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Abstract. A real-time autoencoder-based anomaly detection system using semi-supervised machine learning
has been developed for the online Data Quality Monitoring system of the electromagnetic calorimeter of the
CMS detector at the CERN LHC. A novel method is introduced which maximizes the anomaly detection per-
formance by exploiting the time-dependent evolution of anomalies as well as spatial variations in the detector
response. The autoencoder-based system is able to efficiently detect anomalies, while maintaining a very low
false discovery rate. The performance of the system is validated with anomalies found in 2018 and 2022 LHC
collision data. Additionally, the first results from deploying the autoencoder-based system in the CMS online
Data Quality Monitoring workflow during the beginning of Run 3 of the LHC are presented, showing its ability
to detect issues missed by the existing system.

1 Introduction

The central feature of the CMS experiment recording
proton-proton collision data produced by the CERN LHC
is a superconducting solenoid of 6 m internal diameter,
providing a magnetic field of 3.8 T. Within the solenoid
volume are a silicon pixel and strip tracker, a lead tungstate
crystal electromagnetic calorimeter (ECAL), and a brass
and scintillator hadron calorimeter, each composed of a
barrel and two endcap sections. Muons are measured in
gas-ionization detectors embedded in the steel flux-return
yoke outside the solenoid. A more detailed description of
the CMS detector, together with a definition of the coordi-
nate system used and the relevant kinematic variables, can
be found in Ref. [1].

The CMS electromagnetic calorimeter provides homo-
geneous coverage in pseudorapidity |η| < 1.48 in a barrel
region (EB) and 1.48 < |η| < 3.0 in two endcap regions
(EE+ and EE−) as shown in Fig. 1. Preshower detec-
tors consisting of two planes of silicon sensors interleaved
with three radiation lengths of lead are located in front
of each endcap detector. The ECAL consists of 75 848
lead tungstate (PbWO4) crystals. The barrel granularity is
360-fold in ϕ and (2×85)-fold in η provided by a total of
61 200 crystals, with each crystal having a dimension of
0.0174×0.0174 in ∆η×∆ϕ space, while each endcap is di-
vided into two halves, with each comprising 3662 crystals.

The CMS data quality monitoring (DQM) system [2]
is a crucial operational tool to record high-quality physics
data. Presently, the DQM consists of a software system
that produces a set of histograms that are based on a pre-
liminary analysis of a subset of data collected by the CMS
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Figure 1. Schematic view of the ECAL showing the cylindrical
barrel closed by the two endcap regions with one half endcap
displayed.

detector. Conventional cut-based thresholds are used to
define quality flags on these histograms which are moni-
tored continuously by a DQM shifter in the CMS control
room who reports on any apparent irregularities observed.
While this system has proven to be dependable, the chang-
ing running conditions and increasing LHC collision rates,
together with aging electronics, bring forth failure modes
that are newer and harder to predict.

There are two kinds of histograms present in the ECAL
DQM: “Occupancy-style” histograms shown at the top of
Fig. 2 filled with critical quantities from the real-time de-
tector data and “Quality-style” histograms displayed at the
bottom of Fig. 2. Quality-style histograms are obtained
by applying predefined thresholds and requirements to the
Occupancy-style histograms, where the thresholds are de-
rived from typical detector response. The quality his-
tograms are drawn in easily identifiable colored maps, and
the color code scheme used is, e.g., green for “good” and
red for “bad”, or brown for “known problems”.
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Figure 2. Example ECAL DQM histograms showing the distri-
bution of RMS of the pedestal values in the barrel and EE+ (top).
The diagrams at the bottom show the corresponding quality map
for the two regions, drawn at a channel-level granularity, after a
set of cuts is applied on the noise values shown at the top.

2 Machine Learning Based Anomaly
Detection Strategy

Machine learning (ML) techniques are nowadays widely
used in high-energy physics [3] and provide an excellent
tool for anomaly detection in particle physics searches [4].
In this paper, an semi-supervised method of anomaly de-
tection for the ECAL online DQM is presented, exploiting
an autoencoder (AE) [5] on ECAL data to supplement the
DQM system. The network is trained exclusively on a cer-
tified good physics dataset, so that it learns the patterns of
good data and is able to detect anything that differs from
the nominal patterns it has learned. The network is able
to detect anomalies without the need to explicitly see the
anomalous data during training. The dataset used for train-
ing and validation of the AE network is taken from CMS
runs collected in 2018 during LHC Run 2. Each input im-
age for the AE is the occupancy map from a single time
interval called “lumi-section” (LS) of an approximate time
duration of 23 seconds.

Using an AE network based on a computer vision tech-
nique, the ML system is built with a convolutional neu-
ral network (CNN) architecture [6] exploiting ECAL data
processed as 2D images. The encoder part of the AE takes
the input data and compresses it into a lower dimensional
representation, called the latent space, which contains a
meaningful internal representation of the input data. The
decoder part then decompresses the encoded data back
to the original image of the same dimensions, or recon-
structs the image. To measure how well the output matches
the input, a reconstruction loss (L) is computed using
Mean Squared Error between the input (x) and the AE-
reconstructed output (x′) defined as L(x, x′) = ||(x − x′)||2.

