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Abstract: We consider a 4d non-linear sigma model on the coset (SU(N)L ×
SU(N)R × SU(2))/(SU(N)L+R × U(1)) ∼= SU(N) × S2, that features a topological

Wess–Zumino–Witten (WZW) term whose curvature is n
24π2Tr(g

−1dg)3∧VolS2 where

g is the SU(N) pion field. This WZW term, unlike its familiar cousin in QCD, does

not match any chiral anomaly, so its microscopic origin is not obviously QCD-like. We

find that generalised symmetries provide a key to unlocking a UV completion. The

S2 winding number bestows the theory with a 1-form symmetry, and the WZW term

intertwines this with the SU(N)2 flavour symmetry into a 2-group global symmetry.

Like a ’t Hooft anomaly, the 2-group symmetry should match between UV and

IR, precluding QCD-like completions that otherwise give the right pion manifold.

We instead construct a weakly-coupled UV completion that matches the 2-group

symmetry, in which an abelian gauge field connects the QCD baryon number current

to the winding number current of a CP 1 model, and explicitly show how the mixed

WZW term arises upon flowing to the IR. The coefficient is fixed to be the number

of QCD colours and, strikingly, this matching must be ‘tree-level exact’ to satisfy a

quantization condition. We discuss generalisations, and elucidate the more intricate

generalised symmetry structure that arises upon gauging an anomaly-free subgroup

of SU(N)L+R. This WZW term may even play a phenomenological role as a portal

to a dark sector, that determines the relic abundance of dark matter.
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1 Introduction

Symmetries provide powerful tools for understanding the structure and dynamics

of strongly interacting quantum theories. Beginning in the 1960s, current algebra
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proved extremely successful in explaining the organising structure of the light pseudo-

scalar mesons in quantum chromodynamics (QCD) [1, 2]. This was famously refined

after the discovery of the chiral anomaly by Adler [3], Bell and Jackiw [4], through

which quantum effects were shown to modify the Ward identities one would other-

wise infer using the classical Lagrangian. Moving into the 1970s, Wess and Zumino

deployed this anomalous current algebra to explain the observed violation of näıve

spatial parity symmetry and pion number mod 2 [5], in e.g. the decays of the ϕmeson

to both K+K− and π0π+π− final states. The anomaly was also shown to account for

why the η′ meson was heavier than its apparent sibling the η meson [6–8]. The topo-

logical Wess–Zumino–Witten (WZW) term in the action matches this anomalous

current algebra relation in the IR, furnishing the (previously local) current algebra

structure with a global aspect [9].

Fast forward half a century, and symmetry continues to offer rich and surprising

insights into the dynamics of QFTs. A key development in the last decade has been

the discovery of generalised notions of symmetry [10], beyond the action of groups on

local operators. One example is higher p-form symmetries, in which abelian groups

act not on local operators but on extended objects. From the viewpoint of current

algebra, the corresponding symmetry currents for p-form symmetries (in the case

of continuous symmetry) are not vectors j
(1)
µ (better, 1-forms) as they are for ‘ordi-

nary’ 0-form symmetries, but tensors j
(p+1)
µ...σ with more than one index (specifically,

(p+ 1)-forms). Returning to QCD and its discrete symmetries, SU(n) gauge theory

possesses such a Zn valued 1-form symmetry, which was shown by Gaiotto, Kapustin,

Komargodski and Seiberg to have a mixed anomaly with parity when the QCD theta

angle equals π [11], for n even. This subtle anomaly in QCD, discovered nearly 50

years after the ABJ anomaly, means that QCD at θ = π cannot be trivial in the

deep infrared (IR).

It has also been recently understood that there can be a non-trivial current

algebra between higher-form symmetries of different degree. The simplest example

is known as a 2-group symmetry structure, wherein 0-form and 1-form symmetries

‘mix’, as first studied in topological field theory by Kapustin and Thorngren [12],

based on the idea of higher gauge theory [13–15]. This was further elucidated in

the wider context of generalised symmetries by Sharpe [16]. In the case where both

0-form and 1-form symmetries are continuous, this can be captured, following the

tradition of current algebra, by a Ward identity of the form [17]:

⟨i∂µj(1)aµ (x)j(1)bν (y)⟩ = ⟨−δ(x−y)fabcj(1)cν +
n

8π2
δab∂µδ(x−y)j(2)µν (y)⟩ , n ∈ Z , (1.1)

where fabc are the structure constants for the 0-form flavour symmetry. The fact

that the coefficient n is an integer is reminiscent of the original anomalous current

algebra relation. (Here n ∈ Z really labels the ‘Postnikov class’ characterizing the

particular 2-group, and is an element in an appropriate cohomology group.) Indeed,
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like the anomaly, it implies that such a 2-group structure should be preserved along

the RG flow, or else the symmetry be broken.

This paper concerns a seemingly innocuous extension of 4d QCD (let’s say, for

concreteness, that the UV theory contains an SU(nc) gauge group andN fundamental

Dirac fermions) by a pair of extra pions in the infrared that live on S2. This theory

admits a second topological term in the low-energy effective action that involves both

QCD pions and the extra pions on S2, as recently observed in Ref. [18]. Like the

original WZW term, this topological term has an integer-quantized coefficient. But

unlike the WZW term, this term does not match any chiral anomaly – so it has no

obvious interpretation as originating from a loop of chiral fermions in the microscopic

theory.

In this paper, we show that this ‘mixed WZW term’ actually encodes a 2-group

global symmetry structure in the IR theory, which mixes the QCD flavour symmetry

with a 1-form symmetry associated to the winding number around the S2 factor of

the target space. The coefficient n of this mixed WZW term is precisely the Postnikov

class encoding the 2-group symmetry. This furnishes an interesting new example of

continuous 2-group symmetry in a 4d quantum field theory, that contains only scalar

degrees of freedom in the infrared.1

The observation of a non-trivial 2-group global symmetry in this theory puts

strong constraints on possible RG flows that can realise this phase in the IR.2 In

particular, a UV completion that exactly preserves the QCD flavour symmetry must,

in order to close the 2-group current algebra relation (1.1), at the very least possess a

continuous 1-form symmetry. At a stroke, this precludes QCD-like UV completions

that one might guess, such as a confining SU × SO gauge theory or an SU gauge

theory with both fundamental and adjoint quarks condensing.

We then propose a UV completion of this mixed WZW term, consistent with

the 2-group symmetry constraints, in which an abelian U(1)g gauge field that is

Higgsed in the IR connects the QCD sector to the S2 sector. The scalars on S2 are

embedded in a linear sigma model of two complex scalars at high energy, charged

equally under U(1)g, which condense to Higgs the U(1)g and simultaneously break a

global SU(2) symmetry down to a U(1) subgroup, delivering the massless pions on

SU(2)/U(1) ∼= S2. Once the abelian gauge field is ‘integrated in’ as we go to higher

energies, the S2 winding number is precisely traded for the abelian monopole flux.

On the quark side, the U(1)g gauge field couples to baryon number, which becomes

identified with the topologically conserved Skyrme current [22–24] in the IR. These

very particular couplings of the U(1)g gauge field are the ingredients needed to match

onto the mixed WZW topological term, simply by integrating out a weakly coupled

1Other examples of continuous 2-group symmetry without fermions include continuous 2-groups

in hydrodynamics and holography [19, 20].
2The rigidity of higher-group symmetry structures mean they can also be tracked across dualities,

as well as RG flows, to provide highly non-trivial checks – see for instance [21].
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gauge field at tree-level. Notably, because the coefficient of the mixed WZW term

is quantized for consistency of the low-energy effective action (as mentioned, it is a

class in integral cohomology), this tree-level matching formula cannot receive loop

correction. In other words, the matching must be tree-level exact.

When an anomaly-free abelian subgroup of the QCD flavour symmetry is also

gauged (such as gauging QED in real-world QCD), the symmetry structure becomes

more intricate. We show how additional non-invertible symmetries arise (beyond

those corresponding to the ‘usual’ ABJ anomaly in pure QCD), while a remnant of

the original 2-group global symmetry remains.

Finally, we remark that the identification of this peculiar mixed WZW term in

Ref. [18] was motivated by the fact that it can play an important role in phenomenol-

ogy. It was there shown that the extra pions on S2 could constitute the dark matter

(DM) in our Universe, with the mixed WZW term providing an (almost) unique

portal from this dark sector to low-energy QCD that is topological.3 This portal

can reproduce the observed abundance of dark matter today via thermal freeze-out.4

The present paper offers one path to UV completing this novel portal, guided by the

identification of a rich generalised symmetry structure, that will be crucial to un-

derstanding the full phenomenological implications (both in cosmology and collider

experiments) of this topological portal EFT.

The rest of the paper is as follows. In §2 we recall the construction of the

mixed WZW term in the low-energy EFT of QCD extended by pions on S2, and we

identify the presence of 2-group symmetry encoded by this term. We then use this

symmetry structure to investigate the UV completion of this EFT: in §3 we discuss

QCD-like ‘non-completions’, before setting out the weakly coupled UV completion

in §4 wherein QCD is coupled to a linear sigma model by an abelian gauge field.

We consider variations of the scalar sector, in particular a generalisation of our story

obtained by replacing the S2 factor by a general complex projective space, in §5.
Finally, in §6 we treat the gauged case, before concluding.

3Other WZW-like topological portals between low-energy QCD + electromagnetism and a dark

sector could (a) connect QCD baryon number to a dark photon, or (b) connect the visible photon

to a dark baryon number current. There could be yet further topological portals that are, however,

more like θ-terms, for instance mixing the visible photon with a dark photon; but these would be

total derivatives and so not give rise to local interactions between the visible and dark particles.
4The topological nature of the interaction is not just a theoretical nicety, but plays a crucial

role in the phenomenology: being anti-symmetrized in field indices completely suppresses elastic

interaction channels that would otherwise lead to strong constraints from DM direct and indirect

detection. This allows the off-diagonal ‘co-annihilation’ channel to dominate, realising the light

thermal inelastic DM scenario [25].
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2 Mixed WZW term on SU(N)× S2

Our story starts with a low-energy effective field theory (EFT) of pions on the mani-

fold SU(N)×S2, in 3+1 dimensions. This would arise from an ultraviolet theory with

approximate global symmetry of the product form G = SU(N)L×SU(N)R×SU(2)D,

which is spontaneously broken down to H = SU(N)L+R × U(1)D as we flow to

the infrared, where SU(N)L+R is the diagonal subgroup of SU(N)L × SU(N)R and

U(1)D ⊂ SU(2)D.

Classifications of Wess–Zumino–Witten (WZW) terms [5, 9] via generalized co-

homology [26–29] tell us there is a mixedWZW interaction coming from the existence

of a G-invariant closed 5-form involving pions on both the SU(N) and S2 factors,

namely [18]

ω = nω3 ∧ VolS2 , ω3 =
1

24π2
Tr(g−1dg)3 , n ∈ Z , (2.1)

where VolS2 is the volume form on the S2. To define this term it is easier to start

with a homological description – we briefly discuss the refinement via bordism af-

terwards. Given there are no homologically non-trivial 4-cycles in the target space,

since H4(SU(N) × S2) = 0, any 4-cycle in the target space obtained by pushing

forward Σ4 (more precisely, pushing forward a cycle in the fundamental class [Σ4])

can be realised as the boundary of a 5-cochain X5, on which we can integrate ω to

obtain the exponentiated action à la Witten [9]

exp (iS[Σ4 = ∂X5]) = exp

(
2πi

∫
X5

ω

)
(2.2)

= exp

(
2πi

∫
X5

n

24π2
Tr(g−1dg)3 ∧ VolS2

)
.

