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Abstract

The late time limit of the power spectrum for heavy (principal series) fields in de Sitter

space yields a series of polynomial terms with complex scaling dimensions. Such scaling

behavior is expected to result from an associated operator with a complex dimension. In

a free theory, these complex dimensions are known to match the constraints imposed by

unitarity on the space of states. Yet, perturbative corrections to the scaling behavior

of operators are naively inconsistent with unitary evolution of the quantum fields in dS.

This paper demonstrates how to compute one-loop corrections to the scaling dimensions

that appear in the two point function from the field theory description in terms of local

operators. We first show how to evaluate these anomalous dimensions using Mellin space,

which has the feature that it naturally accommodates a scaleless regulator. We then explore

the consequences for the Soft de Sitter Effective Theory (SdSET) description that emerges

in the long wavelength limit. Carefully matching between the UV and SdSET descriptions

requires the introduction of novel non-dynamical “operators” in the effective theory. This is

not only necessary to reproduce results extracted from the Källén-Lehmann representation

(that use the space of unitary states directly), but it is also required by general arguments

that invoke positivity.
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1 Introduction

Understanding the behavior of long wavelength fields in de Sitter (dS) space is a stepping

stone towards answering a number of questions of immense importance across physics [1,2].

The primordial density fluctuations that we observe in maps of the universe, such as the

CMB, encode the physics of the inflationary era when the background was approximately

dS [3, 4]. Making accurate predictions for observations of our own universe relies on our

understanding of quantum field theory in these backgrounds [5, 6]. Even the assumption

that enters most data analyses, that the observables computed during inflation are unal-

tered by reheating and the subsequent thermal evolution, relies on our understanding of

corrections to the evolution of the scalar metric fluctuations to all orders in perturbation

theory [7–9]. More generally, the quantum nature of the universe in the presence of a non-

zero cosmological constant has implications for both the origin and fate of our universe,

and it cannot be fully understood without the complete mastery of quantum field theory

on a fixed dS background [10,11].
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Anomalous dimensions of operators in dS is a topic of particular interest for both obser-

vational and theoretical applications. Observationally, the scaling dimensions of operators

that couple to the inflaton are directly observable via the squeezed limit of inflationary

correlators [12–15]. They break the single field consistency conditions [16, 17] and, as a

result, leave a unique imprint in galaxy surveys [18] that is an important observational

target [2, 4, 19] for upcoming surveys like SPHEREx [20] and beyond [21, 22]. Anomalous

dimensions change the scaling behavior of this signal (see e.g. [23,24]) and thus the strategy

for searches for primordial non-Gaussianity [25–27].

Theoretically, the spectrum of operators is thought to provide a complete definition

of the dynamics of dS. The emerging perspective [16, 28–51] is that, much like Anti de

Sitter (AdS) [52–54], the dynamics in dS are encoded in operator mixing, anomalous

dimensions, and operator product expansion (OPE) coefficients. In this regard, physics in

dS looks increasingly like the more familiar scale invariant systems. Correlation functions

between operators are naturally decomposed into factors that behave as power laws of the

physical distances between points, which has the natural interpretation in terms of scaling

dimensions. Each term then obeys the kinds of symmetry constraints that are familiar

from Conformal Field Theory (CFT) [55–58], and have played a significant role in the

development of the cosmological bootstrap [44].

Existing calculations nonetheless reveal peculiarities that hint that the physics in dS

is not entirely conventional. Starting from a theory of real scalar fields, the natural de-

composition into scaling operators yields operators with complex dimensions [59–64]. Our

focus here will be on “principal series” fields, which are heavy fields in d spacial dimensions

whose mass m satisfies 4m2 > (dH)2, where H is the dS Hubble constant. In this case,

the lowest dimension “operators” that appear in the long distance expansion of the field

have dimensions

∆ =
d

2
+ iν and ∆̄ = d−∆ = ∆∗ , (1.1)

where ν =
√

m2

H2 − d2

4
. However, in theories with self-interactions and/or interactions with

additional fields, the operators can acquire anomalous dimensions [31, 32], that take the

form

∆ =
d

2
+ γ + iν and ∆̄ =

d

2
+ γ − iν = ∆∗ . (1.2)

These explicit calculations have found γ > 0, which is also required to maintain positivity

of the late-time Fisher information [65], see also [49, 66]. Yet, even with γ > 0, the two

point functions of the scaling operators with these dimensions are not real, and linear

combinations thereof are not manifestly positive. This is particularly surprising given that

the original field is real. Something is clearly missing from this naive interpretation.

The fundamental challenge is how to interpret the appearance of complex scaling di-

mensions. When the underlying fields are real, we would expect the correlators to obey

basic positivity constraints. In fact, for the range of masses when the dimensions are real,
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the so-called “complementary series” (4m2 < (dH)2), positivity of the two point func-

tions are known to place stringent constraints on the mass ranges of consistent theories in

dS [67]. For complex dimensions where the real part of the dimension is d/2, as required

for the unitary states, then positivity is maintained and the theories appear to be well

defined. However, when the real part of the dimension is corrected, it would appear that

positivity is lost, as the contributions from all the scaling operators are oscillatory. This

puzzle is present for either sign of the anomalous dimension, but for negative anomalous

dimensions this would furthermore be inconsistent with positivity of the power spectra for

the classical density fluctuations that we observe in the late universe [65].

The physical origin of the anomalous dimension γ has been given an interpretation in dS

(and AdS [68]) as the decay width of massive particles [31,32]. As energy is not conserved

in these spacetimes, the decay of a particle is not forbidden by kinematics and thus is

expected to arise generically. Moreover, this interpretation would explain why γ ≥ 0, which

is also consistent with the optical theorem in the flat space limit [49,66,68]. Unfortunately,

this picture of particle decay does not resolve the question of how to understand the lack

of explicit positivity of the cosmological correlators, and other puzzles these anomalous

dimensions present.

Much of the recent progress in understanding the long-distance description of dS has

been in terms of operators and symmetries. The most natural explanation for anomalous

dimensions in this language would be in terms of mixing of operators. The formula for

these anomalous dimensions can be decomposed into a sum over composite operators that

appear in the Källén-Lehmann representation of the loop integral [48, 49]. Moreover, the

largest contributions to this sum arises from the operators whose dimensions are closest

to the dimension of the external fields. At first sight, one might imagine this is due to

mixing between the fundamental field and the composite operators. Unfortunately, this

interpretation does not match our experience with conventional Renormalization Group

(RG), where one can neglect mixing between operators with non-degenerate dimensions.

Furthermore, even if two operators with well separated dimensions appear to mix, this

effect can be removed by a change of basis of the operators (diagonalizing the dilatation

matrix). In contrast, the loop corrections studied in this paper generate true anomalous

dimensions with the associated logarithmic terms, and they thus cannot be removed in

this sense. Given the success in the operator approach to the case of light fields [46,50,69],

one would like to understand how these “anomalous dimensions” arise for heavy fields in

a way that can be predicted using dimensional analysis.

In this paper, we will show that these apparent contradictions can be resolved by the

appearance of additional non-dynamical scaling operators that appear in the long wave-

length description. These operators contribute a unique set of calculable contact terms.

These contributions appear in direct calculations of the loop integrals when evaluated in

Mellin space [70–72]. Like cuts in loop diagrams in flat space, these terms arise as imag-

inary parts of the integral that are not visible from the series expansion. These same
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time

σ

φ(~k) φ(−~k)

~p

~k − ~p

τ

On(−~k)
Om(~k)

φ(~k) φ(−~k)

Figure 1: Diagramatic representation of the one-loop power spectrum of a scalar field ϕ interacting
with another field σ in terms of a sum over the exchange of scaling operators, ⟨On(⃗k, τ)Om(⃗k, τ ′)⟩.

contributions are implicit in the Källén-Lehmann representation as contact terms in the

Green’s function that multiplies the spectral density. We will show that both methods of

calculating produce identical results for the anomalous dimensions.

To expose the nature of these contact terms explicitly, we introduce Soft de Sitter Effec-

tive Theory (SdSET), an Effective Field Theory (EFT) description of the long wavelength

modes, for principal series fields. This follows the same approach that was applied for

light complementary series fields in [47]. In the SdSET description, the matching the short

distance and long distance descriptions requires the introduction of non-dynamical oper-

ators. The contact terms that are needed to explain the full calculations are not allowed

by conformal invariance for any operators with non-zero correlations at separated points.

Adding the non-dynamical operators allows us to reintroduce the necessary contact terms

while still being consistent with conformal invariance of the full theory. In the process,

one finds that the correlation functions of real fields remain positive when the anomalous

dimensions are positive. Including additional non-dynamical operators in an effective de-

scription has analogies with heavy quark effective theory [73] and soft collinear effective

theory [74–76], e.g. the need to include Glauber modes.

The additional benefit of the SdSET description is that it permits a description of the

anomalous dimensions that is entirely consistent with conventional RG flow. SdSET power

counting yields a organization of the interactions as relevant, marginal, or irrelevant; this

characterize how corrections grow or decay under time evolution via (dynamical) RG. The

new non-dynamical operators introduce relevant deformations of the SdSET action, and

give rise to calculable logarithmic corrections within the EFT description. In this sense, the

nontrivial corrections to the long wavelength scaling could have been anticipated entirely

from power counting, as one would expect.

The rest of this paper is organized as follows: In Sec. 2, we directly calculate the

anomalous dimensions of principal series fields using the Mellin-representation of the mode

functions. We confirm our explicit results to the results are equivalent to the calculations

the Källén-Lehmann representation. In Sec. 3, we derive SdSET for these fields and explain
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the origin of anomalous dimensions in the EFT description. We conclude in Sec. 4. In

App. A, we provide details how the we sum over the poles in the Mellin representation of

the loop integrals.

We will use the following definitions throughout: the length of a vector k⃗ is denoted

k = |⃗k|. We will define correlation functions without the momentum conserving δ-function

as

⟨O(⃗k1)..O(⃗kn)⟩ ≡ ⟨O(⃗k1)..O(⃗kn)⟩′(2π)3δ
(∑

k⃗i
)
. (1.3)

We will be working in a fixed de Sitter background, defined by the metric

ds2 = −dt2 + a(t)2dx⃗2 = a(τ)2(−dτ 2 + dx⃗2) , (1.4)

where a(t) = eHt, H is the constant Hubble rate, and τ = −1/(a(τ)H) is the conformal

time. We sometimes use the shorthand [a(ti)H] = [aH]i. Finally, for SdSET, we will

typically work in terms of dimensionless time, t ≡ Ht.

