over the training dataset for the a) without-
TL model, and b) with-TL model. The real dead HB channels (at [iη = [−16,−15,−13], iϕ = 8, depth = 1]) are
highlighted in the red boxes. without-TL model reconstructs the real dead channels as normal with low rec error,
whereas with-TL produces a high error which signifies detecting the channels as anomalies.
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