The normalisation is such that ω is an integral 5-form on SU(N)×S2, meaning that

e
2πi

∫
z5

ω
= 1 for any 5-cycle z5, which guarantees the exponentiated action defined in

this way is independent of the choice of ‘bulk manifold’ (more precisely, 5-cochain)

X5 [9].

A local expression for the 4d Lagrangian can be obtained by expanding the QCD

pion field locally as

g(x) = exp(2iπa(x)t
a/fπ) = 1 + 2iπa(x)t

a/fπ + . . . , (2.3)

and taking χi/fD as local Cartesian coordinates in the vicinity of a given vacuum

point (χi = 0) on the S2 factor. Then the SU(N)-invariant 3-form is expanded as

ω3 =
1

24π2

2

f 3
π

fabcdπa ∧ dπb ∧ dπc +O(π4) , (2.4)

– 5 –



where fabc are the SU(N) structure constants, while the volume form on the S2 is

expressed as

VolS2 =
1

4π

1

f 2
D

cos(χ1)dχ1 ∧ dχ2 =
1

4π

1

f 2
D

dχ1 ∧ dχ2 +O(χ3) . (2.5)

On the coordinate patch near the origin (πa, χi) = 0, we can use Stokes’ theorem to

get a local expression for the Lagrangian (also including a factor 2πi):

L =
inϵµνρσ

48π2f 2
Df

3
π

fabcϵijπa∂µπb∂νπc∂ρχi∂σχj +O(π4χ2, π3χ3) , (2.6)

which was used to calculate scattering cross-sections between the π and χ pions

in [18].

2.1 Remarks on bordism vs homology, and a discrete theta angle

To be more precise, one should re-formulate the above construction of a WZW-like

action, which involves realising spacetime Σ as a boundary of a bulk in one higher

dimension, more directly using the language of bordism. This is somewhat tangential

to the main story of this paper, so we limit ourselves to some cursory remarks.

Roughly speaking, bordism tells us whether manifolds equipped with certain

structures — gauge bundles, spin structures, metrics — can be written as boundaries

of manifolds in one dimension higher, with all structures smoothly extended thereto.

In short, bordism deals directly with manifolds themselves, rather than passing to

cochains as in the homological description above. The UV theory we have in mind

will feature fermions, so the appropriate bordism theory is (reduced) spin-bordism.

In Appendix A we use the Adams spectral sequence [30] to compute that the

relevant reduced bordism group for us here does not vanish, but is given by

Ω̃Spin
4

(
SU(N)× S2

) ∼= Ω̃Spin
4

(
S2
) ∼= Z2 . (2.7)

This means there is a class of spin 4-manifolds [X4], together with maps σ to SU(N)×
S2, that cannot be extended to spin 5-manifolds also equipped with such maps.

This equivalence class is the generator of the bordism group (2.7). The existence of

manifolds that are not boundaries is an obstruction to a Witten-like definition (2.2)

of the WZW term when evaluated on such manifolds. This obstruction is not seen

using homology.

We can nonetheless proceed in attempting to define our WZW term on a general

manifold as follows. That the bordism group is Z2 means that the union of two

generators is a boundary of some closed 5-manifold X5 with the map σ extended.

The exponentiated action evaluated on this union X4 ⊔ X4 must be the square of

the action evaluated on the original X4, by locality. Therefore, we can define the

exponentiated WZW action for this union as

(exp(iS[X4]))
2 = exp

(
2πi

∫
X5

ω

)
(2.8)
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Taking the square root of the right-hand-side then gives two branches of solution,

and we must make a consistent choice of branch to define the theory on all possible

4-manifolds X4 equipped with background structures. This choice, which is equiv-

alent to specifying a Z2-valued parameter of the theory (also known as a ‘discrete

theta angle’), can be made by fixing a representative X
(0)
4 for the non-trivial class in

Ω̃Spin
4 (SU(N)× S2) ∼= Z2 and choosing a branch for exp(iS[X

(0)
4 ]). For instance, we

can fix X
(0)
4 to be a generator of Ω̃Spin

4 (S2) ∼= Z2 with the background SU(N) pion

configuration set to the trivial map i.e. πa(x) = 0, in which case the RHS of (2.8)

evaluates to unity. Then we can choose either

exp(iS[X
(0)
4 ]) = ±1 . (2.9)

For other manifolds in the same bordism class, for which the topological term in

general evaluates to a C-number, the mixed WZW can be defined using a bordism

between X
(0)
4 and X4, and integrating the differential form ω thereon.

The choice of sign in (2.9) is in fact fixed by non-perturbative ’t Hooft anomaly

matching: the solution with a minus sign must be chosen if the symmetry group

SU(2) suffers from the mod 2 global anomaly of Witten [31] in the UV. To see this, let

us be more explicit in our choice of representative and take X
(0)
4 to be S4, equipped

with a homotopically non-trivial dark pion map Uχ : S4 → SU(2)/U(1) ∼= S2,

[Uχ] = 1 mod 2 ∈ π4(S
2) ∼= Z2. The negative sign choice in (2.9), which is the

non-trivial value of this discrete theta angle, corresponds to assigning a partition

function phase (−1)[Uχ] that depends on the homotopy class of the dark pion map,

while the positive sign choice assigns the trivial phase to all maps. Now let us

discuss how this matches the Witten anomaly. Under a local SU(2) transformation

specified by map g(x) : S4 → SU(2) ∼= S3, the pion field transforms under the left-

action Uχ → g · Uχ. We know that, if the UV theory has non-zero Witten anomaly,

then the partition function should flip sign under background gauge transformations

for which [g] = 1 mod 2 ∈ π4(S
3), for any value of the background gauge field

(including zero). Our negative-sign discrete theta angle has this property, as follows.

Using the Hopf fibration f : S3 → S2, we can pullback Uχ to a map f ∗Uχ : S4 → S3,

and the associated long exact sequence in homotopy tells us that [f ∗Uχ] is non-

trivial in π4(S
3) iff Uχ is non-trivial in π4(S

2). Thus we can write our discrete

WZW term as (−1)[f
∗Uχ]. Under g(x), this is sent to (−1)[g·(f

∗Uχ)] = (−1)[g]·[f
∗Uχ] =

(−1)[g](−1)[f
∗Uχ], thus the partition function flips sign, matching the anomaly. On

the other hand for the trivial value of the discrete theta angle, i.e. the positive sign

choice, one simply assigns the trivial phase to all paths and so there is no anomalous

variation. For more detail on matching global anomalies with discrete WZW terms,

we refer the reader to Refs. [28, 29].

In principle there is also a subtlety concerning the normalisation of the WZW

term, related to whether one uses a classification based on homology, bordism, or
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even homotopy groups.5 In our case, the normalisation encoded in our formulae

(2.1) above is that prescribed by homology; nonetheless, later we show that this

mixed WZW term relates to an anomaly polynomial (4.9) for a particular fermionic

theory, whose normalisation condition is determined by the Atiyah–Singer index

theorem [33–35]. This verifies that the normalisation of (2.1) coincides with the

correct normalisation in spin bordism.

2.2 An anomaly-matching puzzle

We now continue with the main line of argument, and consider the symmetry/anomaly

information encoded in this mixed WZW term. Recall the coefficient of the ordinary

WZW term for pure QCD, associated with the 5-form ω5 ∝ Tr(g−1dg)5, is fixed by

’t Hooft anomaly matching [36] for the anomalous chiral symmetry currents gener-

ating SU(N)L and SU(N)R separately. The UV anomalies come from terms in the

anomaly polynomial Φ6 ∼ Tr(F 3
L) + Tr(F 3

R). When QED is gauged, this translates

into an ABJ anomaly that explicitly breaks the chiral flavour symmetries.

We can similarly investigate the possible anomaly-matching role of the mixed

WZW term by turning on gauge currents for various global symmetries. For instance,

upon gauging QED one also gets the term

L ∼ 1

fπf 2
D

ϵµνρσπ0Fµν∂ρχ1∂σχ2 , (2.10)

which was put to phenomenological use as a possible portal to dark matter in [18].

If one also gauged the dark U(1)D unbroken global symmetry, one would further get

a term

L ∼ 1

fπ
ϵµνρσπ0Fµν(FD)ρσ . (2.11)

Thus, the mixed WZW term näıvely matches mixed anomalies corresponding to

anomaly polynomial terms Φ6 ∼ aLTr(F
2
LFD) + aRTr(F

2
RFD). One might try to

conclude that this EFT term arises in UV theories that feature a mixed anomaly

between the ‘light’ and ‘dark’ flavour symmetries. But these mixed anomaly coef-

ficients aL/R vanish if the U(1)D representations are embedded in SU(2)D, because

there is of course no mixed anomaly between SU(2) and SU(N ≥ 3) in 4d. The

mixed WZW term in the low-energy EFT is consistent with an exact SU(2)D flavour

symmetry, and so there should be a UV account of its origin that does not invoke

explicit SU(2)D-breaking as a necessary ingredient.

The main question we try to answer in this paper is: what is the microscopic

origin, if not an anomaly, of the mixed WZW term permitted by this particular EFT?

5For example, the normalisation of the usual WZW term of 4d QCD is subject to a factor of two

difference [32] if one chooses to normalise the curvature form ∝ Tr (g−1dg)5 against the generator

of the homotopy group π5(SU(N)) = Z or against the integral homology H5(SU(N);Z) = Z;
furthermore, the homotopy-based normalisation happens to agree with that determined by spin-

bordism [26, 28], which is arguably the most justifiable choice.
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2.3 Infrared 2-group symmetry

Generalised symmetries (in place of anomalies) present a key to unlocking this appar-

ent puzzle. It turns out that the mixed WZW signals the presence of a generalised

symmetry structure known as a 2-group symmetry, which mixes the QCD flavour

0-form symmetry with a 1-form global symmetry in a non-trivial way.

First, we observe that the volume form on S2 provides us with a topologically

conserved (i.e. closed) non-trivial 2-form, which may be identified with the current

for a 1-form winding number symmetry

j
(2)
wind : = ⋆4VolS2 =

√
|det(g)|
4π

ϵµνρσ cos(χ1)∂
µχ1∂

νχ2dx
ρdxσ, (2.12)

d ⋆4 j
(2)
wind = dVolS2 = 0 .

Here, ⋆4 is the Hodge dual on spacetime (Σ, g), and indices have been raised using

the inverse metric on Σ, viz. ∂µχi = gµλ∂λχi.

To understand the global symmetry structure precisely, it is instructive to turn

on background gauge fields. Let us start with the 1-form symmetry. As for a regular

0-form symmetry, one can minimally couple the 1-form symmetry to a background

gauge field, which in this case is a 2-form gauge field B. The minimal coupling term

is

Scoup = i

∫
Σ4

⋆4 j
(2)
wind ∧B = i

∫
Σ4

VolS2 ∧B (2.13)

By construction, the coupling term is invariant under a U(1)
[1]
wind 1-form gauge trans-

formation

B 7→ B + dΛ(1), (2.14)

because VolS2 is closed.

