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In the current era of quantum computing, robust and efficient tools are essential to bridge the gap
between simulations and quantum hardware execution. In this work, we introduce a machine learn-
ing approach to characterize the noise impacting a quantum chip and emulate it during simulations.
Our algorithm leverages reinforcement learning, offering increased flexibility in reproducing various
noise models compared to conventional techniques such as randomized benchmarking or heuristic
noise models. The effectiveness of the RL agent has been validated through simulations and testing
on real superconducting qubits. Additionally, we provide practical use-case examples for the study
of renowned quantum algorithms.
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I. INTRODUCTION

One important unsolved technological question regards
the practical applicability of Noisy Intermediate Scale
Quantum (NISQ) [1] computers. Despite the expecta-
tion that quantum computers will outperform classical
computers in certain computational tasks [2–4], the us-
ability and reliability of NISQ devices are hindered by
a large error rate. These errors arise from gate infideli-
ties, unwanted environmental interactions, thermal re-
laxation, measurement errors, and cross-talk [5–9]. Cur-
rently, there are techniques to mitigate these errors [10–
14]. However, it has been demonstrated that any quan-
tum circuit for which error mitigation is efficient must be
classically simulable [15]. Therefore, it is widely regarded
that quantum advantage will only be achieved with fu-
ture generations of fault-tolerant quantum devices [16–
21].

Despite the imperfect results obtained on NISQ de-
vices, numerous algorithms have been developed and im-
plemented on this hardware. Machine learning-inspired
models, in particular, have shown promising results in
recent years [22–29]. Testing and developing new algo-
rithms in the NISQ era can be challenging due to limited
access to quantum chips. Furthermore, the currently ac-
cessible quantum computers in the cloud are highly de-
manded, resulting in lengthy waiting queues [30]. In this
context, emulating the noise of these devices emerges as
an alternative to accelerate circuit testing.

This work aims to develop a model capable of learn-
ing hardware-specific noise for use in circuit simula-
tions. This goal is further motivated by the limited

∗ These authors contributed equally to this work.

availability of noise modeling or noise prediction tech-
niques [31–34]. Our approach employs Reinforcement
Learning (RL) [35–37] to train an agent to add noise
channels that replicate the noise pattern of a specific
quantum chip. This method minimizes heuristic as-
sumptions about the noise model, thereby enhancing the
adaptability and generalization properties. The algo-
rithm has been validated on both simulations and real
quantum devices hosted at the Quantum Research Cen-
ter [38] of the Technology Innovation Institute (TII) in
Abu Dhabi, demonstrating its ability to accurately pre-
dict different noise patterns.
The Qibo framework [39, 40] was used for the realiza-

tion of this work. It provides Qibo [39, 40] as a high-
level language API for crafting quantum computing al-
gorithms, Qibolab [41, 42] as a tool for quantum control,
and Qibocal [43] for conducting quantum characteriza-
tion and calibration routines.
All the code developed for this work is available on

GitHub 1. It is possible to use the code to reproduce the
results as well as testing the algorithm under different
noise conditions. The code is intended to be easily cus-
tomizable in order to allow users to define their own RL
agents for specific applications.
The outline is as follows. Section II introduces the ba-

sic concepts necessary to understand the proposed algo-
rithm, noise in quantum circuits and reinforcement learn-
ing. Section III provides a detailed description of the re-
inforcement learning algorithm, focusing on its training
and use for noise prediction. Section IV presents the re-
sults obtained with the proposed algorithm on both sim-
ulations and real quantum devices, and compares its per-

1 https://github.com/qiboteam/rl-noisemodel
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formance with other noise predictors. Section V demon-
strates examples of the algorithm’s use-cases for famous
quantum algorithms.

II. BACKGROUND

This section provides an overview of the essential con-
cepts required to understand the proposed noise simula-
tion algorithm. Specifically, we briefly discuss noise in
quantum circuits and introduce reinforcement learning.

A. Noise in the quantum circuit model

Current and near-term quantum computers lack fault
tolerance, and their usefulness is limited by the presence
of noise and errors. To understand these limitations, we
delve into the quantum circuit model, a framework intro-
duced by Deutsch in 1989 [44]. This model presumes a
quantum register composed of near-ideal qubits. Quan-
tum computations are carried out by altering this reg-
ister through a combination of qubit measurements and
unitary operations drawn from a universal set of gates,
known as native gate set. Within this context, we distin-
guish four types of errors. The first type, state prepara-
tion errors, arise during the initialization of the quantum
register. These errors result from the need for rapid re-
set protocols, which involve coupling qubits to other ele-
ments such as cavities and measurement devices, leading
to deviations from the ideal zero state [45]. The second
type of error is due to the limited precision of measure-
ments, which requires their representation as POVMs
with inherent uncertainties, thereby preventing unlim-
ited repeated measurements on the same qubit. The
third type, qubit decoherence, refers to the loss of quan-
tum superposition due to environmental factors. It is
typically modeled by relaxation and dephasing times, T1

and T2, for each qubit. However, this model can be in-
sufficient when decoherence is correlated, such as when
environmental fluctuations or unwanted interactions be-
tween the qubits affect multiple qubits similarly. Lastly,
gate imperfections arise from intrinsic errors and control
limitations in implementing single-qubit and two-qubit
unitaries. These imperfections are measured by the gate
fidelity.