2 Anomalous Dimensions From the UV

Loop corrections in de Sitter are notoriously challenging and have been an endless source

of confusion [10, 11]. Direct calculations are limited by the need to integrating over Han-

kel functions, particularly when implementing a regulator like dimensional-regularization.

Achieving finite results has often required some type of hard cutoff, which can then intro-

duce unphysical answers [30].

The introduction of the Källén-Lehmann representation has enabled a number of calcu-

lations of loop corrections, particularly for principal series fields [31,32,77–79]. However, it

can be difficult to interpret the physical origin of some of the corrections that this approach

includes automatically. Moreover, because it relies on the representation theory of unitary

states in de Sitter, there is no trivial generalization to inflationary cosmologies.

In order to clarify the nature of anomalous dimensions for principal series fields, we

will directly calculate two examples cases: mass mixing, and a one-loop correction to the

power spectrum, shown in Fig. 2. For the one-loop calculation, we will use the Mellin-

representation of the Hankel functions to make the calculations tractable and finite without

the introduction of hard UV cutoffs [70]. The advantage of the Mellin representation is

that it provides an efficient packaging of the series representation. We expect to be able to

map each contribution expressed in Mellin space onto a corresponding operator statement

in the long distance theory. Another benefit of using this description is that δ-function

localized terms (in space) are easy to identify and calculate; this will play a major role in

deriving the results of this paper.
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τ

σ

φ(~k) φ(−~k)

~k

τ

σ

φ(~k) φ(−~k)

~p

~k − ~p

Figure 2: The diagram representing the tree (left) and 1-loop (right) contributions to the power
spectrum of ϕ via a quadratic interaction Hint = m2ϕσ and a cubic interaction Hint = λHϕσ2

respectively.

2.1 Principal Series in Mellin Space

Take a scalar field ϕ to be in the principal series. The canonically quantized field operator

is

ϕ̂(⃗k, τ) = ϕ̄k(τ)â
†
k⃗
+ ϕ̄∗

k(τ)â−k⃗
, (2.1)

where
[
â†
k⃗
, â

k⃗′

]
= (2π)3δ(⃗k − k⃗ ′), and

ϕ̄k(τ) =

√
π

2
e

πν
2 H(−τ)3/2H

(2)
iν (−kτ) , (2.2a)

ϕ̄∗
k(τ) =

√
π

2
e−

πν
2 H(−τ)3/2H

(1)
iν (−kτ) . (2.2b)

Recall that eπνH
(1)∗
iν (−kτ) = H

(2)
iν (−kτ), so that ϕ̄k(τ) and ϕ̄∗

k(τ) are indeed related by

complex conjugation, see e.g. [37] for a more detailed derivation and review. To simplify

notation, we will always define ϕ̄ as the mode functions and drop the “hat” on the field

operators, ϕ̂ → ϕ.

We re-rewrite ϕ̄k using the Mellin transform [41,70,80]:

iπe−
πν
2 H

(1)
iν (z) =

∫ c+i∞

c−i∞

ds

2πi
Γ
(
s+

iν

2

)
Γ
(
s− iν

2

)(
− iz

2

)−2s

, (2.3a)

−iπe
πν
2 H

(2)
iν (z) =

∫ c+i∞

c−i∞

ds

2πi
Γ
(
s+

iν

2

)
Γ
(
s− iν

2

)(iz
2

)−2s

. (2.3b)

As we will now review, this formula compactly encodes the series representation of Hankel

function as a direct consequence of Cauchy’s residue theorem. The function Γ(s∓ iν
2
) has

poles at s = ± iν
2
− n, where n = 0, 1, 2, .. is a non-negative integer; the residue of the nth
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pole is (−1)n/n!. We therefore have

ϕ̄k(τ) = i
H(−τ)3/2

2
√
π

∞∑
n=0

(−1)n

n!

(
Γ(−iν−n)

(
− i

2
kτ
)iν+2n

+Γ(iν−n)
(
− i

2
kτ
)−iν+2n )

. (2.4)

This is precisely a series expansion of the mode functions expanded around kτ = 0. The

leading order behavior in the limit τ → 0 is therefore just the first pole in the Γ function

ϕ̄k(τ → 0) ≃ i
H(−τ)3/2

2
√
π

(
Γ(−iν)

(
− i

2
kτ
)iν

+ Γ(iν)
(
− i

2
kτ
)−iν

)
. (2.5)

At late times, the power spectrum of ϕ is therefore

⟨ϕ(⃗k, τ)ϕ(⃗k ′, τ)⟩ = ϕ̄∗
k(τ → 0)ϕ̄k′(τ → 0)(2π)3δ(⃗k + k⃗ ′)

≃ H2(−τ)3

2π

(
Γ(−iν)2 cosh(πν

2
)
(
−kτ

2

)i2ν
+ Γ(iν)2 cosh(πν

2
)
(
−kτ

2

)−i2ν

+ Γ(−iν)Γ(iν) cosh(πν)

)
(2π)3δ(⃗k + k⃗ ′) . (2.6)

Notice that this is the sum of power-laws in k, which suggests that each term arises from

some kind of scaling operator. In particular, given a scale invariant theory, an operator in

real space O(x⃗) with dimension ∆ will have a power spectrum in Fourier space of the form

⟨O∆(⃗k)O∆(⃗k ′)⟩ ∝ k−d+2∆(2π)3δ(⃗k + k⃗ ′) , (2.7)

where d is the number of spacial dimensions (our interest here is the limit d → 3). There-

fore, the we can interpret the first two terms in Eq. (2.6) as resulting from a pair of

operators O∆(⃗k) and O∆̄(⃗k) with dimensions

∆ =
d

2
+ iν , (2.8a)

∆̄ =
d

2
− iν = ∆∗ = d−∆ . (2.8b)

The third term in Eq. (2.6) scales as k0 and is the Fourier transform of a δ-function in x⃗.

We will refer to these terms as “contact terms” although it is important that they are not

localized in time.1

Our interpretation of the individual terms in the series expansion as arising from scaling

“operators” in not an accident: the isometeries of dS, SO(4, 1), act on the terms in this

series at equal time as if they were part of a three-dimensional Euclidean CFT. It is for this

1This choice of terminology will be justified below in the context of SdSET, where time evolution is
determined by dynamical RG flow.

8



reason that cosmological correlators in dS are subject to many powerful symmetry-based

constraints. We will therefore use CFT terminology (dimensions, contact terms, etc) to

describe these correlators because much of the CFT intuition will carry over.

For the calculations performed below, we will also need the commutator of ϕ at unequal

times, τ ̸= τ ′. In the limit kτ, k′τ ′ → 0, the commutator should scale as k0, so that the

commutator vanishes at spacelike separated points. Using the series expansion of ϕ̄ in

Eq. (2.5), we find

⟨[ϕ(⃗k, τ), ϕ(⃗k ′, τ ′)]⟩′ ≃ H2(ττ ′)3/2

2π
Γ(−iν)Γ(iν) sinh(πν)

(
(−τ)iν(−τ ′)−iν − (−τ ′)iν(−τ)−iν

)
=

H2

2ν

(
(−τ)∆(−τ ′)∆̄ − (−τ ′)∆(−τ)∆̄

)
. (2.9)

This result is consistent with conformal invariance. At separated points (in space), only

operators of the same dimension have non-vanishing two point statistics, but this contact

term is allowed because ∆ + ∆̄ = d.

2.2 Mass Mixing

We can develop intuition that we can apply to loop corrections in an interacting the-

ory below by studying the perturbative calculation of mixing between two massive fields.

Specifically, the model has one principal series field ϕ with dimensions ∆ϕ = 3
2
+ iνϕ and

∆̄ϕ = 3 − ∆ϕ that mixes with a second principal series field σ with dimensions ∆σ and

∆̄σ = 3−∆σ via a mass mixing operator

Hint = λH2ϕσ . (2.10)

We can treat this mixing in the mass insertion approximation and calculate its impact on

correlation functions of the operator ϕ. The benefit of this example is that this mass mixing

leads to a change in the mass of ϕ, which changes the scaling dimension via νϕ =
√

m2

H2 − d2

4
.

We can then verify the result of the perturbative analysis by diagonalizing the mass matrix

to calculate the dimensions exactly.

To see how this works, we will calculate the two point function of ϕ at O(λ2) using

in-in perturbation theory. Following [81], this correlator can be written as

⟨Q(t)⟩ =
〈[

T̄ exp

(
i

∫ t

−∞
dtHint(t)

)]
Qint(t)

[
Texp

(
−i

∫ t

−∞
dtHint(t)

)]〉
, (2.11)

where Q(t) is some operator defined at a single time t and Qint(t) is the same operator

defined in terms of interaction picture fields. Expanding the time ordered expontentials

9



allows one to write the in-in correlators in the commutator form

⟨Q(t)⟩ =
∞∑

N=0

iN
∫ t

−∞
dtN

∫ tN

−∞
dtN−1 · · ·

∫ t2

−∞
dt1

×
〈[
Hint (t1) ,

[
Hint (t2) , · · ·

[
Hint (tN) ,Qint(t)

]
· · ·
]]〉

. (2.12)

For the explicit calculations, we will introduce conformal time τ , so that dti = a(τi)dτi, and

then use the Mellin representation of the field operators. Note that the commutator form of

the in-in correlator is not compatible with the iϵ prescription. In the Mellin-representation,

all time integrals are defined by analytic continuation (like dimensional regularization) and

therefore one can circumvent the need to impose the iϵ prescription explicitly.

Calculating the correction to the power spectrum at O(λ2) corresponds to the case

N = 2 and Q = ϕ(⃗k, τ)ϕ(⃗k ′, τ). The leading correction in the superhorizon limit −kτ ≪ 1

takes the form (shown on the left in Fig. 2)

⟨ϕ(⃗k, τ)ϕ(⃗k ′, τ)⟩′ = (2.13)

− λ2H4

∫ τ

−∞
dτ2a(τ2)

4
[
ϕ(⃗k, τ2), ϕ(⃗k ′, τ)

] ∫ τ2

−∞
dτ1a(τ1)

4⟨ϕ(⃗k ′, τ1)ϕ(⃗k, τ)⟩
[
σ(⃗k, τ1), σ(⃗k ′, τ2)

]
− λ2H4

∫ τ

−∞
dτ2a(τ2)

4
[
ϕ(⃗k, τ2), ϕ(⃗k ′, τ)

] ∫ τ2

−∞
dτ1a(τ1)

4
[
ϕ(⃗k ′, τ1), ϕ(⃗k, τ)

]
⟨σ(⃗k, τ1)σ(⃗k ′, τ2)⟩ ,

where we have expanded the double commutator from Eq. (2.12), and all terms inside the

time integrals are evaluated at λ = 0.