Now for the 0-form symmetry, we turn on background 1-form gauge fields AL and

AR. The gauging of these 0-form symmetries in the mixedWZW term can be deduced

from the gauging of the 3d WZW term S[Σ2] :=
∫
Y3
Tr (g−1dg)3/24π2, where ∂Y3 =

Σ2 which we know yields the 3d Chern–Simons (CS) theory
∫
Y3

1
8π2 [CS(AL)− CS(AR)]

where CS(A) = AdA+ 2
3
A3. For our 4d theory, gauging therefore gives the action

iS[Σ4 = ∂X5] =

∫
X5

−in
8π2

[CS(AL)− CS(AR)] ∧ VolS2 (2.15)

Crucially, after coupling to the background gauge fields AL, AR, B for SU(N)L,

SU(N)R, and U(1)
[1]
wind, respectively, the mixed WZW term is not gauge invariant.

Rather, under the flavour 0-form gauge transformation

AL 7→ AL +DAL
λ
(0)
L , AR 7→ AR +DAR

λ
(0)
R , (2.16)

it shifts by

δ(2πiS) = − in

4π

∫
Σ4

VolS2 ∧
[
Tr (λ

(0)
L dAL)− Tr (λ

(0)
R dAR)

]
. (2.17)
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One might interpret this as an extra anomalous variation under QCD flavour sym-

metry, in addition to the anomalous variation already encoded in the usual WZW

term of pure QCD. But an important difference compared to the usual WZW term

variation is that, for this term, the factor VolS2 on the RHS of the anomalous vari-

ation is an operator in the theory that does not vanish upon turning off the 0-form

background gauge field.

However, now consider modifying the transformation law for the 2-form gauge

field to depend on the QCD flavour 0-form transformation, in the following way:

B 7→ B + dΛ(1) +
κ̂L
4π

Tr
(
λ
(0)
L dAL

)
+
κ̂R
4π

Tr
(
λ
(0)
R dAR

)
. (2.18)

Mathematically, this (together with 2.16) defines the infinitesimal version of a con-

tinuous 2-group gauge transformation,6 with the locally-defined differential forms

(AL, AR, B) forming a 2-connection. Given the 0-form flavour symmetry SU(N)2

and the 1-form winding number symmetry valued in U(1)[1], possible 2-group struc-

tures intertwining the two are classified (subject to certain simplifying assumptions

that apply here) by a topological invariant called the Postnikov class, which is the

pair

(κ̂L, κ̂R) ∈ H4(BSU(N)2;Z) ∼= Z× Z . (2.19)

If we postulate this generalised gauge transformation law for the background fields,

then the minimal coupling term (2.13) shifts by

i

4π

∫
Σ4

VolS2 ∧
[
κ̂LTr (λ

(0)
L dAL) + κ̂RTr (λ

(0)
R dAR)

]
. (2.20)

This is precisely how the mixed WZW term with the SU(N)L/R background gauge

fields turned on shifts, in the opposition direction, under the flavour gauge transfor-

mation, provided that we identify

κ̂L = −κ̂R = n . (2.21)

The whole combination is then gauge invariant. This is a sign that there is a non-

trivial 2-group structure present [38], and that the coefficient of the mixed WZW

term exactly determines the Postnikov class characterizing the ‘twisting’ of this 2-

group symmetry.

Ward identities for the 2-group symmetry

To see that this is not just an artifact of turning on background fields, we can show

how this 2-group structure is manifest at the level of current algebra. We start by

6We will not actually define what a 2-group is in this paper. For an introduction to the mathe-

matical notion of a 2-group, and how these structures appear in QFT, see e.g. §2 of [37].
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deriving the modified conservation laws for the 1-form currents when only the back-

ground fields for the flavour symmetries are turned on. Recall that the currents j
(1)
L

and j
(1)
R for the flavour symmetries SU(N)L and SU(N)R can be minimally coupled

to their corresponding background gauge fields as

Scurrents =

∫
Σ4

(Tr ⋆ j
(1)
L ∧ AL + Tr ⋆ j

(1)
R ∧ AR) . (2.22)

Including also the mixed WZW term, and using the gauge transformation of the

mixed WZW term given in Eq. (2.17), the total action shifts by

δS =

∫
Σ4

[(
DAL

⋆ j
(1)
L − n

8π2
⋆ j

(2)
wind ∧ dAL

)a
λaL (2.23)

+
(
DAR

⋆ j
(1)
R +

n

8π2
⋆ j

(2)
wind ∧ dAR

)a
λaR

]
,

upon integrating by parts the terms involving 1-form currents. Imposing gauge

invariance, we obtain a pair of modified conservation laws:

DAL
⋆ j

(1)
L =

n

8π2
⋆ j

(2)
wind ∧ dAL , (2.24)

DAR
⋆ j

(1)
R = − n

8π2
⋆ j

(2)
wind ∧ dAR , (2.25)

which hold inside the path integral. This means∫
DΦ

(
DAL

⋆ j
(1)
L − n

8π2
⋆ j

(2)
wind ∧ dAL

)
eiScurrenteiS0 = 0, (2.26)

where S0 is the original action when all background fields are turned off, and Φ

stands for all the dynamical fields collectively. A similar expression holds for j
(1)
R .

Current algebra relations for j
(1)
L and j

(1)
R can then be obtained by taking func-

tional derivatives of these conservation laws with respect to the background fields.

Expanding the integrand of the path integral above for infinitesimal AL (with AR =

0), we obtain, at linear order,

i∂µj
(1)aµ
L (x)

∫
d4yAb

Lν(y)j
(1)bν
L (y) + fabcAb

L(x)j
c(1)ν
L (x) =

n

8π2
j
(2)λν
wind (x)∂λA

a
Lν(x)

(2.27)

Taking the functional derivative of this equation with respect to Ab
Lν(y) gives

i∂µj
(1)aµ
L (x)j

(1)bν
L (y) + fabcδ(x− y)j

(1)cν
L (y) =

n

8π2
δab

∂

∂xλ
δ(x− y)j

(2)λν
wind (y) . (2.28)

Repeating the operation with AR, we similarly obtain

i∂µj
(1)aµ
R (x)j

(1)bν
R (y) + fabcδ(x− y)j

(1)cν
R (y) = − n

8π2
δab

∂

∂xλ
δ(x− y)j

(2)λν
wind (y) . (2.29)
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Sure enough, these expressions exactly reproduce the current algebras for the non-

abelian 2-group structure between SU(N)L×SU(N)R 0-form symmetry and U(1)wind

1-form symmetry, with Postnikov classes κ̂L = n and κ̂R = −n [38].

To summarise so far, we have shown that the IR mixed WZW term implies a

non-trivial 2-group structure, with U(1) as the 1-form part. In the following Sections,

we will use this 2-group structure as a guide to build a UV completion for this EFT.

3 From infrared to ultraviolet: a no-go theorem

One might try to UV complete this ‘product coset’ model with a QCD-like strongly

coupled gauge theory, with two types of quark field that confine at different scales to

give the two types of pions in the IR. We have already seen that such a UV completion

does not fix the mixed WZW term coefficient by anomaly matching, because there

is no non-abelian mixed anomaly in the UV. Now we will show something even

stronger, which is that the mixed WZW term in the IR is in fact inconsistent with

the QCD-like dark sector completion. We will then build a UV completion that does

work in §4.
To see why a QCD-like dark sector cannot generate this mixed WZW term, let’s

have a concrete model in mind. To get the symmetry breaking pattern SU(2)D →
U(1)D, a candidate dark dynamics is SO(Nc) gauge theory with two flavours of

fundamental dark quark. Including also the QCD part, which takes the form of an

SU(nc) gauge theory acting on fundamental quarks, and allowing for other matter

fields transforming in linear representations under both SO(Nc) and SU(nc) that

communicate weakly between the two sectors, there is no continuous U(1)[1] 1-form

symmetry in this phase (although there is a Z[1]
2 1-form symmetry associated with

the gauged SO group).

But the absence of a 1-form symmetry means the current algebra for the 0-form

QCD symmetries does not close; recall the Postnikov class appearing in the 2-group

current algebra relations (2.28, 2.29) is integer-quantized, and so preserved under RG

flow. Put in a more general context, the problem is that the IR theory (with non-zero

mixed WZW term) encodes a non-trivial extension between the flavour symmetry

and the 1-form symmetry, manifest in the fibration

BU(1) ↪→ GIR → SU(N)L × SU(N)R (3.1)

being topologically non-trivial (where here GIR denotes the infrared 2-group symme-

try we have detected). This means that, if only the 0-form SU(N)2 flavour symmetry

is there in the UV, then the 1-form symmetry cannot be emergent and end up twisted

in such a non-trivial fibration.7 As a result, this kind of dynamics cannot possibly

7The same argument ‘against infrared emergence’ should apply in other contexts, not just for

2-group symmetry but for any infrared symmetry that is a non-trivial extension. We thank Y.

Tachikawa for raising this point.
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UV complete our IR EFT with mixed WZW term, unless the UV also breaks the

0-form flavour symmetry.

We thus establish a ‘no-go theorem’:

In the absence of any explicit symmetry breaking, the sigma model on

G/H×SU(2)/U(1) with non-zero mixed WZW term cannot be UV com-

pleted by a non-abelian gauge theory with semisimple gauge group.

A valid UV completion that preserves the 0-form QCD flavour symmetries must,

at the very least, possess a non-trivial 1-form symmetry that can close the 2-group

operator algebra.

One can refine this picture to consider UV theories in which both the 0-form

flavour symmetry and the winding number 1-form symmetry are emergent in the

infrared. The 2-group emergence theorem8 of Ref. [38] then implies the scale hier-

archy Λflavour ≲ Λ1-form, where Λflavour (Λ1-form) denotes the scale where the 0-form

QCD flavour symmetry (1-form symmetry) emerges. Assuming the 0-form symmetry

remains an exact symmetry of the UV, as in a QCD-like completion with explicit

symmetry breaking sources turned off, corresponds to the limit Λflavour → ∞.

One might object, however, that the Landau pole associated with the abelian

gauge field means that the weakly coupled theory we construct in §4 is not really

UV ‘complete’. In §4.5 we sketch how that theory could be further embedded in an

asymptotically-free gauge theory, and see how this explicitly entails breaking of the

flavour symmetry at finite Λflavour.

4 From infrared to ultraviolet: a weakly-coupled completion

Informed by this observation, we propose that the mixed WZW term arises from a

particular coupling between QCD and scalar electrodynamics that enables a non-

trivial 2-group structure. The 0-form part of the 2-group structure is the SU(N)L
(and, separately, SU(N)R) flavour symmetry, while the 1-form part is the U(1) mag-

netic symmetry associated with the U(1) gauge symmetry of the scalar electrody-

namics.

We stress that it is crucial that the extra gauge symmetry be abelian to bestow

us with a candidate 1-form symmetry, with which we can try to close the 2-group

current algebra in the UV and thence match the IR symmetries encoded in the mixed

WZW term.

4.1 The UV phase: QCD coupled to scalar electrodynamics

The particular scalar electrodynamics (SED) that we will couple to the QCD sector

consists of two complex scalar fields ϕ1 and ϕ2, both coupled to the U(1) gauge field

8This 2-group emergence theorem has been applied, for instance, to study models for unification

in [39] and, perhaps more closely to the present work, to theories with axions in [40, 41].