It is common to make certain assumptions about the
inherent errors. One typical assumption is to distinguish
the ideal gates from the errors, considering them as sepa-
rate processes. It is also often assumed that these errors
break down into spatially uncorrelated errors that affect
the idle qubits, and an average error that is operation-
independent, impacting only the qubits that are being
manipulated. Within this context, it is useful to clas-
sify the various types of noise introduced above into two
groups: coherent and incoherent. Coherent noise, typi-
cally resulting from minor miscalibrations in control pa-
rameters, tends to produce similar errors in successive

executions of a quantum circuit, thereby introducing a
systematic bias in the output. It is important to note
that coherent noise preserves the purity of the state and,
once identified, can be corrected [46–48]. On the other
hand, incoherent noise can be viewed as processes that
cause entanglement between the system and its environ-
ment.
The errors and imperfect operations are typically rep-

resented using the formalism of quantum channels, i.e.,
trace-preserving completely positive maps of density ma-
trices into density matrices. In the ideal operation of a
quantum computer, a positive map can be just a uni-
tary transformation ε(ρ) = UρU†, where U describes a
quantum gate. Coherent noise is unitary, and we model
it using single qubit rotation gates (Rx, Ry, Rz). For
instance, a coherent error could introduce an unintended
deviation ϵ in the x direction during the application of
Rj(θ), altering the state ρ = Rj(θ)ρ0Rj(θ)

† to

Cohx(ρ) = Rx(ϵ)ρRx(ϵ)
† . (1)

We model incoherent noise as local depolarization and
amplitude damping. Depolarization noise tends to drive
the state towards the maximally mixed state,

Dep(ρ) = (1− λ)ρ+ λ
Tr(ρ)

2n
I , (2)

where n is the number of qubits and λ is the depolar-
ization parameter. Amplitude damping noise models the
loss of energy from the qubit to the environment, and it
is described by the map

Damp(ρ) = A1ρA
†
1 +A2ρA

†
2 , (3)

where A1 = |0⟩ ⟨0| +
√
1− γ |1⟩ ⟨1| and A2 =

√
γ |0⟩ ⟨1|,

and γ represents the decay probability from |1⟩ to |0⟩.
While it is possible to add more complexity to the mod-
eling of incoherent noise, we aim for an effective descrip-
tion with few parameters to prevent overfitting. Prelim-
inary tests showed no significant performance enhance-
ment when adding other channels.
Multiple noise channels can be combined in order to

construct complex noise models [33, 49]. The parameters
of these channels can be inferred either from calibration
results or directly from the execution of quantum circuits,
as demonstrated in this work.
For a simplified noise modeling, we can employ a tech-

nique known as Randomized Benchmarking (RB) [50–
52]. RB enables us to efficiently estimate the average
error magnitude across a set of quantum gates, with re-
source requirements scaling polynomially with the num-
ber of qubits. A RB protocol employs sequences of vary-
ing lengths of randomly chosen n-qubit Clifford gates,
where the ideal composite operation of the sequence is
the identity. To produce such a sequence of depth m+1,
each of the first m gates in the sequence are picked ran-
domly from the Clifford group. The last gate is then
uniquely determined as the Clifford element which in-
verts the composition of the previous m gates. In the
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presence of noise, the actual sequence of Clifford gates
does not represent an identity operation. Instead, there
is a certain survival probability of measuring the initial
state after performing the sequence. By estimating this
survival probability across multiple independent random
sequences of increasing depth, we can fit an exponential
decay of the form

Pl = apl + b . (4)

The average error map, therefore, behaves like a com-
pletely depolarizing model with an average depolarizing
parameter p. This parameter can be used to estimate the
average gate fidelity of n-qubit quantum gates. Employ-
ing RB as a noise predictor involves extracting the decay
parameter and introducing a depolarizing channel with
a depolarizing parameter equal to the decay parameter
after each gate. We employ this technique to establish a
depolarization noise model, serving as a benchmark for
our algorithm. Although this model, which projects all
noise sources onto the depolarizing channel, may seem
unrealistic, it provides a useful baseline for comparison.

B. Reinforcement learning

Reinforcement learning is a powerful Machine Learn-
ing (ML) paradigm that trains an agent to make optimal
decisions in a dynamic environment. From a mathemati-
cal perspective, a reinforcement learning algorithm is de-
scribed as a Markov Decision Process (MDP) [53]. An
MDP is characterized by a tuple (S,A, P,R, γ), where S
represents the set of possible environmental states, A de-
notes the set of actions, P (s′|s, a) is the transition proba-
bility of reaching state s′ from state s by taking action a,
R(s, a) provides the immediate reward of taking action
a in state s, and γ is the discount factor that balances
the importance of immediate rewards against future re-
wards. In an MDP, the future state depends solely on the
current state and action, regardless of the previous his-
tory. Solving MDPs involves finding an optimal policy
that maximizes the expected averaged sum of rewards.
This policy can be deterministic or stochastic, and it can
be represented by a function π(s) that returns the action
to be taken in state s.

In a reinforcement learning model, the policy π(s) is
implemented by an artificial Neural Network (NN) [54],
which is trained through executing different episodes
of agent-environment interaction. At the end of each
episode (or batch of episodes), the average episode re-
ward is computed and used to update the weights of the
NN using the backpropagation algorithm [55].