This correction is just shift of the masses of σ and ϕ after diagonalizing the mass

matrix. As such, it will also shift the dimensions ∆ϕ → ∆ϕ + γ1 and ∆̄ϕ → ∆̄ϕ + γ2 where

γ1,2 = O(λ2). Expanding the free two-point function, we should then have

⟨ϕ(⃗k, τ)ϕ(⃗k ′, τ)⟩ −kτ→0−−−−→ ⟨ϕ(⃗k, τ)ϕ(⃗k ′, τ)⟩∆ϕ
(1 + 2γ1 log(−kτ) + . . .)

+ ⟨ϕ(⃗k, τ)ϕ(⃗k ′, τ)⟩∆̄ϕ
(1 + 2γ2 log(−kτ) + . . .) , (2.14)

where we defined

⟨ϕ(⃗k, τ)ϕ(⃗k ′, τ)⟩′∆ϕ
=

H2(−τ)3

2π
Γ(−iνϕ)

2 cosh(
πνϕ
2
)
(
−kτ

2

)i2νϕ , (2.15a)

⟨ϕ(⃗k, τ)ϕ(⃗k ′, τ)⟩′∆̄ϕ
=

H2(−τ)3

2π
Γ(iνϕ)

2 cosh(
πνϕ
2
)
(
−kτ

2

)−i2νϕ , (2.15b)

the power law-correlators of the λ = 0 theory. For the purpose of calculating γ1,2 in

perturbation theory, it is therefore sufficient to isolate the logarithmically enhanced terms.

Since these are large when τ = 0, we can determine these contributions from the region of
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integration where −τ1,2k ≪ 1.

Using Eq. (2.9) for both the ϕ and the σ commutators in the superhorizon limit in the

in-in formula, we have

− λ2H4

∫ τ

−∞
dτ2a(τ2)

4
[
ϕ(⃗k, τ2), ϕ(⃗k ′, τ)

] ∫ τ2

−∞
dτ1a(τ1)

4⟨ϕ(⃗k ′, τ1)ϕ(⃗k, τ)⟩
[
σ(⃗k, τ1), σ(⃗k ′, τ2)

]
=− λ2⟨ϕ(⃗k ′, τ)ϕ(⃗k, τ)⟩∆ϕ

H8

2νϕνσ

∫ τ

−∞
dτ2a(τ2)

4
(
(−τ2)

∆ϕ(−τ)∆̄ϕ − (−τ)∆ϕ(−τ2)
∆̄ϕ

)
∫ τ2

−∞
dτ1a(τ1)

4
(τ1
τ

)∆ϕ
(
(−τ1)

∆σ(−τ2)
∆̄σ − (−τ2)

∆σ(−τ1)
∆̄σ

)
−
[
∆ϕ ↔ ∆̄ϕ

]
=− λ2⟨ϕ(⃗k ′, τ)ϕ(⃗k, τ)⟩∆ϕ

H4

2νϕνσ

∫ τ

−∞
dτ2a(τ2)

4
(
(−τ2)

∆ϕ(−τ)∆̄ϕ − (−τ)∆ϕ(−τ2)
∆̄ϕ

)
(−τ)−∆ϕ (−τ2)

∆ϕ+∆σ+∆̄σ−3

(
1

3−∆ϕ −∆σ

− 1

3−∆ϕ − ∆̄σ

)
−
[
∆ϕ ↔ ∆̄ϕ

]
, (2.16)

where we defined the k2∆ϕ−3 component of the power spectrum as ⟨ϕ(⃗k ′, τ)ϕ(⃗k, τ)⟩∆ϕ
. The

second term with ∆̄ϕ in place of ∆ϕ appears with a minus sign to account for change of sign

of the commutator after exchanging the two dimensions. In the last step we evaluated the τ

integrals by analytic continuation from the region where they converge at τ1 → −∞. There

is no particular subtlety required for τ1, since this choice also implements the iϵ prescription

which would have ensured convergence. The τ2 integral is more subtle because it contains

a log-divergence. Since we are only interested in determining the coefficient of the log,

the choice of regulator or scheme does not impact the result (to this order in perturbation

theory). Therefore, we will simply analytically continue2 in ∆ϕ+∆̄ϕ and isolate the log in

the limit ∆ϕ + ∆̄ϕ → d = 3. Evaluating the τ2 integral is this way, we find

− ⟨ϕ(⃗k ′, τ)ϕ(⃗k, τ)⟩∆ϕ

λ2

2νϕνσ
(−τ)∆ϕ+∆̄ϕ−3

(
1

3− 2∆ϕ

− 1

3−∆ϕ − ∆̄ϕ

)
×
(

1

3−∆ϕ −∆σ

− 1

3−∆ϕ − ∆̄σ

)
→ −⟨ϕ(⃗k ′, τ)ϕ(⃗k, τ)⟩∆ϕ

λ2

2νϕνσ
log(−kτ)

(
1

∆̄σ −∆ϕ

− 1

∆σ −∆ϕ

)
. (2.17)

Additionally, we perform a similar calculation for the k2∆̄ϕ−3 component of the power

2As has been noted in previous work on SdSET, dimensional regularization is insufficient to regulate the
log. Specifically, if we wrote ∆ϕ + ∆̄ϕ = d and analytically continued in the number of space dimensions
consistently, one finds this integral diverges for all d. It is therefore essential that we are analytically
continuing in ∆ϕ + ∆̄ϕ for fixed d = 3.
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spectrum ⟨ϕ(⃗k ′, τ)ϕ(⃗k, τ)⟩∆̄ϕ
. We then identify

γ1 = − λ2

4νϕνσ

(
1

∆̄σ −∆ϕ

− 1

∆σ −∆ϕ

)
, (2.18a)

γ2 =
λ2

4νϕνσ

(
1

∆̄σ − ∆̄ϕ

− 1

∆σ − ∆̄ϕ

)
. (2.18b)

Using ∆σ + ∆̄σ = 3, ∆ϕ = 3/2 + iνϕ, and ∆̄ϕ = 3/2− iνϕ, we see that γ1 = −γ2, which is

consistent with our expectation that the mass mixing operator leads to a shift in the mass

of ϕ.

Now we can compare this result with the direct diagonzalization of the mass matrix.

We start again from the the UV Lagrangian

L = −1

2

(
∂µϕ∂

µϕ+m2
ϕϕ

2
)
− 1

2

(
∂µσ∂

µσ +m2
σσ

2
)
− λH2ϕσ . (2.19)

Writing the mass term in matrix form,

L ⊃ −1

2

(
ϕ σ

)( m2
ϕ λH2

λH2 m2
σ

)(
ϕ

σ

)
, (2.20)

we can find the mass eigenvalues in terms of λ. Assuming m2
σ > m2

ϕ and |m2
σ −m2

ϕ| ≳ m2
ϕ,

the mass of ϕ is shift by

m2
ϕ → m2

ϕ −
λ2H4

|m2
σ −m2

ϕ|
+O(λ4) . (2.21)

Assuming m2
ϕ > 9H2/4, we can expand the solution for ∆ϕ in λ to find

∆ϕ + γ1 =
3

2
+ iνϕ −

i

2νϕ

λ2H2

|m2
σ −m2

ϕ|
→ γ1 = − i

2νϕ

λ2H2

|m2
σ −m2

ϕ|
. (2.22)

We can compare to our perturbative formula, Eq. (2.18), using ∆σ = 3
2
+ iνσ, ∆̄σ = 3

2
− iνσ

and ∆ϕ = 3
2
+ iνϕ to find

γ1 = − λ2

4νϕνσ

(
1

−iνσ − iνϕ
− 1

iνσ − iνϕ

)
= − λ2

4νϕνσ

2iνσ
ν2
σ − ν2

ϕ

= −i
λ2H2

4νϕ(m2
σ −m2

ϕ)
. (2.23)

This confirms that the method of the perturbative calculation is correctly reproducing the

expected result.
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2.3 One-loop Anomalous Dimensions From Mellin Space

The one-loop correction to the power spectrum is equivalent to the mixing between a

fundamental field ϕ with a composite operator σ2. As a result, the calculation of the

anomalous dimension of ϕ can be broken up into two components, the calculation of the

Green’s functions of σ2 and the perturbative mixing between ϕ and σ2. While this is

mathematically identical to completing the one-loop calculation in a single step, we will

present the results in this way to help isolate the important steps and to make closer

contact with the SdSET results in the next section.

Composite Operators at One-loop

In order to calculate the behavior of the composite operator σ2, we need an approach to

calculating loop integrals that respects the scale invariance that naively forbids the kinds

of contact terms that are needed for mixing. It is for this reason that we will introduce

the Mellin representation of the mode functions. The Mellin transform represents the full

answer as an integral over power-laws. This is useful because the loop momentum intergal

for individual power laws can be controlled with a scaleless regulator that preserves the

symmetries of the theory in dS. The final (regulated) result then follows from performing

the Mellin integrals (i.e. the inverse Mellin transform).

The Mellin representation of the mode functions allows for a straightforward evaluation

of the [σn](⃗k, τ) power spectrum, where [σn](⃗k, τ) is the composite operator associated with

σn(x⃗) in Fourier space. From Wick contractions, the two point function is given in terms

of mode functions as

⟨σ2(⃗k, τ)σ2(⃗k ′, τ ′)⟩′ = 2

∫
d3p

(2π)3
σ̄p⃗(τ)σ̄k⃗−p⃗(τ)σ̄

∗
−p⃗(τ

′)σ̄∗
−k⃗+p⃗

(τ ′) . (2.24)

Using our above expression, this is written in Mellin variables s1, .., s4 as

⟨σ2(⃗k, τ)σ2(⃗k ′, τ ′)⟩′ = H4(−τ)3(−τ ′)3

8π2

4∏
i=1

(∫ c+i∞

c−i∞

dsi
2πi

Γ

(
si +

iν

2

)
Γ

(
si −

iν

2

))

×
∫

d3p

(2π)3
(− i

2
pτ)−2s1(− i

2
|⃗k − p⃗|τ)−2s2( i

2
pτ ′)−2s3( i

2
|p⃗− k⃗|τ ′)−2s4 . (2.25)

As described above, we are interested in whether this integral generates a contact term in

space, which would Fourier transform to a k-independent term, O(k0). We can therefore

13



expand the integrand in p ≫ k, which amounts to evaluating the integrals with k = 0:

⟨σ2(⃗k, τ)σ2(⃗k ′, τ ′)⟩′ → H4(−τ)3(−τ ′)3

8π2

4∏
i=1

(∫ c+i∞

c−i∞

dsi
2πi

Γ

(
si +

iν

2

)
Γ

(
si −

iν

2

))
×
∫

d3p

(2π)3
(− i

2
pτ)−2s1−2s2( i

2
pτ ′)−2s3−2s4 . (2.26)

We can evaluate the momentum integral as follows∫
d3p

(2π)3
p−2S =

1

2π2
lim
p0→0

∫ ∞

p0

dp p2−2S =
1

2π2
lim
p0→0

p3−2S
0

3− 2S
≃ − i

2π
δ
(
3
2
− S

)
. (2.27)

The appearance of the δ-function in the final step is conventional in both AdS [68] and

dS [41, 70]. However, it is ambiguous given that we will be integrating over si contours in

the complex plane. We should understand the δ-function to mean that we will evaluate

one of the si integrals by closing the contour around the simple pole at 2S = 3 using the

residue formula. The residue of this pole is independent of the limit p0 → 0. In principle,

we should worry how we close the contour around this pole (particularly the contour at

infinity). However, like all scaleless regulators, we define the limit p0 → 0 to vanish for all

power law divergences by analytic continuation. As we take this limit first, we are only

left with the contribution from this pole, which effectively acts like a δ function on the

contour of integration.