– 13 –



b with charge +1. The dynamics of our SED is governed by the Lagrangian

LSED = − 1

4e2
(db)2 +

2∑
i=1

|(∂ − ib)ϕi|2 +m2

2∑
i=1

|ϕi|2 + λ

2∑
i=1

|ϕi|4, (4.1)

where e is the gauge coupling, m2 is the mass squared parameter for the scalars (of

as-yet unfixed sign), and λ is the parameter for the quartic potential. Without the

gauging, the scalar potential would have an O(4) accidental symmetry, exactly like

the Higgs sector of the electroweak theory with gauge fields turned off. When the

U(1) is gauged, akin to gauging hypercharge in the electroweak theory, the remaining

accidental global symmetry is reduced to an SU(2) ⊂ O(4).9

We then couple the quarks to the SED sector through the U(1) gauge field, which

we also take to have charge +1 for now.10 The full Lagrangian is then given by

Lfull = LQCD + LSED + Lint, (4.2)

where

LQCD = − 1

2g2
Tr fµνf

µν +
N∑
i=1

iΨi

(
/∂ − i/a

)
Ψi, (4.3)

Lint =
N∑
i=1

Ψiγ
µbµΨi (4.4)

Here, a denotes the SU(nc) colour gauge field, and f = da− ia∧ a its field strength.

4.2 Symmetries and anomalies of the UV theory

The faithfully acting global symmetry of this theory appears to be

Gglob =
U(1)q × SU(N)L × SU(N)R × SU(2)ϕ

Znc × ZN × Z2

× U(1)[1]m , (4.5)

To see this, let us first enumerate 0-form symmetries. As in the usual massless

QCD, there are flavour 0-form symmetries SU(N)L and SU(N)R that acts on the

left-handed and right-handed components of Ψ independently. As already remarked,

there is an SU(2) flavour symmetry for the scalars acting by

SU(2)ϕ : ϕi 7→ U j
i ϕj, U ∈ SU(2) . (4.6)

Lastly, despite coupling the quarks to a U(1) gauge symmetry, the U(1)q quark

symmetry

U(1)q : Ψi 7→ eiαΨi , (4.7)

9In the case of the electroweak theory, but not here, this SU(2) is of course also gauged.
10We shall consider the generalisation in which the quarks and scalars have different charge, which

actually introduces topological complications, in §5.
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remains a good global symmetry. This is because the U(1) gauge symmetry acts on

both the quarks and the scalars, leaving the rotations on the quarks alone indepen-

dent. This matches our accounting for the gauged U(1) in the scalar part above.

The quotient by Znc in Eq. (4.5) reflects the fact that the subgroup Znc ⊂
U(1)q can be rotated away by a SU(nc) gauge transformation. On the other hand,

the ZN quotient is there to avoid double counting, because the action of the ZN

subgroup of the diagonal SU(N) ⊂ SU(N)L × SU(N)R is the same as the action of

the ZN subgroup of U(1)q. The quotient by Z2 is due to the fact that the centre of

U(1)q × SU(2)ϕ coincides with a Z2 subgroup of the U(1) gauge group, and thus can

be gauged away.

In addition to these 0-form symmetries, there is a magnetic 1-form symmetry

U(1)
[1]
m acting on ’t Hooft line defects, whose conserved charges measure the magnetic

fluxes of these defects. The symmetry inevitably arises in a U(1) gauge theory.

Because the U(1) field strength h := db is closed, dh = 0, it naturally defines a

2-form current j
(2)
m := ⋆h/2π which is conserved,

d ⋆ j(2)m =
dh

2π
= 0 , (4.8)

even before imposing the equations of motion. It is therefore an example of a

topologically-conserved 1-form symmetry. Notice that this enjoys the same status

as the topologically-conserved 2-form j
(2)
wind that we previously identified in the IR

sigma model.

This is not the whole story. The magnetic 1-form symmetry and the flavour

symmetries form a non-trivial 2-group structure. The Postnikov class which charac-

terises the structure can be read-off directly from the associated anomaly polynomial

of the theory once we turn on the background gauge fields AL/R for SU(N)L/R, with

corresponding field strength 2-forms FL/R. The degree-6 anomaly polynomial is given

by

Φ6 =
nc

3!

1

(2π)3
[
Tr F 3

L − Tr F 3
R

]
+
nc

2

h

2π

[
Tr

(
FL

2π

)2

− Tr

(
FR

2π

)2
]

(4.9)

The first term represents the usual ’t Hooft anomaly for the SU(N)L/R chiral global

symmetries, that is matched in the IR by the familiar WZW term of pure QCD

constructed from Tr (g−1dg)
5
.

The second term represents the ‘operator-valued mixed anomalies’ between SU(N)L/R
and the U(1) gauge symmetry, and can be properly interpreted as intertwining the

0-form symmetries SU(N)L/R with the 1-form magnetic symmetry to form a non-

trivial 2-group structure [38]. The Postnikov classes characterising these 2-group

structures are given by the anomaly coefficient as

κ̂L = −κ̂R = nc . (4.10)
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Comparing with the 2-group structure enshrined by the mixed WZW term in the IR,

which recall was captured by Postnikov classes in Eq. (2.21), suggests that matching

of the global symmetries fixes the coefficient of the mixed WZW term in the IR:

n = nc , (4.11)

in very close analogy to the coefficient of the ordinary WZW term that is fixed by

the ’t Hooft anomaly!

Of course, we have not yet shown that this theory actually UV completes the IR

sigma model with mixed WZW term; all we have so far shown is that the generalised

global symmetries we identified (and the ’t Hooft anomalies, as inherited from the

pure QCD part) all match. In the next few Sections, we explicitly follow the RG

flow, starting from this UV theory, to show how we arrive at the mixed WZW terms

after going through two phase transitions.

4.3 The Higgs phase

To begin, we first define the parameters in the scalar sector (with a choice of sign

for the quadratic term) so that the potential can be written

V (ϕi) = λ
(
|ϕi|2 − v2

)2
, (4.12)

so that the scalars acquire a non-zero vacuum expectation value (VEV). Without

turning on the U(1) gauge field b, the vacuum manifold would be S3, given by the

minima of the potential. This reflects the symmetry breaking pattern O(4) → O(3).

Taking the U(1) quotient from the gauge group reduces the vacuum manifold down

to S2.

To simplify matters it is helpful to stagger the phase transitions in the QCD

sector and the scalar sector, so that there are two distinct matching steps to trace

out. To that effect, we assume a large separation of scales,

ΛQCD ≪ v , (4.13)

so that the Higgsing occurs first. The idea is that in this first Higgsing step we

integrate out the heavy degrees of freedom (a heavy gauge field and a radial scalar

mode) to get an intermediate effective description of the remaining light scalars cou-

pled to quarks. Then we follow the RG flow through the subsequent chiral symmetry

breaking transition by which quarks and gluons give way to pion degrees of freedom.

We assume that, triggered by the flow to strong coupling at the low scale, chiral sym-

metry breaking and confinement occurs in the QCD sector more-or-less unaffected

by the weak coupling to the dark sector that is mediated by the abelian gauge field.
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4.3.1 Derivation of the mixed WZW term take 1: local form

To get a feel for how the mixed WZW term arises, we shall first work locally to

derive the local approximation to the mixed WZW term given in Eq. (2.6), using the

gauge fixing procedure familiar from the electroweak theory.11 In unitary gauge, and

taking the unbroken U(1)ϕ subgroup to be generated by σ3/2 ∈ su(2)ϕ, we expand

the doublet of complex scalar fields ϕ(x) := (ϕ1(x), ϕ2(x))
T around a minimum of

the potential as

ϕ(x) = e
i

2fD
χi(x)σi

(
0

v + ρ(x)√
2

)
, (4.14)

where here the index i runs only from 1 to 2, i.e. over the broken generators. The χ3

Goldstone mode has, in this gauge, been eaten to become the longitudinal mode of

the Higgsed abelian gauge field b. For simplicity, we further assume a limit m2 ≫ v2

(by taking λ ≫ 1) to decouple the radial mode ρ, which we henceforth neglect,

to obtain a non-linear sigma model description of the scalar sector in this Higgsed

phase.

We now consider the effective field theory valid at energies E in the intermediate

régime,

ΛQCD ≪ E ≪ v . (4.15)

This means we can integrate out the heavy gauge field b, whose mass is order v

(assuming an order-1 gauge coupling). We do so at tree-level by setting b to its clas-

sical equations of motion, and we work to leading order in the derivative expansion

∂µ/v ∼ E/v, which is here equivalent to neglecting the kinetic term for b in the

equation of motion.

Then, the relevant terms in the Lagrangian that involve b come from the kinetic

terms for ϕi and Ψi, which read

LUV ⊃ bµj
µ
q + |(∂ − ib)ϕi|2 ⊃ v2b2 + bµj

µ
ϕ + bµj

µ
q , (4.16)

where the quark and scalar currents are given locally by the 1-forms

jq = ΨiγµΨi dx
µ , (4.17)

jϕ =
v2

2f 2
D

ϵijχ
idχj , i, j = 1, 2 . (4.18)

We emphasize that the latter equation is derived under the assumption that we’re in

a coordinate patch in the vicinity of the origin χ1 = χ2 = 0, and does not necessarily

hold away from such a patch. The leading order equations of motion then give

b = − 1

2v2
(jϕ + jq) + . . . , (4.19)

11As anticipated above, the scalar QED part of our Lagrangian corresponds precisely to the

electroweak theory describing the complex Higgs doublet, but with the SU(2)L gauge coupling

turned off.
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so after integrating out b we generate effective mass dimension-6 operators of the

form

LEFT ⊃ − 1

4v2
(jϕ + jq)µ (jϕ + jq)

µ , (4.20)

which is the leading order (and local) result of our intermediate EFT matching step.

The cross-term will eventually match onto our mixed WZW term.

Now consider flowing further into the deep IR, i.e. to energy scales

E ≪ ΛQCD . (4.21)

The QCD chiral symmetry SU(N)L × SU(N)R breaks spontaneously down to its

diagonal subgroup SU(N)V due to the non-vanishing chiral condensate. The QCD

part of the resulting sigma model description is known as the chiral Lagrangian, for

which the leading order action is

Sχ[g] =

∫
Σ4

f 2
π

4
Tr
(
∂µg

†∂µg
)
+ ncΓ[g] , (4.22)

where the dynamical field

g(x) = exp

(
2i

fπ
πa(x)ta

)
∈ SU(N) ∼= SU(N)L × SU(N)R

SU(N)V
(4.23)

describes the pions π(x), with the pion decay constant fπ and where ta are the

generators of SU(N). We include the usual WZW term incΓ[g], with

Γ[g] =
1

240π2

∫
Σ5

Tr
(
g−1dg

)5
, ∂Σ5 = Σ4 , (4.24)

which is needed to match the ’t Hooft anomalies in the SU(N)2 QCD flavour sym-

metry.

Most important for us, however, is what becomes of the interaction term between

the quark and the scalar sectors, which is the cross-term in the effective coupling in

(4.20), namely

Lint = − 1

2v2
jq, µj

µ
ϕ . (4.25)

Due to confinement, the quarks now combine into baryons which carry U(1)q charge.

Because one baryon consists of nc quarks, the baryon current jB is given in terms of

the quark current jq by

jq = ncjB , (4.26)

with, importantly, a relative factor of nc appearing in the normalisation of these

currents. In the chiral Lagrangian, the baryons can be identified as solitons (à la

Skyrme [22]) formed from the pion fields. In this description, the baryon number

current jB is then given in terms of g by the topologically conserved form [23, 24]

⋆jB =
1

24π2
Tr
(
g−1dg

)3
=

1

24π2

2

f 3
π

fabcdπa ∧ dπb ∧ dπc +O(π4) , (4.27)

– 18 –



and the integral of ⋆jB measures the baryon number of a pion field configuration.