Many optimization methods have been developed in
recent years to improve reinforcement learning conver-
gence and stability during training [56]. In our work, we
have obtained the best results using the Proximal Pol-
icy Optimization (PPO) [57]. This optimization method
provides increased stability by constraining the policy up-
date to a proximity region. Moreover, PPO can handle a

continuous action space, which is necessary to accurately
model quantum noise. One drawback is its sensitivity
to hyperparameters, as poorly chosen values can impact
convergence and overall performance.
We employed the Stable Baselines3 library [58] to

define and train the algorithm. This library is built on
top of OpenAI Gym [59], which provides a wide range
of customizable environments for reinforcement learn-
ing tasks. Gradient optimization was performed with
PyTorch [60].

III. ALGORITHM IMPLEMENTATION

This section provides a detailed explanation of the pro-
posed noise modeling algorithm, with a particular em-
phasis on the transformation of quantum circuits into
input feature vectors suitable for neural network process-
ing, as well as a comprehensive description of the policy,
the training process and the datasets.

A. Circuit Representation

To train the RL agent, we need to represent a quantum
circuit as an array that can be readily processed by the
policy neural network. In the following we refer to this
array as the Quantum Circuit Representation (QCR).
The QCR has a shape of [ qubits, depth, encoding ]. The
first dimension corresponds to the circuit’s qubits, while
the second dimension represents the circuit’s moments,
i.e., a collection of gates that can be executed in parallel.
The encoding dimension encodes the information regard-
ing gates and noise channels acting on a specific qubit at
a specific circuit moment. Its dimension is determined
by the total number of native gates and noise channels
the model allows for.
In detail, considering a set of n single-qubit native

gates Gi
n
i=1, the initial n entries of the encoding will

contain a one-hot encoding of our native set. Namely, in
the presence of the gate Gi, all the entries are set to 0
except for the i-th entry that is set to 1. Specifically, in
our case, we use n = 2 to encode the presence of an Rx

or Rz gate. The n + 1 entry is set to 1 if a two-qubit
gate is present and 0 otherwise, with the CZ gate being
the native two-qubit gate in this work. For single-qubit
circuits, this entry is always zero. The n + 2 entry en-
codes the rotation angle of single-qubit gates, normalized
to the range [0, 1]. The remaining entries detail the pa-
rameters of the noise channels in the following sequence:
Depolarizing channel, Amplitude damping channel, Rz

coherent error, and Rx coherent error. If a noise chan-
nel is absent, the corresponding parameter value is set
to zero. An example of the QCR for a two-qubit circuit,
obtained using this procedure, is illustrated in Figure 1.
To enable the agent to adapt to circuits of varying

depths, we further introduce the concept of kernel size k,
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q1 Rx(π) Dep(0.1)

q2 Cohx(0.1) Dam(0.2) Rx(π/2) Cohz(0.05)

Moment 1 Moment 2 Moment 3

Rz Rx CZ θ Dep Dam Cohz Cohx

Moment 1
q1 0 1 0 0.5 0 0 0 0

q2 0 0 0 0 0 0 0 0.1

Moment 2
q1 0 0 1 0 0.1 0 0 0

q2 0 0 1 0 0 0.2 0 0

Moment 3
q1 0 0 0 0 0 0 0 0

q2 1 0 0 0.25 0 0 0.05 0

FIG. 1. Example of a two-qubit quantum circuit (top) and
its vector representation (bottom).

similar to the kernels used in convolutional neural net-
works (CNN) [61]. The kernel size establishes a “win-
dow” that restricts the number of circuit moments the
agent can observe at any given time. For instance, with
k = 3, the agent only observes the current moment and
the immediately preceding and following ones. The win-
dow’s center starts from the first moment and slides one
position at each step until the circuit’s end is reached.
This approach is based on the heuristic assumption that
a gate’s noise is most influenced by its temporally prox-
imate gates. At a given moment m, therefore, a win-
dow (m− k−1

2 , m+ k−1
2 ) is extracted from the complete

QCR of the circuit, effectively yielding a fixed dimension
[ qubits, k, encoding ] tensor that is fed as input to the
agent.

B. Policy

Agent’s actions can be depicted following the same
QCR schema. They are represented as matrices, whose
individual rows and columns represent the qubits and
the distinct noise channels respectively. Each entry of
the action matrix is computed by a forward pass through
the policy network, which consists of three main compo-
nents. The Feature Extractor (FE) takes as input the
QCR (x(QCR)) and maps it to a high dimensional latent
feature space x(feat),

x(feat) = FE(x(QCR)) .

To efficiently capture the correlations between different
qubits and moments, we employ a CNN, which should be
suited for processing two-dimensional data. The Actor
Policy (Aπ), is a simple Multi Layer Perceptron (MLP)
which takes as input the latent features and computes
the actual action the agent is going to take (x(action)).

x(action) = Aπ(x
(feat)) .

Observation (x(QCR))

CNN features extractor (FE)

Features (x(feat))

MLP actor (Aπ) MLP critic (Cπ)

Rating (x(rate))Action (x(action))

FIG. 2. Schematization of the policy NN for the PPO algo-
rithm.

Moreover, as PPO is an actor-critic policy we have a sep-
arated critic policy Cπ with the same MLP architecture
but independent weights, whose role is to rate the action
selected by the actor x(rating). The rating is extracted
from the latent features,

x(rating) = Cπ(x
(feat)) .