With this interpretation of the δ-function, the correlator after performing the loop

integral becomes

⟨σ2(⃗k, τ)σ2(⃗k ′, τ ′)⟩′ →− i
H4(−τ)3(−τ ′)3

16π3

4∏
i=1

(∫ c+i∞

c−i∞

dsi
2πi

Γ

(
si +

iν

2

)
Γ

(
si −

iν

2

))
× δ

(
3
2
− s1 − s2 − s3 − s4

)
(− i

2
τ)−2s1−2s2( i

2
τ ′)−2s3−2s4 . (2.28)

We can now evaluate one of the Mellin integrals using the δ-function first, and then evaluate

the remaining three Mellin integrals using the residue theorem. Evaluating the integral

over s4 using the delta function yields:

⟨σ2(⃗k, τ)σ2(⃗k ′, τ ′)⟩′ →− H4(−τ)3(−τ ′)3

32π4

3∏
i=1

(∫ c+i∞

c−i∞

dsi
2πi

Γ

(
si +

iν

2

)
Γ

(
si −

iν

2

))

× Γ

(
s4 +

iν

2

)
Γ

(
s4 −

iν

2

)
(− i

2
τ)−2s1−2s2( i

2
τ ′)2s1+2s2−3 , (2.29)

where

s4 =
3

2
− s1 − s2 − s3 . (2.30)
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We evaluate the remaining integrals over s1, s2, s3 using the residue theorem by closing

all the contours in the lower-half plane. Note that the exponents of τ and τ ′ depend on

s1 and s2; the contour integrals will only converge in the limits Re(s1),Re(s2) → −∞ if

(−τ) > (−τ ′).

Following the same procedure as we did for the series expansion of ϕ̄ given in Eq. (2.4),

we now evaluate the integrals s1, s2, s3 over the poles of the Γ functions, which yields a

sum over integers n1, n2, n3:

⟨σ2(⃗k, τ)σ2(⃗k ′, τ ′)⟩′ →− H4

32π4

∑
±1,±2,±3

∞∑
n1,n2,n3=0

Γ

(
s4 +

iν

2

)
Γ

(
s4 −

iν

2

)

× (−1)n1+n2+n3

n1!n2!n3!
Γ(∓1iν − n1)Γ(∓2iν − n2)Γ(∓3iν − n3)

×
(
− i

2
τ
)3+(±11±21)iν+2(n1+n2) ( i

2
τ ′
)−(±11±21)iν−2(n1+n2) , (2.31)

where

s4 =
3

2
+ i(±11±2 1±3 1)

ν

2
+ n1 + n2 + n3 . (2.32)

Note that every term in the sum has the form

⟨σ2(⃗k, τ)σ2(⃗k ′, τ ′)⟩′ ∝ (−τ)∆(−τ ′)3−∆ , (2.33)

where

∆ = 3 + (±11±2 1)iν + 2(n1 + n2) = ∆n1 +∆n2 (2.34)

is the scaling dimension we get from adding two terms in the series expansion of σ. This

is the expected set of scaling dimensions for the composite operators composed of σ2 and

derivatives in a free-theory.

So far, the result is not written as a sum of dimensions, as there are many choices

of s1,2,3 that given the same ∆. As a concrete example, we can focus on the terms with

n1 = n2 = 0, ±1 = +, and ±2 = −. This fixes the powers in τ and τ ′ to ∆ = 3 and

∆̄ = 3−∆ = 0 respectively. Even with these powers fixed, we must still perform the sum

over n3:

⟨σ2(⃗k, τ)σ2(⃗k ′, τ ′)⟩′ ⊃−
(
i

2

)3
H4(−τ)3

64π4

∑
±3

∞∑
n3=0

(−1)n3

n3!
Γ(iν)Γ(−iν)Γ(±3iν − n3)

× Γ

(
3

2
+ n3 + (±3 + 1)

iν

2

)
Γ

(
3

2
+ n3 + (±3 − 1)

iν

2

)
. (2.35)

We see that reducing our answer to a sum over composite operators requires some further

simplifications.
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Fortunately, the sum over all the residues of s1,2,3 can be reduced to a single sum.

Assuming (−τ) < (−τ ′), we can rewrite Eq. (2.31) as a single sum

⟨σ2(⃗k, τ)σ2(⃗k ′, τ ′)⟩′ →
∑
n

an(ν)(−τ)2iν+2n+3(−τ ′)−2iν−2n + (ν → −ν)

+
∑
n

cn(ν)(−τ)2n+3(−τ ′)−2n , (2.36)

where the series coefficients an(ν) and cn(ν) are

an(ν) = −i
H4 (1 + tanh(2πν))

16π2

Γ(1
2
+ n+ iν)Γ(3

2
+ n+ iν)Γ(−1− n− iν)Γ(−n− iν)

n!Γ(−1
2
− n)Γ(1 + n+ 2iν)Γ(−1

2
− n− 2iν)

,

(2.37a)

cn(ν) = i
H4πcsch(2πν)2

n!(n+ 1)!4

Γ(1
2
+ n)Γ(3

2
+ n)

Γ(1 + n+ iν)Γ(1 + n− iν)Γ(−1
2
− n− iν)Γ(−1

2
− n+ iν)

.

(2.37b)

The details of how to turn the triple sum in Eq. (2.31) into a single sum can be found

in App. A. It is useful to define ∆j=0,±,n = 2ijν + 2n + 3, ∆̄j=0,±,n = 3 − ∆j=0,±,n, and

C(∆j=±,n) = an(±ν) and C0,n = cn(ν) so that

⟨σ2(⃗k, τ)σ2(⃗k ′, τ ′)⟩′ →
∑
j,n

C(∆j,n)(−τ)∆j,n(−τ ′)∆̄j,n , (2.38)

where to simplify the notation, we have defined
∑

j,n ≡∑j=0,±
∑∞

n=0.

We see that τ is associated with ∆j,n, while τ ′ is associated with ∆̄j,n. This is a

consequence of the fact that when performing the triple sum, we had to assume (−τ) <

(−τ ′) in order for the sum to converge. This is important, as our in-in calculations are not

time-ordered. For example, we cannot determine the commutator simply by exchanging

τ ↔ τ ′.

We therefore must perform another calculation to determine ⟨σ2(⃗k, τ)σ2(⃗k ′, τ ′)⟩′ when
(−τ) > (−τ ′), in that we have to evaluate Eq. (2.28) in a slightly different order. In this

case, we evaluate the integrals over s2, s3, s4 using the residue theorem and then evaluate

the integral over s1 using the delta function, to get

⟨σ2(⃗k, τ)σ2(⃗k ′, τ ′)⟩′ →− H4(−τ)3(−τ ′)3

32π4

∑
±2,±3,±4

∞∑
n2,n3,n4=0

Γ

(
s1 +

iν

2

)
Γ

(
s1 −

iν

2

)

× (−1)n2+n3+n4

n2!n3!n4!
Γ(∓2iν − n2)Γ(∓3iν − n3)Γ(∓4iν − n4)

×
(
− i

2
τ
)−(±31±41)iν−2(n3+n4)−3 ( i

2
τ ′
)(±31±41)iν+2(n3+n4) , (2.39)

16



where

s1 =
3

2
+ i(±21±3 1±4 1)

ν

2
+ n2 + n3 + n4 . (2.40)

This is related to the above result by replacing n3 → n1, n4 → n2, n2 → n3, n1 → n4, so

we have

⟨σ2(⃗k, τ)σ2(⃗k ′, τ ′)⟩′ →
∑
n

−e−4πνan(ν)(−τ)−2iν−2n(−τ ′)2iν+2n+3 − (ν → −ν)

+
∑
n

−cn(ν)(−τ)−2n(−τ ′)2n+3 . (2.41)

Notice that the exponent of τ ′ is now the one with the largest real part instead of τ . Using

the fact that an(−ν) = −an(ν)
∗e−4πν and −cn(ν) = cn(ν)

∗, we can rewrite the above as

⟨σ2(⃗k, τ)σ2(⃗k ′, τ ′)⟩′ →
∑
n

(an(−ν))∗(−τ)−2iν−2n(−τ ′)2iν+2n+3 + (ν → −ν)

+
∑
n

cn(ν)
∗(−τ)−2n(−τ ′)2n+3 . (2.42)

We can write this more compactly as

⟨σ2(⃗k, τ)σ2(⃗k ′, τ ′)⟩′ → θ(τ − τ ′)
∑
j,n

C(∆j,n)(−τ)∆j,n(−τ ′)∆̄j,n

+ θ(τ ′ − τ)
∑
j,n

C(∆j,n)
∗(−τ)∆̄−j,n(−τ ′)∆−j,n , (2.43)

such that the commutator takes the form

⟨[σ2(⃗k, τ), σ2(⃗k ′, τ ′)]⟩′ → (2.44)

θ(τ − τ ′)
∑
j,n

C(∆j,n)(−τ)∆j,n(−τ ′)∆̄j,n − C(∆j,n)
∗(−τ)∆−j,n(−τ ′)∆̄−j,n

+ θ(τ ′ − τ)
∑
j,n

C(∆j,n)
∗(−τ)∆̄−j,n(−τ ′)∆−j,n − C(∆j,n)(−τ)∆̄j,n(−τ ′)∆j,n .

These results will be used to compute the 1-loop correction to the anomalous dimensions

of a principal series field, which we turn to next.