The cross interaction term in our EFT Lagrangian becomes

Lint = − nc

2v2
jB,µj

µ
ϕ . (4.28)

Expanding both currents in terms of the pion fields πa(x) and the sigma model fields

χi(x), and integrating by parts to move a derivative, we obtain the local Lagrangian

Lint =
ncϵ

µνρσ

48π2f 2
Df

3
π

fabcϵijπa∂µπb∂νπc∂ρχi∂σχj +O(π4χ2, π3χ3) . (4.29)

This matches the local form of the mixed WZW term given in Eq. (2.6), with the

IR coefficient fixed to be the number of colours in the QCD sector, n = nc; precisely

as the 2-group symmetry matching argument at the end of §4.1 suggested.

However, the näıve leading order EFT matching we have just demonstrated is not

quite sufficient in this scenario, precisely because of the fundamentally topological

nature of this interaction. By working with only the local form of the currents

and Lagrangian terms (enforced by our use of local coordinates {χi}), which we

did to elucidate the perturbative physics as clearly as possible, we have ignored

important and non-trivial topological data concerning the vacuum manifold S2. In

particular, one could not with this formalism hope to show that the global form of

the topological term must be written in terms of VolS2 , and that the term therefore

requires an extension to an auxiliary 5d bulk. In the following Subsection we will

patch up our derivation, to give a globally-valid account of the EFT matching onto

this mixed WZW term.

4.3.2 Derivation of the mixed WZW term take 2: global form

To make the topological information about the vacuum manifold (in particular, its

non-trivial second homology and second homotopy groups, and associated winding

number) manifest in the final mixed WZW, we have to derive it with a less di-

rect implementation of gauge fixing, that does not require a local expansion of the

underlying scalars ϕi in terms of the dark pion fields χi.

First, instead of the unitary gauge used in Eq. (4.14), let us now expand the

scalar fields around the vacuum manifold as

ϕi = zi + hi, |z1|2 + |z2|2 = v2, (4.30)

where z1, z2 (subject to the constraint) describe the vacuum manifold S3 of radius

v, and hi are the transverse fluctuations that give rise to the single radial mode

ρ(x) after gauge fixing. As in the usual spontaneous symmetry breaking story, the

potential V (ϕ) then tells us that the radial modes are massive and can be integrated

out, while the vacuum manifold’s degrees of freedom are massless, corresponding to

the NGBs.
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The effect of gauging the U(1) subgroup is that the affine coordinates (z1, z2)

become a pair of homogeneous coordinates [z1 : z2], where we identify12

(z1, z2) ∼ eiα(z1, z2) (4.31)

These homogeneous coordinates form a familiar description of the 1-dimensional

complex projective space CP 1, which is topologically a 2-sphere S2. We have now

transitioned from a geometric description of spontaneous symmetry breaking (of a

global symmetry) to a geometric description of the Higgs mechanism, where one

would-be NGB morphs into the longitudinal mode of the gauge field and gets in-

tegrated out. The scalar electrodynamics sector is then effectively described by a

sigma model whose target space is properly identified (globally) with the manifold

CP 1, which we will informally call the CP 1-model.

We can then repeat the steps in the previous Subsection and integrate out mas-

sive fields to obtain the EFT

LEFT ⊃ − 1

4v2
(jϕ + jq) ∧ ⋆ (jϕ + jq) (4.32)

at an intermediate energy scale between v and ΛQCD. The only difference here is the

form jϕ takes. In the current gauge fixing scheme, we appear to have

jϕ = −i (dz∗i zi − z∗i dzi) . (4.33)

Again, flowing further down the RG flow replaces the QCD quark-gluon description

with the chiral Lagrangian, with the quark current jq replaced by ncjB. Just like in

the previous Subsection, one might be tempted to write the cross interaction term

as

Sint
?
= − nc

2v2

∫
Σ4

⋆jB ∧ jϕ , (4.34)

but that would be wrong!

The problem with the proposed interaction (4.34) lies in the fact that it is not

gauge invariant. This is because on S2, the object

Aϕ :=
1

2v2
jϕ (4.35)

is not a globally-defined form, but rather behaves like a gauge connection. This

becomes evident in our new description via homogeneous coordinates {zi}, which
still suffer from a gauge redundancy. To wit, we observe that under the U(1) gauge

transformation

(z1, z2) → eiα(z1, z2), Ψ → eiαΨ (4.36)

12We must also identify Ψ ∼ eiαΨ at the same time since the quarks are also charged under this

U(1) gauge symmetry.
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that defines the homogeneous coordinates [z1 : z2] on S
2, the connection Aϕ obtained

from (4.33) transforms as

Aϕ → Aϕ − dα . (4.37)

To emphasize the difference with our previous (necessarily local) description, the

new description via homogeneous coordinates {zi} naturally covers the whole target

space, but at the expense of having not fully fixed the gauge yet. And indeed one

finds that the current jϕ is not gauge-invariant, but transforms (after an appropriate

rescaling) as a connection. In contrast, things were fully gauged-fixed in the χi-

based formulae, but were necessarily restricted to a local patch near the origin, so

not well-suited to studying field configurations that wind the S2.

Fortunately, there is a known path to proceed in such a situation, because the

putative Lagrangian (4.34) behaves exactly like a Chern–Simons term, which is sim-

ilarly not gauge-invariant but which (iff properly-quantized) we know how to define

rigorously in terms of the field strength by going to one dimension higher.13 The

correct interaction term takes the form

Sint = −nc

∫
Σ5

d (⋆jB ∧ Aϕ) (4.38)

= −nc

∫
Σ5

⋆jB ∧ dAϕ (4.39)

where we have used the fact that jB is a topological current, that is d ⋆ jB = 0

off-shell.

All that remains is to show that dAϕ, which really denotes the curvature of the 1-

form connection Aϕ, is proportional to the volume form on the vacuum manifold S2.

Recall that this vacuum manifold is described by the pair of homogeneous coordinates

[z1 : z2] satisfying |z1|2 + |z2|2 = v2. It can be shown (see, for instance, the book of

Bott and Tu [47, §17]) that the volume form VolS2 on this manifold, normalised so

that
∫
S2 VolS2 = 1, can be written in terms of z0, z1 as

VolS2 = − i

2πv2
dz∗i ∧ dzi . (4.40)

On the other hand, we also find from Eq. (4.33) that djϕ = 2idz∗i ∧ dzi. So, as

promised, we obtain

dAϕ = −2πVolS2 . (4.41)

13The exponentiated action here can also be defined as an invariant differential character [42–

44] on the pion target space, the curvature of which is the globally-defined closed 5-form that we

integrate in Eq. (4.43). This curvature form is analogous to the anomaly polynomial Φd+2 in

defining the Chern–Simons action in d + 1 dimensions. From this perspective, the action requires

quantized coefficient precisely because it cannot be expressed via a locally-defined 4-form, and can

be seen without passing to an extra dimension by instead patching together locally defined forms

using the tools of Čech cohomology [27, 45, 46], and demanding consistency.
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Note that this is consistent with
∫
S2 VolS2 = 1 although VolS2 appears to be an exact

form, because Aϕ is really a connection 1-form (not a globally-defined 1-form) and

dAϕ is shorthand for its curvature. Note also that the first Chern number associated

to this connection is correctly quantized, viz. c1 =
∫
X2

dAϕ

2π
∈ Z for X2 any 2-cycle

in Σ4, and where we use the same notation dAϕ for the pullback of dAϕ under

zi : Σ4 → S2.

After we replace dAϕ in terms of VolS2 , the cross interaction term now reads

Sint = 2πnc

∫
Σ5

⋆jB ∧ VolS2 (4.42)

= 2πnc

∫
Σ5

1

24π2
Tr
(
g−1dg

)3 ∧ VolS2 , (4.43)

reproducing precisely (and globally) the mixed WZW term that we are after, with

all the topological data manifest. Again, we see that the WZW coefficient is given

by

n = nc

More generally, if in the UV the abelian gauge field couples to the quarks with charge

Xq (but still charge +1 to the scalars), then the mixed WZW coefficient n becomes

Xqnc. In this case, the Postnikov class appearing in the 2-group structure is also

modified to Xqnc (as can be seen by straightforwardly adapting the argument of

§4.1). The case of non-minimal scalar charge Xϕ is slightly different, as we discuss

in §5.

A tree-level exact result

We pause to make some further comments before continuing. First, we emphasize

that it is extremely non-generic that we were able to match an interaction involving

QCD through the chiral symmetry breaking transition into the chiral Lagrangian!

This was only possible because the interaction with QCD was via baryon number

current, which is robustly identified with a topologically conserved current in the

IR. Likewise on the dark side, the coupling of the abelian gauge field is special, in

that the connection 1-form associated to this coupling is a topologically non-trivial

connection. When combined, these two special features contrive to mean that one

obtains a bona fide quantized topological term — from integrating out a weakly

coupled abelian gauge field at tree-level.

Due to the integer quantization of this coefficient (in appropriate units, which

absorb the factors of fπ and v if we are using the local coordinate expressions),

it follows that this tree-level matching result for the coefficient ought to be exact.

The operator can only have an integer coefficient for consistency (as can be inferred

purely from the low-energy EFT), and any corrections to this leading term, in the

form of a perturbative series in the R-valued couplings, could not maintain this
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integrality as the couplings run under RG flow. This is exactly analogous to the

non-renormalisation of the chiral anomaly. The difference is that for the anomaly

the result is 1-loop exact, whereas here the leading order term is already there at

tree-level.

This situation is reminiscent of how anomalies match for the Schwinger model

(i.e. the 2d theory of a Dirac fermion coupled to a U(1) gauge field) not under RG

flow but across the bosonization duality. In that case, the mixed anomaly between

the vector and the axial U(1) symmetries on the fermionic side, which arise at 1-loop

from the chiral fermion path integral, is matched by the mixed anomaly between

the shift and winding symmetries on the bosonic side, which follows just from the

tree-level equations of motion (see e.g. the lecture notes [48, §7.5.6]).
Another way to see this is that the coefficient n appears in the 2-group current

algebra where it is necessarily integer-quantized. It is this quantization that justi-

fies the ‘symmetry matching’ across RG flows (akin to the more familiar ‘anomaly

matching’) that we used in the beginning to suggest the no-go theorem of §3.

4.4 Phase structure of QCD coupled to scalar electrodynamics

In this Section, we briefly describe how the IR dynamics of QCD coupled to scalar

electrodynamics, namely the UV theory described in §4.1, changes as we vary the

dimensionless parameter

µ2 :=
m2

Λ2
QCD

(4.44)

while keeping the scalar quartic coupling λ ∼ O(1) fixed, where recall m2 is the

mass-squared parameter for the scalars ϕi and ΛQCD is the strong coupling scale for

the QCD sector at which the chiral symmetry breaking occurs.

(a). µ2 → +∞. In this phase, the scalars are extremely massive and can be

integrated out entirely. The remaining theory is QCD with gauge group U(nc)

coupled to N fundamental quarks. The gauged U(1) symmetry, which in the

UV acted to rotate both scalars and quarks, in the IR acts only as a gauging

of baryon number. There is no additional non-trivial U(1) global symmetry

remaining once the scalars are lifted.