A schematization of the complete policy NN is reported
in Figure 2.
We have performed different tests to determine the

optimal architecture and number of parameters for the
NNs used in our policy. These hyperparameters slightly
change with the number of qubits. Here, we report the
best characteristics observed for circuits with one and
three qubits. For the feature extractor, we used a single
convolutional layer with 16 filters for single-qubit circuits
and 32 filters for three-qubit circuits. This convolutional
layer is followed by a dense layer with a ReLU activation
function. The optimal number of output features for this
dense layer is 64 for single qubit circuits and 32 for three
qubits circuits. Both the actor and critic policies are im-
plemented as MLPs with a hidden dense layer containing
256 neurons. The total number of trainable parameters
in the entire policy NN is on the order of 104. We ex-
perimented with increasing the number of parameters by
adding additional convolutional layers and increasing the
number of features in the feature extractor. However, we
observed overfitting when the total number of parameters
approached the order of 105.
As detailed in Section IIA, in this work we consider

a set of four possible noise channels: depolarizing, am-
plitude damping, and coherent errors Rx and Rz. This
means, that the output of our actor policy Aπ is going
to be a (nqubits, 4) tensor encoding the predicted pa-
rameters of the inserted noise channels at that specific
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moment. A value of zero corresponds to no noise chan-
nel of that type inserted. For example, in a two-qubit
circuit, the action[

0.1 0 0 0.2

0 0.05 0.3 0

]

indicates that a depolarizing channel with a depolariz-
ing probability of 0.1 and an Rx coherent error with a
rotation angle of 0.2 are added to the first qubit. Simul-
taneously, an amplitude damping channel with a damp-
ing probability of 0.05 and an Rz coherent error with a
rotation angle of 0.3 are added to the second qubit.
A sensitive hyperparameter of the algorithm is the

maximum allowed value for each noise channel’s param-
eter, Pmax, which controls in practice the span of the
search space. A smaller Pmax yields a narrower param-
eter space making convergence faster. However, a too
small value might limit the expressive capability of the
model, precluding the agent the access to possibly large
reward areas of the parameter space. We obtained good
results by setting Pmax as twice the effective depolarizing
parameter derived from a RB experiment.

C. Training procedure

The agent is trained to add noise channels to a noiseless
quantum circuit in order to reproduce the noise pattern
observed when executing the circuit in the presence of
some target noise (whether simulated or real when ex-
ecuting on the hardware). This process is outlined in
Figure 3.

Action: place error channels
with chosen parameter.

Policy: convolutional
neural network.

Environment: quantum
circuit representation.

Reward: trace distance
between density matrices.

FIG. 3. Training process of the RL algorithm.

Each training episode begins with the agent receiving
a randomly selected noiseless quantum circuit from the
training set. Then, for each of the circuit’s moments, the
agent observes the current QCR and takes an action: any
combination of the selected set of noise channels, together
with their corresponding noise parameters, is inserted in
that precise moment, yielding an updated QCR.

The agent receives the reward at end of each episode
and the policy’s NN parameters are then updated to
maximize future rewards. The reward is taken to be a
function of the distance between the target Density Ma-
trix (DM) (ρtrue) and the DM of the noisy circuit gen-
erated by the agent (ρagent) under some selected metric.

We have tested different metrics such as a simple element-
wise Mean Squared Error (MSE), density matrix fidelity,
and Trace Distance (TD) [62]. Trace distance proved
to be the best metric to employ because it is easy to
compute and phase invariant. Moreover, it is specifically
designed to measure the experimental distinguishability
between two quantum states. TD can not be directly
used as reward, so we have explored different functional
forms. The most effective form has been found to be

R(ρagent, ρtrue) =
1

αTD(ρagent, ρtrue)2 + ϵ
, (5)

where ϵ is a small parameter introduced to prevent nu-
merical instabilities and the hyperparameter α can be
used to normalize the reward. This equation essentially
penalizes high values of the TD with a low reward. The
average episode reward, denoted as R, is determined by
averaging R over all the training circuits within a batch
of episodes. A summary of the training procedure is pro-
vided in Algorithm 1. After numerous episodes, the agent
is expected to learn the optimal placement of noise chan-
nels in a noise-free circuit to reconstruct the final density
matrix of the real noisy circuit. Once trained, our al-
gorithm should be capable of generalizing to previously
unseen circuits, thereby enabling realistic noisy simula-
tions.

Algorithm 1: Agent training procedure.

for episode in n episodes do
circuit = random extraction(training set);
for moment in circuit do

observation =
agent.make observation(circuit, moment);

action = agent.action(observation);
circuit.add noise(action);

end
generated dm = extract density matrix(circuit);
reward = compute reward(generated dm,
ground truth dm);

agent.update policy(reward);

end

D. Dataset Generation

The RL algorithm requires training, testing, and eval-
uation datasets, which consist of ensembles of random
quantum circuits and their corresponding final DMs
ρtrue. These DMs serve as ground truth labels during the
training phase of the algorithm (Section III C). In simu-
lations, the ρtrue are computed analytically. However, for
circuits executed on hardware, they can be obtained us-
ing quantum state tomography [63] or more efficient tech-
niques such as classical shadow state reconstruction [64–
66].
In this study, we utilize circuits with gates in the na-

tive gate set {Rx(π/2), Rz(θ), CZ} implemented in the
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quantum devices of the Technology Innovation Institute
(TII) [38]. We also conducted preliminary tests using the
native gates set of IBM quantum hardware [67], which
employs the CNOT gate as the two-qubit entangling na-
tive gate. Modifying the native gates in our algorithm
is a simple process and has not led to any significant
changes in performance.