Anomalous Dimensions

We now show how to compute the anomalous dimension of a principal series field ϕ due to

a loop of another principal series field σ. The interaction between these two fields is given
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by

Hint = λHϕσ2 . (2.45)

The one-loop diagram (shown on the right in Fig. 2) that corrects the ϕ power spectrum

can be expressed following the same logic that led to Eq. (2.13):

⟨ϕ(⃗k, τ)ϕ(⃗k ′, τ)⟩′ =

− λ2H2

∫ τ

−∞
dτ2a(τ2)

4
[
ϕ(⃗k, τ2), ϕ(⃗k ′, τ)

] ∫ τ2

−∞
dτ1a(τ1)

4⟨ϕ(⃗k ′, τ1)ϕ(⃗k, τ)⟩⟨
[
σ2(⃗k, τ1), σ

2(⃗k ′, τ2)
]
⟩

− λ2H2

∫ τ

−∞
dτ2a(τ2)

4
[
ϕ(⃗k, τ2), ϕ(⃗k ′, τ)

] ∫ τ2

−∞
dτ1a(τ1)

4
[
ϕ(⃗k ′, τ1), ϕ(⃗k, τ)

]
⟨σ2(⃗k, τ1)σ

2(⃗k ′, τ2)⟩ ,

(2.46)

Using Eq. (2.9) for the ϕ commutator and Eq. (2.44) for the σ2 commutator, we have

− λ2H2

∫ τ

−∞
dτ2a(τ2)

4
[
ϕ(⃗k, τ2), ϕ(⃗k ′, τ)

] ∫ τ2

−∞
dτ1a(τ1)

4⟨ϕ(⃗k ′, τ1)ϕ(⃗k, τ)⟩⟨
[
σ2(⃗k, τ1), σ

2(⃗k ′, τ2)
]
⟩

→ −λ2⟨ϕ(⃗k ′, τ)ϕ(⃗k, τ)⟩∆ϕ

H4

2νϕ

∫ τ

−∞
dτ2a(τ2)

4
(
(−τ2)

∆ϕ(−τ)∆̄ϕ − (−τ)∆ϕ(−τ2)
∆̄ϕ

)
×
∑
j,n

∫
dτ1a(τ1)

4
(τ1
τ

)∆ϕ
(
C(∆j,n)

∗(−τ1)
∆̄−j,n(−τ2)

∆−j,n − C(∆j,n)(−τ1)
∆̄j,n(−τ2)

∆j,n

)

→ −λ2⟨ϕ(⃗k ′, τ)ϕ(⃗k, τ)⟩∆ϕ

log(−kτ)

2H4νϕ

(∑
j,n

C(∆j,n)
∗

3−∆ϕ − ∆̄−j,n

− C(∆j,n)

3−∆ϕ − ∆̄j,n

)
. (2.47)

The anomalous dimensions are therefore

γ∆ϕ
= −λ2 1

4H4νϕ

(∑
j,n

C(∆j,n)
∗

3−∆ϕ − ∆̄−j,n

− C(∆j,n)

3−∆ϕ − ∆̄j,n

)
, (2.48a)

γ∆̄ϕ
= λ2 1

4H4νϕ

(∑
j,n

C(∆j,n)
∗

3− ∆̄ϕ − ∆̄−j,n

− C(∆j,n)

3− ∆̄ϕ − ∆̄j,n

)
. (2.48b)

The sums can be calculated numerically and the results are shown in Figures 3 and 4.

If the external field ϕ is a principal series field, these expressions imply γ∗
∆ϕ

= γ∆̄ϕ
,

which is consistent with the reality condition of ϕ. On the other hand, if the external field

ϕ is a complementary series field, then both γ∆ϕ
and γ∆̄ϕ

are purely real and γ∆ϕ
̸= −γ∆̄ϕ

,

which implies that the effect of the loop is not a simple shift in the mass of ϕ.

The numerically computed dimensions illustrate two additional features that are visible

in these expressions. First, varying νϕ at fixed νϕ leaves the coefficients C(∆j,n) fixed. As

a result the νϕ dependence is driven by the pole inside the sum and the overall ν−1
ϕ . The
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Figure 3: The real part of the anomalous dimension of ϕ as a function of νϕ, holding fixed νσ = 1
(left) and νσ = 10 (right). Both panels are computed numerically from the sum in Eq. (2.48) up
to n = 4000. We see the tendency for a larger anomalous dimension when νϕ ≃ 2νσ.
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Figure 4: The real part of the anomalous dimension of ϕ as a function of νσ, holding fixed νϕ = 1.
The result is calculated numerically from Eq. (2.48) up to n = 2000. The dominant feature when
varying the mass of the field in the loop is to suppress the amplitude (at fixed νσ).

result is enhanced when νϕ ≃ 2νσ as seen in Fig. 3. In contrast, increasing νσ decreases

C(∆j,n) and thus leads to a large suppression of γ, as seen in Fig. 4.

Now consider the regime where the mass of the external field is much larger then the

mass of the fields in the loop, i.e., νϕ ≫ ν, then to leading order

γ∆ϕ
≃ −λ2 1

4H4νϕ

(∑
j,n

3/2 + 2n+ iµ

(3/2 + 2n)2 + µ2

(
C(∆j,n)

∗ − C(∆j,n)

))
, (2.49a)

γ∆̄ϕ
≃ λ2 1

4H4νϕ

(∑
j,n

3/2 + 2n− iµ

(3/2 + 2n)2 + µ2

(
C(∆j,n)

∗ − C(∆j,n)

))
. (2.49b)

In this limit, it is straightforward to check that γ∆ϕ
= γ∆̄ϕ

> 0 is guaranteed term by term

if ImC(∆j,n) < 0.

Overall, we have reproduced the expected results for the the anomalous dimensions of
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principal series fields by direct calculation at one-loop. The final results are qualitatively

similar to the perturbative mixing of two fields, but is extended to the sum over dimensions

that define the composite operator σ2. This will be useful in providing physical intuition

for how anomalous dimensions arise more generally.

2.4 Relation to the Källén-Lehmann Representation

The above anomalous dimensions have been derived previously using the Källén-Lehmann

representation [31, 32] (see also [43, 77–79]). We would like to establish that the Mellin

calculation produces identical results. This is important because the Mellin approach

will naturally generalize to inflationary calculations, while the identification of a complete

basis of states (required for the Källén-Lehmann approach) beyond the limit of a fixed dS

background is more challenging.

The Källén-Lehmann representation of correlators in de Sitter is defined by inserting a

complete set of states:

1 = |Ω⟩⟨Ω|+
∑
ℓ

∫
d∆

2πi

1

N(∆, ℓ)

∫
ddk

(2π)d
|∆, k⟩µ1...µℓ

µ1...µℓ⟨∆, k|+ . . . , (2.50)

where N(∆, ℓ) is a normalization factor and ∆, k⃗, and µ1,..ℓ label the states in terms of

eigenvalues under dilations, translations, and rotations respectively. For principal series

operators, the integral over ∆ is evaluated along the line ∆ = 3/2 + iν ′ for ν ′ ∈ (−∞,∞).

On general grounds, one can write

⟨Ω|O(τ, x⃗)O(τ ′, x⃗ ′)|Ω⟩ =
∫
D

dν ′

2π
ρϕ

(
d

2
+ iν ′

)
G(ξ; ν ′) , (2.51)

where ρO(∆) is the spectral density, ξ is the geodesic distance between the operators, and

G(ξ; ν ′) is the Green’s function that satisfies

∇2G(ξ, ν ′) + ∆(3−∆)H2G(ξ, ν ′) = δ4(x⃗, τ) . (2.52)

Along the contour of integration, this is just the Green’s functions of a free principal series

field. It will be important that this definition can be analytically continued to ∆ off the

principal series line.

As above, we will Fourier transform the comoving distance x⃗ → k⃗. The Green’s function

then takes the form

G(⃗k, k⃗ ′, τ, τ ′; ν ′) =
H2π

4
(−τ)

3
2 (−τ ′)

3
2H

(1)
iν′ (−kτ)H

(2)
iν′ (−kτ ′)(2π)3δ(⃗k + k⃗ ′) . (2.53)

At late times τ, τ ′ → 0, we can apply Eq. (2.4) to see that the Green’s function includes a
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contact term of the form

G(⃗k, τ, τ ′; ν ′)
contact−−−−→ H2

4ν ′ sinh(πν ′)

[
e−πν′(−τ)d−∆(−τ ′)∆ + eπν

′
(−τ)∆(−τ ′)d−∆

]
. (2.54)

We should note that this is not the causal Green’s function (commutator) and therefore

there are non-contact contributions that do not vanish but we can anticipate will not be

required for matching our calculation in the previous subsection.

For a principal series scalar σ with dimension ∆σ, the density of states associated with

the operator O = σ2 is given by [48]

ρσ2(∆) =
H2ν ′ sinh(πν ′)

23π
d
2
+2Γ

(
d
2

) Γ2
(
∆
2

)
Γ2
(
d−∆
2

)
Γ(∆)Γ(d−∆)

Γ

(
2∆σ +∆− d

2

)
Γ

(
2∆σ −∆

2

)

× Γ

(
d− 2∆σ +∆

2

)
Γ

(
2d− 2∆σ −∆

2

)
. (2.55)

An important feature of this formula is that the poles of ρσ2(∆) in the complex plane

correspond to the dimensions of the individual scaling operators associated with σ2. The

spectral density ρσ2(∆) has three classes of single poles in the right half plane:

∆ = 2∆σ + 2n, ∆ = 2 (d−∆σ) + 2n, and ∆ = d+ 2n, n ∈ N . (2.56)

One interpretation of the Green’s function G(⃗k, k⃗ ′, τ, τ ′; ν ′) in Eq. (2.51) is that it represents

the propagator of a auxiliary field σν with dimension ∆ = 3
2
+iν ′. We can therefore find the

contact term contributions to ⟨σ2σ2⟩ by replacing propagator of the auxiliary field inside

the spectral integral with Eq. (2.54).

⟨σ2(⃗k, τ)σ2(⃗k ′, τ ′)⟩ →
∫ 3

2
+i∞

3
2
−i∞

d∆

2πi

H2ρσ2(∆)

4ν ′ sinh(πν ′)

×
[
e−πν′(−τ)d−∆(−τ ′)∆ + eπν

′
(−τ)∆(−τ ′)d−∆)

]
. (2.57)

Since the two terms inside the square bracket are related by the so-called “shadow trans-

formation” ν ′ → −ν ′, both terms give the same contribution to the integral, so we only

need to evaluate one of them.