A network trained on good images will learn to recon-
struct them well by minimizing this loss function. When
fed with anomalous data, the AE returns higher loss in the
anomalous region, forming the basis of the anomaly detec-
tion strategy as illustrated in Fig. 3 using endcap images as
an example. The input occupancy image (top left) is fed to
the AE, which outputs a reconstructed image (top right).
Then the Mean Squared Error on each tower is calculated

and plotted as a 2D loss map in the same coordinates. As
shown in the bottom-right panel, the anomalous region is
highlighted with the loss higher than the rest of the im-
age. After applying some post-processing steps explained
in Sec. 2.1, a threshold to flag the anomaly is calculated
based on the anomalous loss values. The threshold is ap-
plied to the post-processed loss map to create a quality plot
(bottom left), where towers with the loss above the thresh-
old are tagged as anomalous (shown in red), while towers
with loss below threshold are identified as good (green).

Figure 3. Illustration of AE-based anomaly detection strategy.

2.1 ECAL Spatial Response and Time Corrections

Corrections that take into account the spatial variations
in the ECAL response and the time-dependent nature of
anomalies in the detector are implemented in order to ef-
fectively maximize the anomaly detection efficiency while
minimizing the false positive detection probability.

Since the multiplicity of particle production in a fixed
rapidity interval is constant at a hadron collider, the
number of particles per geometric interval increases for
higher |η|, which is related to rapidity. Thus, it is observed
that ECAL crystals in regions of high |η| exhibit higher
occupancy than those of low |η| in both the barrel and end-
caps. This difference in detector response is also visible
in the AE loss map for specific anomalies as illustrated in
Fig. 4 with a missing supermodule consisting of 68 sets of
5×5 crystals. The top left plot shows the occupancy map
with one supermodule having zero occupancy. The figure
to the right reflects the corresponding AE-reconstructed
output where the AE fails to reconstruct the anomaly. The
bottom left diagram of Fig. 4 is the tower-level loss map
calculated between the input and output, exhibiting high
loss in the anomalous supermodule region; the towers at
the highest |η| tend to have a higher loss than those at
lower |η| due to the higher average occupancy in these re-
gions. To mitigate this effect and obtain uniform loss in
the anomalous region, the loss is normalized by the aver-
age occupancy indicated in the top-left of Fig. 4. After
this “spatial response correction”, flat loss is observed in
the anomalous region as seen in the bottom right of Fig. 4.
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Figure 4. Top-left: Occupancy map with a missing supermod-
ule in the barrel. Top-right: AE-reconstructed occupancy map.
Bottom-left: Loss map showing the missing supermodule, indi-
cating higher loss at high |η| owing to differences in the detector
response. Bottom-right: Loss map after the spatial correction.

Real anomalies persist with time in consecutive LSs,
while random fluctuations average out. An additional cor-
rection is implemented to exploit the time-dependent na-
ture of real anomalies, named “time correction”, which
brings a significant improvement in the AE performance.
Spatially corrected loss maps from three consecutive LSs
are multiplied together at the tower level. The resulting
time-multiplied loss map typically shows that the persis-
tent anomaly of a real anomaly such as a missing super-
module is enhanced and random fluctuations from each LS
are suppressed reducing false positives. It is observed that
multiplication rather than averaging is a better strategy for
enhancing and suppressing the resulting loss values.

3 Results

3.1 Anomaly Tagging Threshold and Performance
Metric

The goal of the ML-based DQM system is to maximize the
anomaly detection efficiency while minimizing the num-
ber of false positives. An anomaly is tagged using a thresh-
old obtained from a validation set with fake anomalies.
The threshold on the final post-processed loss map is cho-
sen such that the loss values of 99% of anomalous towers
are above the threshold as illustrated in Fig. 5 showing the
loss distribution from a zero occupancy tower scenario.

To assess the performance of the AE network, the
False Discovery Rate (FDR) is used as a metric:

FDR =
no. good towers above anomaly threshold

no. good + bad towers above threshold
(1)

The FDR value for 99% anomaly detection represents the
fraction of false detection in all anomalies detected, when
using the threshold chosen to catch 99% of the anomalies
present in the dataset. In other words, the FDR is the ratio
of good towers tagged as anomalous to all towers labeled
as anomalous by the AE. A lower FDR indicates better
performance and fewer false alarms during data taking.

3.2 Testing on Fake Anomalies

The performance of the AE-based DQM method is stud-
ied first on three distinct anomaly scenarios – missing su-
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Figure 5. Loss distribution for zero occupancy tower scenario
after spatial and time correction for EE−. The anomaly threshold
is set as the lower 1% of the zero occupancy tower loss values.