The train set for single qubit circuits is composed of cir-
cuits with a fixed number of Clifford gates extracted ran-
domly. Clifford gates are chosen due to, both, their lower
simulation cost and their large use in randomized bench-
marking and shadow state estimation [52, 65, 66, 68]. In
our specific case, since we consider Rx and Rz gates, the
only allowed rotation parameters are multiples of π/2.
For three-qubit circuits we have used a more sophisti-
cated training set. Half of the training set is composed
of circuits with a fixed number of moments with the
gates and parameters extracted randomly. The second
half of the training set is composed of Clifford circuits
implementing randomly chosen three-qubit Clifford uni-
taries [69]. These circuits do not have a fixed number
of gates or moments. We observed an improvement in
the generalization properties of the algorithm when us-
ing this mixed training set.

For the performance evaluation we have used two dif-
ferent datasets. The first dataset is composed of non-
Clifford circuits with fixed depth. The results obtained
with this set demonstrate that the algorithm, even if
trained on Clifford circuits, maintains its ability to gen-
eralize. The second dataset for performance evaluation,
consist of Clifford circuits with varying depths. We have
used this dataset to fit the RB noise model and compare
it with the RL agent.

For the datasets used in simulations, we defined custom
noise models. Specifically, we used two different custom
noise models for circuits with one and three qubits. For
single-qubit circuits, we applied a depolarizing channel
with a depolarizing parameter of λ = 0.02 after each Rz

gate, and an amplitude damping channel with decay pa-
rameter γ = 0.03 after each Rx gate. A coherent Rx(θ

′)
error with angle θx = 0.04 · θ is introduced after each
Rx(θ) gate. Similarly, a coherent Rz(θ

′) error is added
after each Rz(θ) gate, with θz = 0.02·θ. This noise model
is not intended to be realistic but to test our algorithm on
a gate dependent noise model. For three-qubit circuits,
we used a similar noise on rotation gates and added a de-
polarizing channel with a depolarizing parameter of 0.02
and an amplitude damping channel with a decay proba-
bility of 0.03 after each CZ gate. In Section V, we have
also used a lower error rate noise model to test the algo-
rithm’s ability to generalize to different noise models. A
comprehensive summary of the noise parameters used in
the simulations is provided in Table I.

Generating the training set is straightforward for simu-
lations where the DMs are computed analytically. How-
ever, performing full state tomography to obtain these
values on quantum hardware can be time-intensive. For
this reason, we conducted preliminary tests on one and

Noise Gates λ γ θx θz

1 qubit
Rx(θ) 0 0.03 0.04·θ 0

Rz(θ) 0.02 0 0 0.02·θ

3 qubits

(high noise)

Rx(θ) 0 0.03 0.04·θ 0

Rz(θ) 0.02 0 0 0.03·θ
CZ 0.02 0.03 0 0

3 qubits

(low noise)

Rx(θ) 0 0.01 0.015·θ 0

Rz(θ) 0.015 0 0 0.02·θ
CZ 0.015 0.01 0 0

TABLE I. Noise models used in simulation to train and eval-
uate the RL algorithm in different conditions. The columns
show the noise channels parameters: λ for the depolarizing
channel, γ for the amplitude damping channel and θx and
θz for the coherent error Rx and Rz respectively. The rows
indicate the gates subject to the noise channel, a zero noise
parameter means that the noise channel is not applied to that
gate.

three qubit simulated circuits to determine the minimal
length of the training set. We trained the algorithm on
datasets of varying sizes (from 10 to 103), using the noise
models introduced in Table I, and assessed the perfor-
mance on a common evaluation set. We found that for
three qubits, it is sufficient to train the algorithm on
a dataset with more than 100 circuits to avoid overfit-
ting and achieve optimal performance. For single qubit
circuits, a dataset with about 20 circuits is sufficient
to obtain nearly optimal performance. This result may
vary with the complexity of the noise model; however, it
demonstrates that dataset generation is not a bottleneck
for quantum chips with a small number of qubits.

IV. RESULTS

The following sections detail the results obtained from
applying the proposed algorithm in both simulations and
on quantum hardware.

A. Simulations

Our study begins by training the RL agent to emu-
late the custom noise model, introduced in Section IIID,
on single-qubit circuits. To train the model, we gener-
ated a dataset of 100 random Clifford circuits of depth
10. We have used 80% of the dataset for the training,
reserving the remaining 20% for the test set. The per-
formance of the agent is evaluated by determining the
average fidelity and TD between the DMs it produces
and the actual noisy DMs. These values are computed
across all episodes for both the training and test sets, as
shown in Figure 4. The training process converges after
roughly 4 × 105 episodes, achieving an average fidelity
of about 0.99 on the test set. The RL agent effectively
learns to simulate the noise, exhibiting no signs of over-
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FIG. 4. Average density matrix fidelity (left) and trace distance (right) throughout the training process of the RL agent on
single-qubit circuits. The metrics have been evaluated on a dataset of 100 circuits using 80% for the train set and 20% for the
test set. Error bars report the standard deviation.
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FIG. 5. Performance evaluation of different noise models on Clifford circuits of depths varying from 3 to 30. The performance
is evaluated using average DMs fidelity (left) and trace distance (right). The RL agent has been benchmarked against the RB
method, the noiseless scenario and the maximally mixed state (MMS). Error bars report the standard deviation.

fitting. For the evaluation set, we used a dataset of 100
random non-Clifford circuits with a depth of 15. The
average fidelity of the RL agent on the evaluation set is
0.993, with a standard deviation of 0.003. This result
shows that the agent is able to correctly generalize to
non-Clifford circuits.