(b). 0 < µ2 < 1. In this case, chiral symmetry breaking occurs in the QCD sector

while the scalars remain dynamical, and the photon (from gauging the mediator

U(1)) remains massless. The IR theory consists of QCD mesons and baryons,

with the baryons coupled weakly via the photon to two complex scalars of

mass mϕ ∼
√
µ2Λ2

QCD < ΛQCD. Going to the deep IR, one would also integrate

out the baryons and scalars and obtain a theory of weakly-interacting massless

mesons and photons.
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(c). 0 > µ2 > −1. Here the scalars condense, triggering the symmetry breaking

pattern described in the main text, but the QCD chiral symmetry breaking

transition occurs first. The deep IR phase is the same as that described in the

main text, namely of QCD and dark pions coupled to each other via the mixed

WZW term. But, if we assume a scale separation (|µ2| ≪ 1), one can study the

EFT describing the intermediate phase. The situation is now ‘reversed’ to that

studied in §4.3, in that it features QCD pions and baryons, with the baryon

current coupled via the massive (but still dynamical) abelian gauge field to the

pair of dark complex scalars. In this intermediate phase, the 2-group structure

is matched by a term

Sint = 2πnc

∫
M5

Tr (g−1dg)
3

24π2
∧ h

2π
, (4.45)

where recall h = db is the U(1) field strength. This ordering of the phase

transitions could just as well have been used to rigorously derive the emergence

of the mixed WZW term in the deep IR.

(d). µ2 → −∞. This is the limit discussed in the main text, which follows the RG

flow described in §4.3.

4.5 Deeper into the UV

Because of the Landau pole associated to the abelian gauge field, the short-distance

phase we have set out is arguably not a true UV completion. To address this, we here

sketch how the abelian gauge theory presented could be further UV completed into

a semi-simple gauge theory. But of course, in accordance with the no-go theorem

of §3, this necessitates the quark flavour symmetry be only emergent in the abelian

gauge theory phase.

The idea will be that the SU(nc) × U(1) gauge symmetry emerges from spon-

taneously breaking a larger SU(nc + 1) gauge symmetry that is linearly realised in

the deep UV. Let us embed SU(nc) as the upper left nc × nc block in the defining

representation of SU(nc + 1), and take U(1) to be generated by the traceless matrix

diag(1, . . . , 1,−nc) ⊂ su(nc + 1). The key consideration will be the fermion sector,

its flavour symmetries, and mixed anomalies with U(1). Recall that we have N

flavours of left- and right-handed quark fields Ψi in the fundamental representation

of SU(nc) and with unit U(1) charge, as well as a pair of complex scalars that are

SU(nc) singlets and with unit U(1) charge also. Now extend this field content by N

flavours of left- and right-handed ‘lepton’ fields, that are SU(nc) singlets but carry

U(1) charge −nc. The global symmetry of the fermion sector is now enhanced from

the SU(N)qL × SU(N)qR quark symmetry of before (now with q for ‘quark’ labels in

superscript), that participated in the 2-group structure matched in the deep IR by
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the mixed WZW term, to a larger

SU(N)qL × SU(N)qR × SU(N)lL × SU(N)lR (4.46)

flavour symmetry. If we turn on independent background gauge fields for all four of

these SU(N) factors, the anomaly polynomial contains a piece

Φ6 =
nc

2

h

2π

[
Tr

(
F q
L

2π

)2

− Tr

(
F q
R

2π

)2

− Tr

(
F l
L

2π

)2

+ Tr

(
F l
R

2π

)2
]
. (4.47)

Note that the overall coefficient of nc comes from the sum over colour components

in the case of the quark piece, while it comes from the ratio of U(1) charges for the

lepton piece. We see that, for the diagonal subgroup of flavour transformations

Gdiag := SU(N)q+l
L × SU(N)q+l

R , (4.48)

the 2-group coefficients vanish. Accordingly, symmetry matching poses no obstruc-

tion to a semi-simple unification pattern (for which there is no 1-form symmetry)

whereby quarks and leptons are unified. Sure enough, the U(1) charge assignment is

chosen such that quarks and leptons package into the fundamental representation of

SU(nc + 1).

Starting from this deeper UV theory and running down, we have that the separate

quark and lepton flavour symmetries emerge at the scale where SU(nc+1) is Higgsed

down to SU(nc) × U(1), alongside the magnetic 1-form symmetry associated to the

U(1), and that these 0-form and 1-form global symmetries are fused into 2-group

symmetry.

Of course, to write an explicit model the scalars must also be embedded in

representations of SU(nc+1), which necessitates the inclusion of additional coloured

scalars, and a mechanism must be put forth for decoupling the extra scalars and the

leptons, but we are content to postpone such considerations here.

5 Variations of the scalar sector

In this Section we discuss three variations in the scalar sector of the theory.

5.1 Non-minimal scalar charge

In the main text (§4.3) we discussed the straightforward modification that follows

from varying the abelian quark charge Xq; in the UV, the term in the anomaly

polynomial responsible for the 2-group structure (and thus the Postnikov class) is

simply rescaled by Xq, and this tracks all the way through the RG matching to

rescale the coefficient of the WZW term.
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But what if the scalar charge is taken to be non-minimal, Xϕ ̸= 1 (in minimal

units, i.e. such that gcd(Xq, Xϕ) = 1)? This näıvely presents a puzzle, because the 2-

group structure is not modified, depending only on chiral fermion representations in

the UV theory, but the coefficient of the WZW does appear to be rescaled, this time

by a factor 1/Xϕ that arises due to the rescaling of both the bϕiϕ
†
i vertex and of the

gauge boson mass. This scenario requires a slightly more careful analysis, because

the non-minimal scalar charge alters the symmetry breaking structure induced by

the scalars condensing.

Firstly, the non-minimal scalar charge means there is a discrete Z|Xϕ| ⊂ U(1)

gauge symmetry that remains unbroken by the scalar condensate, which acts non-

trivially on the quark fields and can in principle be detected via its holonomy.

Concerning the dark pions, the target space remains a 2-sphere, but with a

rescaled volume form, satisfying ∫
S2

VolS2 = Xϕ . (5.1)

To see this, recall that VolS2 = dAϕ where Aϕ = −i(dz∗i zi − z∗i dzi) behaves like a

gauge connection. However, under the U(1) gauge transformation zi 7→ eiXϕαzi, with

α being 2π-periodic, we have,

Aϕ 7→ Aϕ −Xϕdα, (5.2)

instead of (4.37). Therefore, the properly normalised U(1) connection is Aϕ/Xϕ

instead of Aϕ. Consequently, the minimally quantised volume form is VolS2/Xϕ.

The WZW term can be derived in exactly the same way as in §4.3 by integrating

out the massive U(1) gauge field, with a couple of changes already mentioned above.

Firstly, since the mass squared of the gauge field is now equal to X2
ϕv

2, the cross

interaction term between jB and jϕ that arises from integrating out the gauge field

is now inversely proportional to X2
ϕ:

Sint = − nc

2X2
ϕv

2

∫
⋆jB ∧ jϕ . (5.3)

Secondly, because ϕ now has charge Xϕ under the U(1) gauge group, the current jϕ
is rescaled:

jϕ = Xϕj
(old)
ϕ = 2Xϕv

2Aϕ . (5.4)

Putting the two together, we arrive at

Sint = 2πncXq

∫
Σ5

1

24π2
Tr
(
g−1dg

)3 ∧ VolS2

Xϕ

. (5.5)

Despite the modified coefficient, because of the compensating modified flux relation

(5.1) the closed 5-form in the integrand is still integral, meaning this topological term
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is still of course well-defined. Moreover, the 2-group current algebra is unchanged

i.e. is independent of Xϕ. To see this, we should take the Noether current for the

1-form symmetry to be j
(2)
wind := ⋆4VolS2/Xϕ, which is integral, and so the minimal

coupling term (2.13) is now Scoup = i
∫
Σ4

VolS2

Xϕ
∧B. If we repeat the analysis of §2, we

see the Postnikov class of the 2-group remains κ̂L = −κ̂R = ncXq. This is consistent

with matching the 2-group symmetry, resolving our little puzzle.

5.2 From 2-sphere to 2-torus?

One might wonder if it is special that the two ‘dark’ pions live on S2, or whether

a similar story plays out for a non-linear sigma model on SU(N) × K, where K is

some other homogeneous space with H2
dR(K) ̸= 0 so that there is a cohomologically

non-trivial 2-form that can play the role of VolS2 in constructing the mixed WZW.

In particular, one might consider the case K = (U(1) × U(1))/{·} = T 2, i.e. with

a pair of ‘axion-like’ dark pions living on a 2-torus. Let (ϕ1, ϕ2) ∈ [0, 2π)2 denote

coordinates on T 2 in this Subsection.

Even though a näıve cohomology-based classification of topological terms [49]

would suggest there is a mixed WZW for this coset, there is in fact no such term if

we insist the NLSM has exact U(1) × U(1) global symmetry acting by translations

on ϕ1,2.
14 (In contrast, the WZW term on SU(N)× (SU(2)ϕ/U(1)ϕ) studied above is

invariant under exact SU(N)L × SU(N)R × SU(2)ϕ.) A putative WZW term, which

one might define precisely to be a differential character with non-vanishing curvature

form ωd+1, is G-invariant iff ωd+1 satisfies the so-called ‘Manton condition’ [27, 44],

which requires the contraction of ωd+1 with each vector field generating the G-action

(we assume G is connected) be an exact form (not just closed). The putative 5-form

ω ∼ Tr (g−1dg)3dϕ1dϕ2 on SU(N)× T 2 violates this condition, because

{ι∂ϕ1ω, ι∂ϕ2ω} ∼ {Tr (g−1dg)3dϕ2,−Tr (g−1dg)3dϕ1} (5.6)

are closed but not exact 4-forms. A classification of invariant topological actions

using invariant (differential) cohomology [44] tells us there is no such term in the IR

consistent with the global U(1)2 symmetry.15

We can also see the pathology from the point of view of 2-group symmetry. While

näıvely there is still a locally conserved 2-form, associated to the closed volume form

14We have in mind that the pions arise as Goldstones on G/H following spontaneous symmetry

breaking, starting from a G-invariant Lagrangian, and seek to construct the most general EFT

consistent with symmetry. Alternatively, one can dispense with the global symmetry and view

the scalar field theory as arising from a general non-linear sigma model, in which case there is no

obstruction to defining the mixed WZW on SU(N)× T 2.
15This failure of invariance is a higher-dimensional avatar of the fact that coupling a quantum

particle on a torus to a homogeneous (classically) translationally-invariant magnetic field breaks

translations down to a discrete subgroup, a fact noticed long ago by Manton [50]. A similar

phenomenon occurs [51] for a non-minimal composite Higgs model proposed in [52].
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VolT 2 = 1
4π2dϕ1∧dϕ2, there is in fact no topological charge associated to the putative

1-form symmetry because π2(S
1 × S1) = 0, so there are no linking surfaces that are

topologically 2-spheres through which to measure a monopole flux. So, there should

be no line operators transforming non-trivially under this 1-form symmetry, with

which to close the 2-group symmetry structure.

Of course, if we do not restrict our EFT to building invariants then there is

nothing to prevent one from coupling QCD-like pions via the mixed WZW term

to a pair of necessarily pseudo NGBs ϕ1,2 living on T 2.16 The mixed WZW-like

coupling just described provides a source of explicit U(1)2 symmetry breaking, closely

analogous to symmetry breaking by an ABJ anomaly, that contributes to the non-

zero masses of the pNGBs. Under an axion shift symmetry ϕ1 → ϕ1+λ1, the failure

of the Manton condition encoded by (5.6) implies the mixed WZW action would shift

by

S 7→ S +

∫
Σ4

λ1
2π

n

24π2
Tr (g−1dg)3

dϕ2

2π
, (5.7)

which mimics the non-invariance due to an ABJ anomaly but with the instanton

density F ∧ F replaced by the 4-form ∝ Tr (g−1dg)3dϕi.

5.3 From CP 1 to CP n

Having discussed the torus and its subtleties, one might then ask if there are other

cosets K, generalising SU(2)/U(1), for which the mechanisms we have described do

go through.