One way to evaluate this integral is by closing the integration contour in the right-half

plane, and then apply the residue theorem. Notice that the exponents of τ and τ ′ depend

on ∆ in the form ( τ
τ ′
)∆ or ( τ

′

τ
)∆; therefore regardless of the time ordering, we cannot keep

both terms as one of them will always diverge when Re(∆) → +∞. For the case τ > τ ′,

we need to drop the first term. Similarly for the case τ < τ ′, dropping the second term
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yields

⟨σ2(⃗k, τ)σ2(⃗k ′, τ ′)⟩ → −θ (τ − τ ′)
∑
∆i

Res∆=∆i
ρσ2(∆)

H2eπν
′

2ν ′ sinh(πν ′)
(−τ)∆(−τ ′)d−∆

−θ(τ ′ − τ)
∑
∆i

Res∆=∆i
ρσ2(∆)

H2e−πν′

2ν ′ sinh(πν ′)
(−τ)d−∆(−τ ′)∆ . (2.58)

The contact term becomes again a series sum

⟨σ2(⃗k, τ)σ2(⃗k ′, τ ′)⟩′ contact−−−−→

θ (τ − τ ′)
(∑

n

(
ãn(ν)(−τ)2iν+2n+3(−τ ′)−2iν−2n + (ν → −ν)

)
+ c̃n(ν)(−τ)2n+3(−τ ′)−2n

)
+ θ(τ ′ − τ)

(∑
n

(
ãn(−ν)∗(−τ ′)2iν+2n+3(−τ)−2iν−2n + (ν → −ν)

)
+ c̃n(ν)

∗(−τ ′)2n+3(−τ)−2n
)
, (2.59)

where ãn(ν) and c̃n(ν) are given by

ãn(ν) =
i(−1)nH4e2πν

8π3n!

Γ(−n− iν)Γ(3
2
+ n+ iν)

Γ(2 + n+ iν))Γ(1
2
− n− iν)

× Γ

(
3

2
+ n+ 2iν

)
Γ

(
3

2
+ n

)
Γ(−n− 2iν) , (2.60a)

c̃n(ν) =
iH4(1 + n)(1 + 2n)

16π4(n+ 1)!
Γ2

(
1

2
+ n

)
Γ

(
3

2
+ n− iν

)
Γ

(
3

2
+ n+ iν

)
× Γ(−n+ iν)Γ(−n− iν) . (2.60b)

At first sight the series coefficients ãn(ν) and c̃n(ν) do not look the same as the an(ν) and

cn(ν) from Mellin integrals in the previous section. Nonetheless, one can show numerically

that the two expressions are in fact identical. The analytical expressions for the series

coefficients can also be matched by applying Euler’s reflection formula

Γ(1− z)Γ(z) =
π

sin πz
, z /∈ Z (2.61)

repeatedly to some of the Gamma functions.

To summarize, we have shown that the contact terms obtained by using the Källén-

Lehmann representation is exactly the same as the one we had calculated from Sec. 2.

The anomalous dimension will then also match by following the derivation starting at

Eq. (2.47).
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3 Anomalous Dimensions From SdSET

Much of the confusion surrounding the physics of dS is that the long wavelength description

in terms of scaling operators and scaling dimensions is obscured by the presence of Hankel

functions. However, as we have seen, this results in an infinite series in kτ , such that most

terms are irrelevant in the long wavelength limit. Furthermore, the long distance behavior

is not manifest at intermediate steps of the calculation, obscuring the physical origin of

any non-trivial corrections. Calculations must typically be performed exactly as a function

of k, which can be a major technical obstacle. This was evident in the previous sections

where we had to provide the exact Mellin representation of the one-loop power spectrum,

only to arrive at a result that look like an expansion in the long distance operators.

In this section, we will address the conceptual and technical complications by working

with SdSET for principal series fields. The purpose of this effective theory is to make the

nature of the superhorizon evolution manifest at the level of the effective fields, operators,

and Lagrangian. The SdSET emerges as a power counting expansion in the limit k/[aH] ≪
1. The EFT models the dynamics of IR modes with k ≪ aH, so that the scale aH can be

interpreted as a time-dependent cutoff. This implies that as the universe evolves in time,

new modes enter the effective theory as they redshift to longer wavelength.

SdSET provides us with a language to clarify the puzzles that the computations of

the anomalous dimensions introduce. We will see that new types of (non-dynamical)

operators must be included in the IR description in order to reproduce the anomalous

dimensions computed above. These novel operators are additionally crucial to maintaining

the positivity of the ϕ correlators, as we will discuss below.

3.1 Principal Series SdSET

The most straightforward way to derive the SdSET is to start with the full theory and

perform a mode decomposition to identify the IR degrees of freedom. We will start from

the theory of a massive principal series scalar ϕ, whose action is given by

S2,ϕ =

∫
dt d3x a3(t)

1

2

(
−∂µϕ∂

µϕ−m2ϕ
)
. (3.1)

We want to isolate the long wavelength behavior, so we can study the equations of motion

for ϕ(⃗k = 0, t)

ϕ̈(⃗k = 0, t) + 3Hϕ̇(⃗k = 0, t) +m2ϕ(⃗k = 0, t) = 0 , (3.2)

The resulting solutions are

ϕ(⃗k = 0, t) = c1[aH]−∆ + c2[aH]−∆̄ , (3.3)
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where c1 and c2 are constants that are determined by boundary conditions, and

∆ =
3

2
+ iν , ∆̄ =

3

2
− iν , ν =

√
m2

H2
− 9

4
. (3.4)

This is, of course, the same behavior we found from taking the k → 0 limit of the full

solutions above. For our purposes, it is still useful to observe that the dimensions ∆ and

∆̄ can be defined from the time-evolution of these two solutions, without ever determining

the full k⃗-dependence.

Based on these solutions, we express the UV field ϕ as a mode expansion

ϕ(x⃗, t) = H
(
[aH]−∆φ+(x⃗, t) + [aH]−∆̄φ−(x⃗, t)

)
+ ΦH(x⃗, t) , (3.5)

where φ± are the IR degrees of freedom and ΦH are the UV modes with k > aH that we

will ultimately integrate out (which is trivial in a free theory). Since ϕ is a real field and

∆∗ = ∆̄, we must impose the constraint φ− = φ∗
+.

A useful aspect of this ansatz is that it implies that φ± transform as scaling operators

under the dS isometeries,

xi → xi − 2
(
bjx

j
)
xi + bi

(∑
j

(
xj
)2 − [a(t)H]−2

)
, (3.6a)

t → t+ 2bjx
j . (3.6b)

Specifically, in order for ϕ to transform as a scalar, ϕ(x⃗, t) → ϕ(x⃗ ′, t′), we must have

φ±(x⃗, t) →
[
1− 2∆±xib

i +
(
x2 − [aH]−2

)
bi∂

i − 2xi x⃗ · ∂⃗ + 2bix
i∂t

]
φ±(x⃗, t) , (3.7)

where ∆+ = ∆ and ∆− = ∆̄. In this regard, the fields φ± behave like operators in a CFT,

which thus allows us to directly apply CFT intuition in the bulk of dS.

Substituting this ansatz back into Eq. (3.1), we find the quadratic action for φ±

S2,± =
1

2

∫
d3x dt

[
[aH]2iνφ̇2

+ + [aH]−2iνφ̇2
− + 2φ̇+φ̇− − 2iν (φ̇+φ− − φ+φ̇−) (3.8)

− [aH]2iν−2∂iφ+∂
iφ+ − [aH]−2iν−2∂iφ−∂

iφ− − 2[aH]−2∂iφ+∂
iφ−

]
.

The dominant kinetic term in SdSET is first order in time,

L2,± ⊃ −iν (φ̇+φ− − φ+φ̇−) , (3.9)

whose equations of motion yield φ̇± = 0 up to power suppressed gradients. This correctly

describes the expected k⃗ = 0 solutions as desired. As explained in [47,82], the higher-order
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kinetic terms such as φ̇2
± should be evaluated using the lower order equations of motion to

avoid introducing additional degrees of freedom, and thus these terms are suppressed by

powers of (k/[aH])2.

Unlike EFTs commonly used in particle physics,3 the action alone does not determine

the correlation functions of this effective theory. Instead, each mode enters the EFT at the

time t⋆ when k = a(t⋆)H. The mode evolution prior to t⋆ is then encoded as stochastic

initial conditions that are determined by matching to the full UV description.

We can determine the free theory matching, by starting with the mode expansion of

the UV scalar field ϕ as given in Sec. 2 above:

ϕ(⃗k, τ) = ϕ̄k(τ)a
†
k⃗
+ ϕ̄∗

k(τ)a−k⃗
, (3.10)

with

ϕ̄k(τ) =

√
π

2
e

πν
2 H(−τ)3/2H

(2)
iν (−kτ) , (3.11a)

ϕ̄∗
k(τ) =

√
π

2
e−

πν
2 H(−τ)3/2H

(1)
iν (−kτ) . (3.11b)

Repeating the series expansion around −kτ → 0 yields the leading terms

ϕ̄k(τ) =
1

k3/2

(
i2iνe

πν
2 Γ(iν)

2
√
π

H(−kτ)∆̄ +
i2−iνe−

πν
2 Γ(−iν)

2
√
π

H(−kτ)∆
)

, (3.12)

so that we can identify

φ+(⃗k) =
k∆

√
2k3/2

(
Cνa

†
k⃗
+D∗

νa−k⃗

)
, (3.13a)

φ−(⃗k) =
k∆̄

√
2k3/2

(
Dνa

†
k⃗
+ C∗

νa−k⃗

)
, (3.13b)

where

Cν =
i2−iνe−

πν
2 Γ(−iν)√
2π

, and Dν =
i2iνe

πν
2 Γ(iν)√
2π

. (3.14)

The power-law behavior in k for φ+ and φ− is consistent with both being scaling operators

of dimension ∆ and ∆̄ under the dS isometeries.

Given this definition terms of the UV creation and annihilation operators, it is easy to

check that [φ+, φ+] = [φ−, φ−] = 0 and

[φ+(⃗k), φ−(⃗k ′)] = − 1

2ν
(2π)3δ(⃗k + k⃗ ′) . (3.15)

3Many cosmological EFTs also require input of the initial conditions, including the EFT of LSS [83, 84].
It is also be required to match the time evolution beyond leading order in EFTs for classical systems [85].
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Of course, these results would also follow from the EFT desciption alone, as the canonical

commutation relation [φ+,Π+] = i(2π)3δ(⃗k + k⃗ ′), where Π+ = −2iνφ− is the conjugate

momentum to φ+. IN, the two point functions of φ± are non-zero and determined by the

UV theory, reflecting the fact that their initial conditions are classical statistical random

variables. Matching the equal time two point function of the free theory requires, for

example, that 〈
φ+(⃗k)φ+(⃗k ′)

〉
=

k2∆

2k3

1

2ν sinh(πν)
(2π)3δ(⃗k + k⃗ ′) . (3.16)

In the large mass limit, ν → m/H and ⟨φ+(⃗k)φ+(⃗k ′)⟩ ∝ e−πm/H , consistent with a Boltz-

mann suppression of the fluctuations of heavy fields in dS at a temperature4 T = H/(2π).