To further assess the model’s generalization capability,
we evaluate it on random Clifford circuits of varying
depths, from 3 to 30. Also in this case we evaluate the
performance using the average fidelity and TD between
the DMs generated by the model and the actual noisy
DMs. Figure 5 compares the performance of the RL

agent with the RB noise model described in Section
IIA). We also offer a comparison with two limit cases:
the DMs of noiseless simulation and the DM of the
maximally mixed state (MMS). The RL agent demon-
strates its adaptability to circuits of different depths,
consistently outperforming RB. This performance sug-
gests that while RB categorizes all noise sources as
depolarizing, our algorithm can discern the specific char-
acteristics of the noise. The improvement is especially
pronounced on shorter circuits, as the circuit depth in-
creases, the noise approximates to a global depolarizing
channel, reducing the relative advantage of our RL agent.
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FIG. 6. Average density matrix fidelity (left) and trace distance (right) throughout the training process of the RL agent on
three-qubit circuits. The metrics have been evaluated on a dataset of 800 circuits using 80% for the train set and 20% for the
test set. Error bars report the standard deviation.
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FIG. 7. Performance evaluation of different noise models on three-qubit Clifford circuits of depths varying from 3 to 30. The
performance is evaluated using average DMs fidelity (left) and trace distance (right). The RL agent has been benchmarked
against the RB method, the noiseless scenario and the maximally mixed state (MMS).

We extended our simulation to three-qubit circuits to
evaluate performance in the presence of two-qubit gates.
We have used the high noise model on three qubits re-
ported in Table I. The training set consists of 800 three-
qubit circuits, divided into 80% for training (640 circuits)
and 20% for testing (160 circuits). This training set is
composed of both Clifford and non-Clifford circuits as
described in Section IIID. The evolution of the average
DMs fidelity and TD throughout the training process
is shown in Figure 6. While the algorithm is capable
of learning the noise, the convergence is slower than in

single-qubit circuits due to a larger action space requiring
more episodes for exploration. Convergence is reached af-
ter approximately 1.5×106 episodes achieving an average
fidelity of about 0.98. No signs of overfitting can be ob-
served during the training phase.
For evaluation, we used a dataset of 200 random non-
Clifford circuits of depth 15, where the RL agent achieved
an average fidelity of 0.98 with a standard deviation of
0.01.

Mirroring our previous single-qubit circuit experi-
ments, we evaluated the performance of our RL agent
against both the RB method and the limit cases of noise-
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FIG. 8. Average density matrix fidelity (left) and trace distance (right) throughout the training process of the RL agent on
single-qubit circuits executed on a superconductive quantum chip. The metrics have been evaluated on a dataset of 60 circuits
using 80% for the train set and 20% for the test set. Error bars report the standard deviation.

less circuits and MMS across a variety of circuit depths.
This comparison is reported in Figure. 7. In these sce-
narios, the RL agent consistently demonstrates its adapt-
ability to circuits of different depths, surpassing the per-
formance of the RB method for all circuit lengths.

B. Quantum hardware

To test our algorithm on real quantum hardware,
we used a single qubit in a superconducting transmon
chip [70]. This 17 qubits chip has been produced by
QuantWare 2 and hosted at the Technology Innovation
Institute of Abu Dhabi. The single qubit gate fidelity, ob-
tained with RB, is 0.996 with a readout fidelity of about
0.96. To compute the DMs of the circuits, we used state
tomography, running 4× 103 shots to compute each ma-
trix. We attempted to mitigate measurement noise in
advance to improve the fidelity of the DMs [71]. How-
ever, we observed that the RL agent performs better in
learning the noise model without measurement error mit-
igation.

To train the algorithm, we collected a dataset consist-
ing of 60 random circuits of depth 10, employing 80%
of these circuits for the training set and the remaining
20% for the test set. Figure 8 reports the average DM
fidelity and TD during training for the first 2 × 105

episodes. Convergence is reached after about 1.5 · 105
episodes, reaching an average fidelity of 0.99, with no
evident signs of overfitting. This result is similar to the
one obtained with simulations for single qubit circuits.

2 https://www.quantware.com

Using a qubit with high gate fidelity makes the train-
ing process more challenging. The ground truth density
matrices are affected by both gate errors, which are
learned by the reinforcement learning (RL) algorithm,
and by shot noise and measurement errors. In the high
gate fidelity regime, measurement noise and shot noise
can have an impact similar to that of gate noise. These
errors in the density matrices make the reward signal
less precise, thereby worsening the convergence of the
training process. For our dataset, we have computed
the average error on the trace distance introduced by
measurement errors, shot noise and the additional gates
needed to perform state tomography. The obtained value
is 0.036, which explains the large error bars observed
during training, as shown in Figure 8. To mitigate this
problem it would be useful to train the algorithm on
longer circuits so that more gate errors can accumulate.
In our case, to help the training process, it has been
fundamental to set the maximum noise parameter value
Pmax to a low value. As described in Section III B,
we have set Pmax to 0.008, twice the decay parameter
obtained with RB.