We remark that one set of examples is readily furnished by directly generalising

the CP 1 ∼= SU(2)/U(1) ∼= S2 model to

CP n ∼= SU(n+ 1)

S[U(1)× U(n)]
(5.8)

for n ∈ Z>1. The de Rham cohomology is

Hk
dR(CP n) =

{
R k even , 0 ≤ k ≤ n

0 k odd ,
(5.9)

and because CP n is a symmetric space, the invariant forms are in 1-to-1 with coho-

mology classes. Moreover, because G = SU(n + 1) is simple, the Manton condition

discussed above reduces simply to requiring G-invariance of the differential form.

Thus, a representative form Ω for the generator of the cohomology ring above, which

can be identified with the Kähler form, can be used to construct a mixed WZW

action of the form

S[Σ4] =

∫
X5

m

24π2
Tr (g−1dg)3 ∧ Ω , n ∈ Z , ∂X5 = Σ4 . (5.10)

16With non-zero masses, a phenomenologist would refer to such pNGBs on T 2 as a pair of ‘axion-

like particles’, or ALPs.

– 28 –



In homogeneous coordinates that generalise those introduced for S2 ∼= CP 1 in §4.3,
defined as{

zi ∈ Cn+1\{0} |
∑
i

|zi|2 = v2, zi ∼ eiαzi ∀α ∈ R/2πZ
}

i = 0, . . . n ,

(5.11)

we can choose a representative 2-form to be given by the Kähler form (see e.g. [53])

Ω ∼ − i

v2

n∑
i=0

dzi ∧ dz∗i , (5.12)

appropriately normalised to have integer periods. This term, for non-zero coefficient

m, encodes non-trivial 2-group symmetry exactly as for the n = 1 case studied at

length in this paper.

The UV completion via QCD coupled to scalar electrodynamics should also

generalise directly from CP 1 to CP n, by passing from 2 complex scalars ϕi to n+ 1

complex scalars, all coupled with the same charge to the abelian gauge field b (that

also couples universally to quarks in a vector-like fashion as before). This many-scalar

model could provide an interesting variant of the dark matter portal mechanism

proposed in [18].

Yet further generalisation is possible if we allow K to be a more general manifold

M , not necessarily a coset arising from spontaneous symmetry breaking. The same

mixed WZW term exists whenever H2
dR(M) is non-trivial, with Ω similarly picked

to be a 2-form representative of a non-trivial element in H2
dR(M) with unit period.

A partial UV-completion is provided by QCD coupled to a non-linear sigma model

with target space being the line bundle L → M over M whose Chern class is given

by [Ω] ∈ H2(M ;Z). We then gauge the diagonal between the U(1)q quark number

symmetry and the U(1) symmetry acting on the fibre of L.17 The crucial non-trivial

2-group structure then arises from the mixed ’t Hooft anomaly between U(1)q and

SU(N)L/R after this gauging [38] (the same phenomenon also happens when gauging

finite groups with mixed ’t Hooft anomalies [54]).

6 Gauged version

In this Section, we discuss the case in which an anomaly-free U(1) subgroup of the

QCD 0-form flavour symmetry SU(N)L × SU(N)R is gauged. This is a physically

important scenario, allowing one to describe for instance the gauging of electromag-

netism in our extension of QCD by the S2 pions.

17We thank Y. Tachikawa for suggesting this more general approach.
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6.1 Non-invertible symmetry: a first look in the IR

To be concrete, let us for now take N = 3 flavour QCD, and consider gauging the

vector-like U(1)Q ⊂ SU(3)L+R generated by

Q =

2

−1

−1

 . (6.1)

Let fQ = da denote the corresponding abelian field strength.18 As alluded to above

in §2.2 (and used in [18]), there is a term (amongst others) in the gauged mixed

WZW action like

SWZW ⊃ 2πnc

∫
Σ4

π0
2πfπ

fQ
2π

∧ VolS2 . (6.2)

This arises because Tr [(t3L − t3R), Q] ̸= 0, where recall t3L − t3R is the generator of the

neutral pion shift symmetry, where we adopt the usual Gell-Mann basis for su(3).

This term in the action now encodes not the 2-group global symmetry relation

from before, but a genuine breaking of the global axial symmetry: doing a shift

π0 → π0 + αfπ gives

δαSWZW = 2πnc

∫
Σ4

α

2π

fQ
2π

∧ VolS2 , (6.3)

which can be non-zero for instance when evaluated on a spacetime manifold with

topology Σ4 = S2×S2. This is analogous to the breaking of a global symmetry via an

abelian ABJ anomaly — or, in modern parlance, a non-invertible symmetry [55, 56]

— but with a mixed operator involving both fQ and the S2 winding number appearing

in the anomalous variation.

6.2 Non-invertible symmetry from the UV anomaly polynomial

This non-invertible symmetry structure can be traced up to our UV completion (§4)
via QCD coupled to SED. There, as we pass to the UV, the winding number on

S2 becomes identified with the field strength for the U(1) gauge field b from before

(that couples to baryon number on the QCD side). In this UV theory, which now

has two gauged U(1) factors that we call U(1)Q and U(1)b in what we hope is an

obvious notation, there is an abelian ABJ anomaly between the global axial current

generating the pion shift and the two different gauged U(1) groups. That is, a term

in the anomaly polynomial ∝ F ∧ fQ ∧ h is responsible for the anomalous shift (6.3)

in the UV theory, where F is the background field strength for the axial current

U(1)A under consideration, and h = db still.

Let’s see how this works more explicitly. The quantum numbers of the quarks

under the various gauge groups and the U(1)A chiral global symmetry generated by
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SU(nc) U(1)Q U(1)SED U(1)A
ψ1 nc +2 +1 +1

ψ2 nc −1 +1 −1

ψ3 nc −1 +1 0

ψ̃1 nc −2 −1 +1

ψ̃2 nc +1 −1 −1

ψ̃3 nc +1 −1 0

Table 1. Quantum numbers of the quark fields under various U(1) symmetries relevant

to the gauged version of our theory.

t3L − t3R are given in Table 1 below. Note that both the gauged U(1)s are vector-like

and so trivially free of gauge anomalies. But because of the chiral nature of the

global symmetry U(1)A, it is possible that there may be anomalies proportional to

the background gauge field F . Indeed, turning on the background field F for U(1)A,

the anomaly polynomial reads

Φ6(F ) =
3nc

(2π)3
(F ∧ fQ ∧ fQ + 2F ∧ fQ ∧ h) . (6.4)

The first term on the right-hand-side encodes the usual ABJ anomaly between U(1)A
and U(1)Q responsible for π0 → γγ decay in real-world QCD, while the second term

encodes the new effect that is our main interest here.

With recent advances in our understanding of generalised symmetries, we know

that a non-invertible symmetry emerges from the U(1)A symmetry destroyed by this

pair of anomalies [55, 56]. The symmetry defect will take the form

Uβ = exp

(
2πiβ

∫
M3

⋆J − i
3ncβ

2π

∫
M3

(a+ 2b) ∧ f
)
, β ∈ [0, 1) , (6.5)

with β being rational.19 The ill-defined CS terms are shorthands for 3d topological

quantum field theories (TQFTs) localised on the defect submanifoldM3 which couple

to the U(1) fields. For example, if we take β = 1/6ncK, the symmetry defect becomes

U1/6ncK = exp

(
2πi

6ncK

∫
M3

⋆J − i

4πK

∫
M3

[(a+ b) ∧ d(a+ b)− b ∧ db]
)
. (6.6)

The second term in the exponential consists of two fractional CS theories, which can

be properly defined with help from two auxiliary dynamical20 U(1) gauge fields c1
and c2, localised on M3, via

i

∫
M3

(
K

4π
c1dc1 −

K

4π
c2dc2

)
+ i

∫
M3

(
1

2π
c1(da+ db)− 1

2π
c2db

)
, (6.7)

18Note that we have redefined a with respect to previous Sections to here denote the abelian

gauge field for electromagnetism (rather than the QCD gluon field as before).
19For a slightly different take on the range of the transformation’s parameter, see Refs. [57–59].
20This means c1 and c2 must be path-integrated implicitly in the definition of U1/6ncK .
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The first term indicates that this TQFT is the U(1)K × U(1)−K CS theory, while

the second term specifies the coupling between the auxiliary fields and the 4d U(1)

fields a and b. For other values of β ∈ Q that result in the CS coefficient being p/K

instead of the ‘unit fraction’ 1/K, Eq. (6.7) can be generalised in terms of a certain

minimal ZK TQFT, usually denoted by AN,p [55], which we will not elaborate on

further here. Interested readers are invited to see Refs. [10, 60] for detailed study of

this particular TQFT.

6.3 Full global structure: 2-group plus non-invertible symmetry

One can consider turning on background gauge fields for other global symmetry

currents that remain after gauging U(1)Q. To analyse the symmetry structure more

generally, not just for the specific U(1)A subgroup in Table 1 that shifts the π0, we

first have to work out what the remaining flavour symmetry G′
flavour is after gauging.

We claim that the faithful global symmetry becomes

G′
flavour

∼= U(2)L × U(2)R
U(1)

. (6.8)

To see this, note first that we can still treat the left- and the right-handed quarks

independently. Since the U(1) EM subgroup is diagonal, what happens to the left-

handed component must be the same as what happens to the right-handed compo-

nent. The maximal subgroup of SU(3)L that commutes with the U(1) subgroup of

SU(3)L generated by Q consists of matrices of the form

U =

(
eiϕ 0

0 V

)
(6.9)

where V is a U(2) matrix, so it can be written as V = eiθṼ with Ṽ ∈ SU(2). Since

the matrix U must still be unimodular, we need detU = 1, or eiϕ+2iθ = 1. This

means we need U to be of the form

U =

(
e−2iθ 0

0 eiθṼ

)
(6.10)

Matrices of this form form the group

S [U(1)× SU(2)]L
∼= U(2) , (6.11)

where the isomorphism follows from the fact that the top-left entry is entirely fixed

by the U(2) matrix in the bottom-right. However, we should not be too quick to

conclude that the remaining global symmetry is G̃
′
= U(2)L × U(2)R. The catch

comes from the fact that an element u of the gauged U(1)Q ⊂ SU(3)L × SU(3)R
subgroup takes the formu =

e2iα e−iα

e−iα

 ,

e−2iα

eiα

eiα

 , (6.12)
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which is in the centre of G̃′. Therefore, two elements of G̃′ related to each other by

u must be identified. This reduces the full symmetry from G̃′ down to the G′
flavour

group written in Eq. (6.8), as claimed.

From here we can determine the symmetry/anomaly structure of this theory, now

turning on background gauge fields for a general global symmetry current (rather

than just for the particular U(1)A choice, as in (6.4)). To do so, it is convenient to

start from the anomaly polynomial Φ6 before gauging U(1)Q, namely

Φ6(FL, FR) =
nc

3!