To summarize, we have shown that φ+ and φ− in the free theory behave as scaling

operators with dimensions ∆ and ∆̄ respectively. The non-zero commutator between φ+

and φ− is consistent with scale invariance because ∆+∆̄ = 3. Since ∆̄ = ∆∗, this requires5

that Re∆ = 3/2. This statement is directly related to the fact that the unitary states

associate with the principal series operators are labeled by eigenvalues under dilatation ∆,

with Re∆ = 3/2.

3.2 Interactions in Principal Series SdSET

One of the central motivations for SdSET is to make behavior under time-evolution man-

ifest from dimensional analysis. Intuitively, we are working in an EFT where our UV

scale is Λ(t) = a(t)H. It is therefore natural to expect the size of any interaction to be

controlled by dimensional analysis. This in turn determines the scaling of corrections in

terms of k/Λ(t), and thus ties the power counting to the time evolution.

Our EFT expectation can be shown to follow directly from basic physics principles.

For one, any physical infinitesimal distance depends on a(t) × dx⃗. This implies that

there is a trivial rescaling symmetry a(t) → λa(t) and x⃗ → λ−1x⃗ (⃗k → λ⃗k) that leaves

physical quantities unchanged. Under this symmetry, the free fields φ+ transform as

scaling operators with dimensions ∆ and ∆̄. As a result, we can determine powers of

a(t) associated with any interaction just from dimensional analysis in the action. By

construction, the units and scaling dimensions of φ± are the same. Corrections therefore

always arise in the combination a(t)H to maintain that the action is dimensionless.

Given these points of view, we can construct interactions according to the following

power counting rules: we assign φ+ and φ− dimensions ∆ and ∆̄, d3x has dimension−3 and

dt has dimension 0. Powers of Λ(t) = a(t)H, which has dimension 1, are then introduced

4The missing factor of two in the exponential relative to the Boltzmann suppression can be understood
from the fact that the density is the absolute value squared of the wavefunction.

5The condition ∆ + ∆̄ = 3 and ∆̄ = ∆∗ can also be derived from the bottom up following precisely the
same procedure described in [47]. The two are related, as Π+ ∝ φ− is a consequence of the leading kinetic
term and thus the dimensions are fixed by the canonical commutator and/or the scaling of the kinetic
term. Either way, one finds the main result that γ = 0 in absence of interactions within SdSET.
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to make the action dimensionless. If the power Λ(t) that appears in an interaction is

positive (negative) we call the interaction relevant (irrelevant) as it become more (less)

important as time is evolved forward. Dimension three interactions have no powers of

Λ(t), and are therefore called marginal.

In the free theory, the principal series fields that have dimension ∆, ∆̄ = 3
2
± iν.

Therefore, when thinking about interactions in the interaction picture, we can use these

values for power counting. However, as imaginary dimensions do not produce growing or

decaying time evolution, we will define relevant, marginal, and irrelevant solely in terms

of the real powers of Λ(t), which are determined by the real part of the dimensions of

operators. Applying this power counting, the leading polynomial interactions take the

form

Sint ⊃
∫

d3x dt[aH]3−n∆−m∆̄ cn,m
n!m!

φn
+φ

m
− , (3.17)

where cn,m = O(1) are dimensionless coefficients that can be determined from matching.

For n+m ≥ 3, (3−n∆−m∆̄) = 3
2
(2−n−m)+(m−n)iν, hence the real part of 3−n∆−m∆̄ is

always strictly less than zero. We conclude that all polynomial interactions are irrelevant.6

This conclusion would seem to be at odds with our results from the previous sections. In

SdSET, when ∆ = ∆̄∗ is complex, the quadratic action requires that with Re∆ = Re∆̄ = 3
2
.

Therefore, any real anomalous dimensions would have to come from marginal or relevant

interactions in SdSET. The absence of any such interaction is inconsistent with the real

anomalous dimensions for φ+ and φ− that we found in the previous section. We cannot

resolve this issue by simply declaring that the corrections to ∆ are determined in the UV

by matching, since this would be inconsistent with the canonical commutations relations

that can be derived within SdSET in the IR.

The resolution to this apparent contradiction is that our EFT is missing additional

operators. Specifically, suppose our theory contains an operator O(t, x⃗) with dimension

∆O such that we can introduce additional interactions

Sint ⊃
∫

d3x dt[aH]
3
2
−∆O

(
cO[aH]−iνφ+ + c∗O[aH]iνφ−

)
O(t, x⃗) , (3.18)

If Re∆O ≤ 3
2
, this operator can potentially generate corrections and do not vanish at late

times. While this may explain the anomalous scaling in the coupling of heavy fields to

light fields, it seems for self-interacting heavy fields we are missing to operators O with the

right scaling behavior. However, one hint is that if we have a second principal series field

σ, then O = σ± could have the right dimensions to be marginal. We will explain how this

observation resolves the puzzle stated above, and allows us to reproduce the calculation of

6Recall that one relies on field redefinitions to eliminate spurious relevant interactions in the the case of
complementary series fields [47] when deriving the SdSET interactions. In the case of principal series
fields, the interactions are automatically irrelevant so one does not need to perform any additional field
redefinitions.
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the anomalous dimensions for ϕ within SdSET.

3.3 UV Composite Operators and IR Contact Terms

One can simply define composite operators within SdSET as the product of the local

operators φ±. In the free theory, an operator of the form

Op,q(x⃗) = [φp
+φ

q
−](x⃗) with Op,q (⃗k) =

∫
d3x eik⃗·x⃗Op,q(x⃗) , (3.19)

will have a dimension

∆p,q = p∆+ q∆̄ . (3.20)

This property is maintained at loop level, provide we use a scaleless regulator.

Above, we derived Eq. (2.36), which shows that the two-point function of σ2, where σ

is a UV principal series field, contains a series of non-trivial contact (O(k0)) terms,

⟨σ2(⃗k, τ)σ2(⃗k ′, τ ′)⟩′ ⊃
∑
n

an(ν)(−τ)2iν+2n+3(−τ ′)−2iν−2n + (ν → −ν)

+
∑
n

cn(ν)(−τ)2n+3(−τ ′)−2n . (3.21)

For this to be consistent with the scaling with dS isometeries, we need to identify new

operators Oj,n and Ōj,n with dimensions

∆j,n = 3 + 2ijνσ + 2n , and ∆̄j,n = −2ijνσ − 2n = 3−∆j,n , (3.22)

where j = 0,±1 and n = 0, 1, 2, .. (precisely as in Eq. (2.38)) such that

σ2(x⃗) ⊃
∑
j,n

H2
(
[aH]−∆j,nOj,n(x⃗) + [aH]−∆̄j,nŌj,n(x⃗)

)
. (3.23)

Based on the scaling dimensions, the operators Oj,n could be written in terms of φ± and

derivatives within SdSET. For example, matching the dimensions would give usOj=±,n=0 =

σ2
± so that as ∆+,n=0 = 2∆ and ∆−,n=0 = 2∆̄. However, the shadow operators Ōn cannot

be constructed from any composite operator in SdSET. Yet, we see that they must be

present. In order to match the commutator in Eq. (2.44), we must have

⟨[Oj,n(x⃗, t), Ōj,n(0, t
′)]⟩ = θ(t− t′)δ(x⃗)H−4

(
C(∆j,n)− C∗(∆−j,n)

)
. (3.24)

Yet, at separated points, we see no contributions to the two-point functions that have
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dimension 2∆̄j,n and therefore we also require that

⟨Ōj,n(⃗k)Ōj,n(⃗k ′)⟩ = 0 . (3.25)

Specifically, we can check that there are no terms that are non-analytic in k with this scaling

behavior from the UV loop calculation. Therefore, in order to reproduce the “contact

terms” of the UV theory, we must introduce shadow operators Ō that have no long distance

correlations.

Now that we have introduced these additional operators, we can consider the anomalous

dimension calculation in the language of SdSET. In the UV theory, we have two field ϕ and

σ, which in SdSET become φ± and σ±, with dimensions ∆ϕ, ∆̄ϕ,∆σ, and ∆̄σ respectively.

The UV theory contains the interaction Hint = λHϕσ2, which in order to match must

include

Hint ⊃ λH4([aH]−∆ϕφ+ + [aH]−∆̄ϕφ−)
∑
j,n

([aH]−∆j,nOj,n + [aH]−∆̄j,nŌj,n) . (3.26)

Repeating our perturbative calculation of the ϕ → φ+ power spectrum, we have

⟨φ+(⃗k)φ+(⃗k ′)⟩ ⊃ −λ2 ⟨φ+(⃗k)φ+(⃗k ′)⟩λ=0

∑
j,n

∫
dt2

∫ t2

dt1
[aH]

3−∆̄ϕ

2

2νϕ

×
(
[aH]

−∆j,n

2 [aH]
3−∆ϕ−∆̄j,n

1 [Ōj,n(t1),Oj,n(t2)]

+ [aH]
−∆̄j,n

2 [aH]
3−∆ϕ−∆j,n

1 [Oj,n(t1), Ōj,n(t2)]
)
, (3.27)

where the operators appearing inside the commutators are in momentum space, and we

only include time dependence here for brevity since these commutators are momentum

independent. Note that because of the commutator only includes a single time ordering,

only the first commutator contributes to the integral since t1 < t2. As a result, we find

⟨φ+(⃗k)φ+(⃗k ′)⟩ ⊃ − λ2

2νϕH4
⟨φ+(⃗k)φ+(⃗k ′)⟩λ=0

×
∫

dt2[aH]
3−∆ϕ−∆̄ϕ

2

(∑
j,n

C(∆j,n)
∗

3−∆ϕ − ∆̄−j,n

− C(∆j,n)

3−∆ϕ − ∆̄j,n

)
, (3.28)

From here we can see that the t2 integral is diverges, as ∆ϕ+∆̄ϕ = 3 and gives us precisely

the same logathrimic term as in Eq. (2.47), along with the anomalous dimension of φ+

and, similarly, φ−.

With the introduction of the operators Ōn into SdSET, the origin of the anomalous

dimension again follows from power counting. Crucially, since Re∆ > 3/2 and Re∆̄ < 3/2,

the interaction Hamiltonian Eq. (3.26) contains a relevant interaction. This is in contrast to
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the composite operators formed from the dynamical SdSET fields alone, whose interactions

are always irrelevant. Moreover, the expansion in terms of the SdSET fields, including φ±,

automatically isolates the terms of interest in the calculation without the need to keep

track of all the terms in the expansion of the mode functions of ϕ.