The performance benchmarking of the RL agent with
respect to RB has been performed as described in Sec-
tion IVA. For this test, we used circuits of length span-
ning from 5 to 50, 10 circuits for each length. As the noise
level of the qubit is quite low, it is necessary to use cir-
cuits with higher lengths to extract the decay parameter
for the RB method. Figure 9 reports the performance, in
reconstructing the noisy DMs, of the trained RL agent
compared with RB. The comparison also includes cir-
cuits without noise and the maximally mixed state. To
better observe the performance differences between the
RL and RB noise models, we used a logarithmic scale
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FIG. 9. Performance evaluation of different noise models on single qubit Clifford circuits of depths varying from 5 to 50.
The performance is evaluated using average DM fidelity (left) and trace distance (right) with respect to the real noisy DMs
obtained from execution on quantum hardware. The RL agent has been benchmarked against the RB method, the noiseless
scenario, and the maximally mixed state (MMS). In the plot reporting the trace distance, we used a logarithmic scale to enhance
distinguishability between RB and RL.

Noise Model 5 10 15 20 25 30 35 40 45 50

RL
Avg 0.992 0.995 0.992 0.994 0.991 0.993 0.993 0.990 0.997 0.993

Std 0.009 0.005 0.005 0.003 0.005 0.003 0.002 0.008 0.002 0.005

RB
Avg 0.992 0.994 0.992 0.992 0.987 0.990 0.992 0.981 0.992 0.990

Std 0.007 0.006 0.004 0.004 0.008 0.006 0.003 0.016 0.006 0.007

TABLE II. Average fidelity and standard deviation in reconstructing noisy DMs of circuits with different depths obtained using
the RL agent and RB noise model.

in the plot reporting the TD. On average, the RL agent
outperforms the RB method for all circuit lengths when
using the trace distance as the metric. The high stan-
dard deviation obtained in the plot is mainly due to the
uncertainty in the evaluation of the DMs with state to-
mography. Regarding the fidelity, we present the results
obtained with RB and RL in Table II, as the two se-
ries are not easily distinguishable from the plot. For this
metric as well, the performance of the RL agent is better
than or equal to RB for all circuit lengths.

The results obtained in this section differ from those
obtained in Section IVA, where the RL agent clearly
outperformed the RB method. However, it is important
to highlight that the RL agent requires fewer hardware
resources than the RB method. In the training of the
RL agent, a dataset of 60 circuits with a depth of 10
has been sufficient. The dataset generation process on
the employed hardware took just a few minutes, at the
cost of some classical resources needed for training the
algorithm. Conversely, to estimate the RB parameter
with good precision, it is necessary to run many circuits
for each depth.

V. APPLICATIONS

This section we assess our model’s performance on
Quantum Fourier Transform (QFT) and Grover’s algo-
rithm circuits under simulated noise. These tests pro-
vide valuable insights into the generalization capabilities
of the model and serve as a stress test and benchmark
for overall performance.
The QFT, a quantum counterpart of the classical

Fast Fourier Transform, is a fundamental component of
numerous quantum algorithms, including the renowned
Shor’s algorithm for factoring [2]. The QFT acts on a
quantum state |x⟩ of n qubits as

QFT |x⟩ = 1√
2n

2n−1∑
k=0

e2πixk/2
n

|k⟩ . (6)

Being a unitary transformation, the QFT can be imple-
mented as a quantum circuit. For a three-qubit system
(n = 3), the QFT circuit is reported in Figure 10. The
layer of SWAP gates included to reorder the qubits is
omitted in our implementation, as this reordering can be
handled classically if the QFT is the final operation in
an algorithm.
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H

FIG. 10. QFT circuit for three qubits. In this circuit, Rk =
U1(2π/2

k) and H denotes the Hadamard gate.

Grover’s algorithm, another cornerstone of quantum
computing, is renowned for its ability to search unsorted
databases with quadratic speedup compared to classical
algorithms [3]. The algorithm operates on a superpo-
sition of quantum states, and its goal is to find a spe-
cific state |w⟩ that satisfies a certain condition defined
by an oracle function. The key component of Grover’s
algorithm is the Grover iterate, a unitary transformation
that contain the information of the oracle. The Grover
iterate is typically repeated O

√
N times to maximize the

probability of measuring |w⟩, where N is the dimension
of the system. We considered a two-qubit system and
the target state |11⟩. This configuration requires only
one Grover iteration to find the target state. We utilized
an ancillary qubit to construct the oracle, leading to the
final circuit reported in Figure 11.

H H X X H

H H X X H

X H

FIG. 11. Grover’s search algorithm circuit, the target state is
|11⟩ and an ancillary qubit is required.

We transpiled the circuits to utilize the native gates
Rz, Rx, and CZ. The gate number after transpilation
and other significant circuit parameters are detailed in
Table III. It should be noted that the increased depth
of the circuits, the lower fraction of two-qubit gates, and
the structure, compared to the circuits in the training set,
make this generalization test particularly challenging.

Circuit Total gates CZ gates Moments

QFT 23 6 15

Grover 40 7 25

TABLE III. Number of gates and circuit moments of the tran-
spiled circuits for QFT and Grovers’s algorithm.