Table 1. Summary of FDR using 99% anomaly detection
threshold for the ECAL barrel fake anomaly scenarios.

FDR for 99% anomaly detection
Missing Zero Occup. Hot

Supermodule Tower Tower
AE

no correction 3.6% 51% 2.8%

AE after
spatial correction 3.1% 49% 2.9%

AE after
spatial and

time corrections
0.13% 4.1% < 0.01%

Table 2. Summary of FDR using 99% anomaly detection
threshold for fake anomaly scenarios in the endcaps.

FDR for 99% anomaly detection
Missing Sector Zero Occup. Tower Hot Tower
EE+ EE− EE+ EE− EE+ EE−

AE
no correction 29% 28% 86% 86% < 0.01% < 0.01%

AE after
spatial correction 1.8% 2.2% 11% 14% 0.02% 0.04%

AE after
spatial and

time corrections
0.06% 0.18% 1.4% 4.4% < 0.01% < 0.01%

permodule/sector, single zero occupancy tower, and sin-
gle hot tower – where artificial (fake) anomalies are added
onto good images. Tables 1 and 2 summarize the FDR
values calculated with anomaly tagging thresholds deter-
mined for each scenario for 99% anomaly detection. For
both the barrel and the endcaps, the FDRs for the single
zero occupancy tower scenario are observed to be always
higher than those for the single hot tower case. This is be-
cause hot towers are in general easier to spot, as they stand
out with much higher occupancy compared to neighboring
towers of average occupancy.

The effect of each consecutive correction on the FDRs
can be seen from the tables. The AE spatial correction re-
duces the FDRs in the missing supermodule/sector and the
single zero occupancy tower scenarios, where the occu-
pancy values are set to zero for the barrel/endcaps. With-
out the correction, the loss values for the towers with zero



0 8 16 24 32 40 48 56 64 72
i tow

-17

0

17

i
to

w

2018 (13 TeV)CMS

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ss

0 8 16 24 32 40 48 56 64 72
i tow

-17

0

17

i
to

w

2018 (13 TeV)CMS

Figure 6. Input occupancy images with real anomalies and
corresponding AE quality plots from a 2018 run with hot towers.

Figure 7. Left: From a 2022 Run ML quality plot in the
ECAL DQM from the AE model, with the new bad towers cir-
cled. Right: Occupancy plot of 1 LS.

occupancy anomalies are proportional to the towers’ nom-
inal occupancy, which indicates that the loss is biased to be
larger in the higher |η| region (see, e.g., Fig. 4). The spatial
correction has a greater effect for the endcaps than for the
barrel, as the gradient in occupancy values across the tow-
ers is more pronounced for the endcaps. In the case of the
hot tower anomaly, the FDRs increase after the spatial cor-
rection. This is because the hot tower loss is biased to be
higher in the opposite direction, towards the lower |η| re-
gion. However, this effect is mitigated by the time correc-
tion that greatly improves the FDRs for all anomaly sce-
narios, with excellent final performance scores for both the
barrel and the endcaps.

3.3 Testing on Real Anomalies and Deployment

Following the tests on fake anomalies, the AE perfor-
mance is studied on known anomalous data from LHC
runs in 2018 and 2022. The input occupancy images with
anomalies and the final quality plots from the AE loss
maps are illustrated in Fig. 6 showing a barrel occupancy
map with a region of hot towers and a zero occupancy
tower in the center from a 2018 run (left). The AE quality
output on the right-hand side of Fig. 6 correctly identifies
all the anomalous towers shown in red. It is interesting to
note that this error was not detected in the online DQM
global quality plots at the time of data taking, while the
AE is able to detect it.

The AE-based anomaly detection system labeled
MLDQM has been deployed in the CMS ECAL online
DQM workflow for the barrel starting in LHC Run 3 in
2022 and for the endcaps in 2023. New ML quality
plots from the AE (see Fig. 7) have been added to the
ECAL DQM. The model inference is accomplished us-
ing the trained Pytorch models exported to ONNX [7],
which is implemented in the CMS software framework us-
ing ONNX Runtime. The MLDQM models have shown
so far very good performance with Run 3 data. As an ex-
ample, Fig. 7 on the left illustrates the new quality plot
obtained from the inference of the trained AE model for

the barrel, using the occupancy histogram shown in Fig. 7
on the left as input to the model. Two circled red tow-
ers can be seen in the supermodules EB+06 and EB−06,
both corresponding to zero occupancy towers in the input
occupancy map as shown on the right of Fig. 7.

4 Summary
A production-level AE based anomaly detection and local-
ization system has been developed for the CMS ECAL us-
ing semi-supervised machine learning. This work was just
published in Ref. [8]. The anomaly detection system using
machine learning described in this paper can be general-
ized and adapted not only to other subsystems of the CMS
detector but also to other particle physics experiments for
anomaly detection and data quality monitoring.
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