1

(2π)3
[
Tr F 3

L − Tr F 3
R

]
+
nc

2

h

2π

[
Tr

(
FL

2π

)2

− Tr

(
FR

2π

)2
]
,

(6.13)

and replace the non-abelian background gauge fields FL and FR by the combinations

FL = fQQ+ F ′
L , (6.14)

FR = fQQ+ F ′
R , (6.15)

where F ′
L and F ′

R are the background fields for the global symmetry that remains

after gauging U(1)Q, which means they must commute with the gauge group, i.e.

must satisfy

[Q,F ′
L] = [Q,F ′

R] = 0 . (6.16)

After making this replacement, the anomaly polynomial becomes

Φ6(FL, FR) = Φ6(F
′
L, F

′
R)+

nc

(2π)3

[
1

2
f 2
QTr

(
Q2(F ′

L − F ′
R)
)
+ hfQTr (Q(F ′

L − F ′
R))

]
,

(6.17)

where wedge products between the various 2-form field strengths are implicit. Lo-

cally, we can write F ′
L and F ′

R as elements of the Lie algebra of S[U(1)×U(2)]L/R ∼=
U(2)L/R. Letting FL ∈ U(2)L, and FR ∈ U(2)R, we can write

F ′
L =

(−Tr FL

FL

)
, F ′

R =

(−Tr FR

FR

)
. (6.18)

Substituting into (6.17) and evaluating the traces, the anomaly polynomial Φ6 re-

duces to

Φ6 = Φ′
6 −

3nc

(2π)3

(
f 2
Q

2
+ hfQ

)
(Tr FL − Tr FR) , (6.19)

where we use Φ′
6 = Φ6(F

′
L, F

′
R) as a shorthand.

Non-invertible symmetry part. The last term of the anomaly polynomial indi-

cates that axial generators in U(2)L/R with non-vanishing trace, which can in general

be expressed as a linear combination of the pion shift generator picked out in (6.4)

plus a t8L − t8R component (that also shifts the η meson), suffer a mixed abelian ABJ

anomaly with h ∧ fQ, becoming non-invertible in the process [55, 56]. As described

above, this is in addition to the usual contribution ∝ f 2
Q that is already there for

pure QCD with gauged electromagnetism.
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2-group symmetry part. We next examine the part Φ′
6 to show that there re-

mains a subgroup of the flavour symmetry G′
flavour that participates in a 2-group

structure after our gauging of U(1)Q, that links the 0-form flavour symmetry to the

magnetic 1-form symmetry for U(1)b. Using the fact that FL and FR are U(2) field

strengths, we can write them as

FL/R =
1

2
Tr FL/R 12 + F̃L/R (6.20)

where F̃L/R are su(2)-valued. The part of the anomaly polynomial denoted Φ′
6 then

reads

Φ′
6 =

nc

3!

Tr FL

(2π)3

[
−3

4
(Tr FL)

2 +
3

2
Tr (F̃2

L)

]
(6.21)

+
nc

2

h

(2π)3

[
3

2
(Tr FL)

2 + Tr (F̃2
L)

]
− (L↔ R) . (6.22)

Let us digest the various terms appearing here:

• The top line in this expansion of Φ′
6 captures the ordinary ’t Hooft anomaly in

U(2)L/R.

• The second line partly tells us that there is still the 2-group structure between

the 1-form symmetry and the SU(2)L/R part of the flavour symmetry with

the same Postnikov classes as before. Focussing on the non-abelian part ∝
h∧Tr (F̃2

L), the interpretation of this 2-group global symmetry is the same as

before. For instance, one can consider the axial transformation generated by

XL = −XR =

0

1

−1

 , (6.23)

which does not suffer from any ABJ-like anomaly because

Tr (XQ2) = Tr (XQ) = 0 (6.24)

and so defines a proper invertible symmetry. This X (together with a whole

su(2) subalgebra in the lower-right block) participates in a 2-group current

algebra with h, much like before but reduced from SU(3)s to SU(2)s.

• The abelian part ∝ h ∧ (Tr F2
L), however, introduces a qualitatively new kind

of symmetry structure: there is a non-trivial 2-group relation between the mag-

netic 1-form symmetry and the abelian part of the remaining flavour symmetry

which is itself non-invertible, as we previously explained.

To our knowledge, this kind of global symmetry (namely one which, in the old ter-

minology, participates in both ABJ anomalies and operator-valued mixed anomalies

with gauged currents) has not been studied before, and will be explored in future

work.
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7 Conclusions and Outlook

Topological WZW terms play a fundamental role in low-energy theories of pions that

arise from confining gauge theories: they are needed to match chiral anomalies. Our

starting point in this paper is a curious example of a pion EFT, on a coset SU(N)×S2,

that features a WZW term not related to any underlying chiral anomaly. While this

term defines a perfectly sensible-looking EFT, it is not a priori clear how this might

arise from a microscopic theory, and why its coefficient should end up quantized if

not mandated by anomaly matching.

We find that this WZW term encodes not an anomaly, but a generalised 2-group

global symmetry structure (that mixes ordinary flavour symmetries with a 1-form

symmetry). Like the anomaly, this 2-group structure is rigid, as manifest at low-

energies in the quantization condition for the WZW term, and so can be used to

check the consistency of possible UV completions. Through this notion of ‘sym-

metry matching’ (as opposed to anomaly matching), we rule out näıve QCD-like

completions of this pion EFT, and instead propose a weakly-coupled completion in-

volving a QCD sector and a CP 1 sector, coupled weakly together in a very particular

way by an abelian gauge field that gets Higgsed along the RG flow. Strikingly, by

integrating out the weakly coupled gauge boson at tree-level one ends up with a

quantized topological term – which moreover implies the tree-level matching is ex-

act. Even though loop corrections are expected to vanish, a ‘global’ form of EFT

matching (topologically-speaking) is nonetheless needed to match precisely, which

is conveniently handled by using homogeneous coordinates on CP 1. This RG flow

is a highly non-generic one, and occurs because the abelian gauge field couples to

topologically non-trivial currents in both the QCD and CP 1 sectors.

We discussed several variations of the setup, for instance, several alternatives to

the CP 1 model on the scalar side. We furthermore examined the important scenario

in which an anomaly-free subgroup of the QCD flavour symmetry (such as QED)

is gauged. This gives rise to a more complicated generalised symmetry structure

involving both 2-group and non-invertible symmetry. This also points to a new kind

of symmetry structure, that we wish to study in future work, since the theory nec-

essarily yields global symmetry currents F that participate simultaneously in mixed

anomalies of both ‘Fff ’ and ‘FFf ’ type. In addition, we wish to study this phe-

nomenon of symmetry matching by WZW terms in a more general context, including

discrete and/or non-perturbative examples, and theories outside 3+1 dimensions.

Lastly, turning to phenomenology, we aim to apply these ideas to investigate

UV completions of the topological portal to dark matter proposed in [18]. With

an explicit (and weakly-coupled) model in hand, one can compute the full set of

phenomenological predictions in both collider and cosmological observables, to char-

acterise the viable parameter space and the best probes of this scenario.
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A Computation of Ω̃Spin
4

(
SU(N)× S2

)
In this Appendix, we present our computation of the reduced spin bordism groups

of SU(N) × S2 up to degree 4, using the Adams spectral sequence (ASS) [30]. In

particular, we will show that

Ω̃Spin
4

(
SU(N)× S2

) ∼= Z2 . (A.1)

A readable practice guide on how to use the ASS to compute bordism groups can be

found in e.g. Refs. [61, 62] (see also Appendix A1 of Ref. [63] for a brief summary

of the general method).

The ASS relevant for us is a cohomological spectral sequence, consisting of a

sequence of bi-graded abelian groups Es,t
r , r = 2, 3, 4, . . . with gradings s, t ≥ 0,

together with differentials dr : E
s,t
r → Es+r,t−r+1

r forming layers of cochain complexes.

We refer to the set of entries for a fixed value of the index r as a ‘page’ of the

sequence. An element Es,t
r of a page is determined from the previous page by taking

the homology with respect to the differentials:

Es,t
r+1 =

ker (dr : E
s,t
r → Es+r,t−r+1

r )

im
(
dr : E

s−r,t+r−1
r → Es,t

r

) (A.2)

For our purpose, the initial E2 page of the ASS, and what it converges to, is given

by

Es,t
2 = Exts,tA(1)

(
H̃•(SU(N)× S2;Z2),Z2

)
=⇒

(
Ω̃Spin

t−s

(
SU(N)× S2

))∧
2
, (A.3)

where A(1) is the Steenrod subalgebra spanned by the Steenrod squares operations{
1, Sq1, Sq2

}
, and (·)∧2 denotes the 2-completion. Strictly speaking, this ASS will

only give us information about the free and the 2-torsion parts of the bordism groups.

In our case, however, we can check by other means, such as the Atiyah–Hirzebruch

spectral sequence (AHSS), that there are no other torsions present.21 We therefore

21We find the AHSS on its own, however, is not sufficient to deduce the bordism group (A.1) due

to unknown differentials.
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obtain complete information regarding the bordism groups we want to compute using

this method – provided we can solve the spectral sequence.

To start, we need to know the mod 2 cohomology ring of SU(N) × S2 as an

A(1)-module. The mod 2 cohomology ring of SU(N) is given by [64]

H•(SU(N);Z2) ∼=
∧

Z2

[x3, x5, . . . , x2N−1] , (A.4)

that is, it is the exterior algebra on generators x3, x5, . . ., x2N−1 with integer mod 2

coefficients, where xi are generators in degree i. The A(1)-module structure is given

by the action of the Steenrod squares on the generators:

Sq1xi = 0, Sq2x2j−1 =

(
j − 1

i

)
x2i+2j−1 . (A.5)

Similarly, we can write the mod 2 cohomology ring of S2 as

H•(S2;Z2) ∼=
∧

Z2

[x2] , (A.6)

with Sq1x2 = Sq2x2 = 0 on dimensional grounds. Applying Künneth’s theorem, we

obtain

H•(SU(N)× S2;Z2) ∼=
∧

Z2

[x2, x3, x5, . . . , x2N−1] . (A.7)

The graphical representation of its reduced version (i.e. that obtained by ignoring

the degree 0 generator) as an A(1)-module is shown in Fig. 1, up to degree 5.

Straight lines (of which there happen to be none) represent the action of Sq1, while

the curved lines represent the action of Sq2.

x2

x3

x5 x2x3

x2x5

Figure 1. H̃•(SU(N)× S2) as an A(1)-module.

We are now ready to compute the E2 page of the spectral sequence, which is

given by Es,t
2 = Exts,tA(1) (H

•(SU(N)× S2),Z2). As this is a direct sum of the functor

Exts,tA(1)(–,Z2) applied on each connected component in Fig. 1, which are known [61],

we simply stitch them together and present the result graphically in Fig. 2 in what

is known as the ‘Adams chart’ for Exts,tA(1) (H
•(SU(N)× S2),Z2).
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E2 page

t− s

s

0 1 2 3 4 5

0

1

2

3

4

5

??

Figure 2. The Adams chart for Exts,tA(1)

(
H•(SU(N)× S2),Z2

)
.

We next solve the spectral sequence by ‘turning the pages’, taking successive

homology with respect to the differentials to go from one Er page to the next. This

is done until no elements in the range we are interested in change any more, at which

point we say that the sequence stabilises. On the E2 page, the only possible non-

trivial differentials d2 : Es,t
2 → Es+2,t+1

2 in the range of t − s that we are interested

in are from the column t − s = 3 to the column t − s = 2, as indicated in Fig. 2.

By a comparison with the AHSS, we can easily determine that these differentials, as

well as similar differentials on subsequent pages, are trivial. The spectral sequence

in the relevant range t− s ≤ 4 therefore stabilises already on this page. We can then

read off the reduced bordism groups directly from the Adams chart, shown in Table

2 below. In particular, the reduced spin bordism group of SU(N)×S2 in degree 4 is

Z2 as claimed.

i 0 1 2 3 4

Ω̃Spin
i (SU(N)× S2) 0 0 Z Z⊕ Z2 Z2

Table 2. The reduced spin bordism groups of SU(N)× S2 up to degree 4.
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