We have tested the algorithms using both the high and
low noise models for thee-qubit circuits detailed in Sec-
tion IVA This approach served a dual purpose. Primar-
ily, we aimed to test the algorithm’s generalization ca-
pabilities with noise models exhibiting lower error rates.
Secondly, the noise model from Section IVA completely
masked the final result for Grover’s algorithm. By using

a noise model with lower error rates, we ensured that a
peak at the target state in the final result remained dis-
cernible. We evaluated the performance of our RL agent
against the RB noise model and the limit case where no
noise is added to algorithm’s circuits. The fidelity be-
tween the reconstructed and original noisy DMs for the
different noise models is detailed in Table IV. In all in-
stances, the RL agent obtained the best performance.

Circuit Noise RL RB No noise added MMS

QFT
High 0.99 0.97 0.59 0.70

Low 0.99 0.99 0.78 0.52

Grover
High 0.98 0.95 0.40 0.83

Low 0.98 0.96 0.65 0.64

TABLE IV. Fidelity between the density matrix reconstructed
with a noise model (RL agent, RB, the limit case where no
noise channels are added and the MMS) and the ground truth
noisy one. The result is reported for QFT and Grover’s algo-
rithm circuits for both a high and low noise models.
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FIG. 12. Computational basis states probabilities for the
QFT circuit with a high error noise model (top) and Grover’s
algorithm circuit with a low error noise model (bottom). The
histograms show a comparison between probabilities obtained
with the ground truth noise model, the RL agent noise model
and the RB noise model.

The final state probabilities for both the QFT and
Grover’s algorithm circuits, measured in the computa-
tional basis, are shown in Figure 12. For the QFT cir-
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FIG. 13. Heatmap of the absolute error between the ground truth noisy DM and the DM obtained with the RL agent (left)
and RB model (right) for the three-qubit QFT circuit.

cuit we report the result obtained with a high error noise
model while for the Grover’s circuit we report the result
obtained with a low error noise model that doesn’t de-
struct the expected result. The histograms compare the
probabilities derived from the original noisy circuit, the
reconstructed circuit using the RL agent, and the RB
noise model. Given the depth of the circuits used, the
RB noise model tends to average the output. In con-
trast, the RL agent, with a few exceptions, aligns more
closely with the probabilities obtained from the original
noise model. This alignment is particularly noticeable in
the QFT simulation counts for the state |000⟩. This state
has the higher probability due to the noise model’s am-
plitude damping channels, a feature that is successfully
replicated by the RL agent but that is is not possible to
replicate with the RB model.

For a more detailed analysis, Figure 13 shows the ab-
solute error between the DMs generated by the RL algo-
rithm and the RB model compared to the ground truth
noisy DM. The errors in the RL model are well dis-
tributed across the DM, while the RB model’s errors tend
to be higher along the diagonal. This effect was observed
in many circuits, even during preliminary tests with the
RL algorithm. As the depth of the circuit increases, the
density matrix of noisy circuits tends to approach the
MMS, resulting in most of the information being con-
tained in the diagonal. This is one of the main reasons
we chose the trace distance as the metric for the reward
of the RL algorithm.

The results obtained in this section underscore the gen-
eralization capabilities of the proposed RL approach for
noise modeling. The RL agent adapts to circuits with
structures distinct from the random ones used in the
training set and of significantly different depths. This al-
lows the algorithm to be used for circuit simulations for
interesting use cases like quantum algorithms and quan-
tum machine learning.

VI. CONCLUSIONS

This work presents a reinforcement learning algorithm
for replicating specific noise models in single and multiple
qubit quantum circuits. This approach reduces heuris-
tic assumptions about the noise model, enhancing gen-
eralization properties. Tests on simulated and quantum
hardware circuits have demonstrated the model’s ability
to learn complex noise patterns and generalize to un-
seen circuits. For a comprehensive evaluation and to
show a possible use case, we tested the model on QFT
and Grover’s algorithm circuits. In all occasions, the RL
model consistently outperformed a common noise char-
acterization method, randomized benchmarking both in
the ability of reconstructing the density matrices and in
the amount of quantum hardware resources needed.

Possible future applications of the algorithm include
not only reproducing the noise pattern of a specific hard-
ware device. By learning the error patterns of qubits for
specific gate types, the model could optimize the tran-
spilation process [72], thereby enhancing quantum algo-
rithms fidelity. Furthermore, using the knowledge of the
noise for its mitigation could be an interesting approach.

The current model’s limitation is its scalability to cir-
cuits with many qubits. There are two main challenges
to overcome. The first problem is that scaling the model
would necessitate a significant increase in the number
of actions, A lager action space would complicate and
slow down the training process. The second problem
regards obtaining the ground truth density matrices via
quantum state tomography as it requires exponentially
more measurements in the number of qubits. We are
considering potential solutions to these challenges.
One approach, to solve the second issue, could involve
training the model with probability distributions derived
from measurements, rather than density matrices. It
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is also possible to employ machine learning techniques
to reduce the amount of measurements needed for
quantum state tomography [73, 74]. To address the first
issue, we could partition large circuits into smaller ones,
facilitating parallel training of multiple smaller models.
Furthermore, it could be beneficial to explore the use of
graph neural networks in place of convolutional neural
networks to encode qubit connectivity information into
the model.

While these ideas require further validation, this work
demonstrates that machine learning’s application to
learn noise patterns within small quantum circuits is a
promising proof of concept that could lead to future ad-
vancements.
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