We will now see that these novel shadow operators are also critical to reproducing the

expected positivity properties of the ϕ correlators. This provides even more evidence that

these operators must be included in the SdSET description for consistency.

3.4 Physical Origin of Contact Operators

Naturally, one would also like to understand why SdSET needs additional operators that

are not manifest from the field content. At face value, it might seem like a break-down

of the EFT description that there are contributions to the correlators that are not visible

from the long-wavelength field content.

Essentially, the issue comes down to an order of operations. The question is if one

can expand the integrand before integrating (essentially performing a method of regions

decomposition [86, 87]), or is it required to perform the full integral first. Take the loop

integral over the principal series field in Eq. (2.26). It we were to evaluate the expression

on the poles corresponding to composite operators in SdSET, 2s1 + 2s2 → 3 − ∆n =

(0,±)2iν + 2n and 2s3 + 2s4 = 3−∆m = (0,±)2iν − 2m, then we would find∫
d3p

(2π)3
(− i

2
pτ)2∆n−3( i

2
pτ ′)2∆m−3 = 0 . (3.29)

This is a reflection of the fact that in the series expansion, any k0 contribution to the

σ2
± power spectrum would contribute a power law divergence (by dimensional analysis)

and thus would vanish when using a scaleless regulator. In other words, some additional

UV input is required to fully determine the anomalous dimensions in the EFT, which is

encoded in the coefficient of the non-dynamical operator introduced in the previous section.

In prior work [31,32,48,49], the appearance of the real anomalous dimension for ϕ was

given the interpretation of the width due to the decay7 of ϕ → 2σ. Since energy is not

conserved in dS, this process is not forbidden by kinematics. Since γ ̸= 0 implies that no

operator has a dimension corresponding to a unitary state, it has been suggested that the

presence of the anomalous dimension is consistent with idea that ϕ is merely a resonance,

like a decaying particle in flat space, and thus does not appear in the asymptotic Hilbert

space.

However, from a purely long wavelength perspective, this interpretation remains some-

what unsatisfying. In flat space, the resonance language is useful to distinguish fields

that do and do not appear in the S-matrix as asymptotic states. In dS, we can generate

7The same point of view is also useful in both dS and AdS for recovering the flat space S-matrix from the
correlators in curved space.
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these anomalous dimension in the case of a signal field ϕ with a cubic self-interaction gϕ3.

Therefore, we will generally expect interacting theories in dS contain no fields that corre-

spond to states and thus everything is a “resonance” in this sense. Instead, from the long

wavelength perspective, the benefit of SdSET is that it allows one to work directly with

operators, without needing to interpret the space of asymptotic states.

From the operator perspective, the remaining question is why we should include oper-

ators that are not described in terms of the long wavelength (EFT) degrees of freedom.

The answer is that it is a consequence of prioritizing symmetry and power-counting over

minimal operator content. Specifically, we insistent that contact terms, in the sense of

terms that are analytic in k⃗, must be consistent with the de Sitter invariance associate

with the scaling dimensions of the corresponding operator. Contact terms for generic op-

erators in QFT are often incalculable and therefore one could simply introduce these terms

by matching.

We could therefore include terms like

⟨σ2
+(⃗k, t)σ

2
+(⃗k

′, t′)⟩′ = c2k
4∆σ−3 + d2k

0[a(t′)H]3−4∆σ + . . . . (3.30)

The second term is naively forbidden by the conformal Ward identities if we hold the

dimension of σ2
+ fixed. It is well known that quantum field theories can have anomalies in

the form of contact terms that break the classical symmetries. In this case, thinking of such

terms as anomalous is unhelpful as the UV operators do not have fixed dimensions and

therefore these terms do not actually break the symmetry. Instead, a better interpretation

is that these operators correspond to dS invariant contact terms that cannot be associated

with the dimension of an operator whose scaling dimensions are measurable at separated

points.

This strategy of introducing new non-dynamical modes to incorporate UV contact

terms has precedent in other modern EFTs [73–76]. For example, in Soft Collinear Effective

Theory (SCET), there are factorization violating observables for which one must introduce

so-called Glauber modes separately in order to correctly match the dynamics of the UV

theory [74–76]. These modes are localized in time but cannot be integrated out. Moreover,

these modes have a unique power counting compared to the other modes in SCET. Thus

the EFT power counting rules demand that these modes are treated separately. This is

very much the same situation we find in SdSET. We therefore conclude that these new

SdSET contact terms correspond to distinct operators that are required in order to make

power counting explicit. We leave the systematic classification of such operators using

e.g. the method of regions in dS [87] for future work.

3.5 Revisiting Positivity in dS

A real scalar field ϕ(x⃗, t) should obey a number of (apparently) trivial positivity con-

straints. The most obvious such constraint is that the power spectrum should be positive.
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Concretely, if we calculate the wavefunction of the universe in the ϕ basis, Ψ[ϕ(⃗k), t], then

the power spectrum is given by

⟨ϕ(⃗k, t)ϕ(⃗k ′, t)⟩′ =
∫

Dϕ|ϕ(⃗k)|2|Ψ[ϕ(⃗k), t]|2 > 0 , (3.31)

where we used the reality condition ϕ(⃗k)∗ = ϕ(−k⃗).

This positivity condition is clearly satisfied for free fields. In the principal series, recall

that

⟨ϕ(⃗k, t)ϕ(⃗k ′, t)⟩′ ≃ H2(−τ)3

2π

(
Γ(−iν)2 cosh(πν

2
)
(
−kτ

2

)i2ν
+ Γ(iν)2 cosh(πν

2
)
(
−kτ

2

)−i2ν

+ Γ(−iν)Γ(iν) cosh(πν)

)
. (3.32)

Although the first two terms are oscillatory in k, the third term is manifestly positive

and it is also larger that the other two terms. As a result, this expression is positive as

expected. This is also what we would find in SdSET if we use

ϕ(x⃗, t) → H
(
[aH]−∆φ+(x⃗, t) + [aH]−∆̄φ−(x⃗, t)

)
. (3.33)

Since φ†
+ = φ− in SdSET, the expression on the right-hand side is also real and therefore

should be positive, as it must be from matching onto the free theory in the UV.

Now suppose that φ+ and φ− acquire anomalous dimensions so that ∆ϕ = 3
2
+ iν + γ

and ∆̄ϕ = ∆∗
ϕ with Reγ ̸= 0. Since the dimensions are related by complex conjugation,

we would naively expect the combination in Eq. (3.33) to correspond to the real field ϕ

as well, as it did in the free theory. However, if we define ϕ by Eq. (3.33), then by dS

symmetry, the power spectrum at leading order in k/[aH] is given by

⟨ϕ(⃗k, t)ϕ(⃗k ′, t)⟩′ ?≃ [a(t)H]−3

(
c

(
k

aH

)2γ+2iν

+ c∗
(

k

aH

)2γ∗−2iν
)

, (3.34)

where c is some complex valued constant determined by 1-loop matching. Note that there

is no longer a k0 contact term as this is only allowed by the conformal Ward identities

when ∆ϕ+∆̄ϕ = d = 3. Without the k0 term this expression is cannot be made manifestly

positive in the k → 0 limit, which is inconsistent with the fact that ϕ is a real field.

The resolution to this paradox is that ϕ is not a scaling operator. As a result, the

contact terms that appear in the two-point function of the UV field ϕ are not fixed by the

lowest dimension scaling operators that contribute at separated points, namely φ+ and φ−.

These SdSET fields are not real, they are thus the individual power spectra of SdSET are

not required to be positive. Moreover, once we include the couplings to other operators, it

is not even clear that φ+ and φ− need to be related by complex conjugation. Specifically,
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the anomalous dimension crucially requires that φ± interact with Oj,n and Ōj,n. The real

field ϕ is therefore a linear combination of all the scaling operators φ±, On, and Ōn, namely

ϕ(⃗k, t) ∼ H[aH]−3

(
b+φ+[aH]−∆ϕ + b−φ+[aH]−∆̄ϕ +

∑
j,n

(
bnOj,n + b̄nŌj,n

))
. (3.35)

In fact, from Eq. (2.46) we can see that

⟨ϕ(⃗k, t)ϕ(⃗k ′, t)⟩′ ⊃− λ2H4

∫ τ

−∞

dτ2
(−Hτ2)4

[
ϕ(⃗k, τ2), ϕ(⃗k ′, τ)

]
×
∫ τ2

−∞

dτ1
(−Hτ2)4

[
ϕ(⃗k ′, τ1), ϕ(⃗k, τ)

]
⟨σ2(⃗k, τ1)σ

2(⃗k ′, τ2)⟩ . (3.36)

Note that our previous results have shows that the right-hand side includes a k0 term, due

the fact that both the commutators and ⟨[σ2](⃗k)[σ2](⃗k ′)⟩ contain non-zero contact terms.

Therefore, the matching requires that we include an extra term d× k0 such that

⟨ϕ(⃗k, t)ϕ(⃗k ′, t)⟩′ → [a(t)H]−3

(
d+ c

(
k

aH

)2γ+2iν

+ c∗
(

k

aH

)2γ∗−2iν
)

. (3.37)

where d ∝ 2
∑

j,n⟨Oj,nŌj,n⟩. Under the conditions that Re γ > 0, dominant contribution

(in the limit k ≪ aH) to this two point function is the contact term, d, and the two

point function remains positive as long as d > 0. The case Re γ < 0 and/or d ≤ 0

cannot be resolved in the same way and are forbidden by these kinds of classical positivity

arguments [65].

The behavior is encoded directly in the Källén-Lehmann representation. Including the

anomalous dimension, the fields ϕ can be still be decomposed in terms of a spectral density

⟨ϕ(⃗k, t)ϕ(⃗k ′, t)⟩′ =
∫
D

dν

2π
ρϕ

(
d

2
+ iν

)
G(⃗k; ν) . (3.38)

Since G(⃗k; ν) is an equal-time two point function of a principal series field, G(⃗k; ν) > 0 and

the spectral density ρϕ
(
d
2
+ iν

)
≥ 0 for all ν [48, 49].

4 Conclusions

Understanding physics in de Sitter space has long been limited by a mix of conceptual

and technical obstacles [1]. The natural observables associated with the long wavelength

behavior of fields in accelerating cosmologies are very different from the local scattering

experiments that are familiar from flat space quantum field theory [88, 89]. In addition,

perturbative calculations are technically challenging [10, 11], which makes the need for
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physical principles that can be used to guide intuition essential [44].

In this paper, we provided a new perspective on the origin of anomalous dimensions

for principal series field. We showed how they arise by direct calculation using the Mellin

representation, which confirms the results previously calculated using the Källén-Lehmann

representation [31,32]. We then demonstrated how to reproduce the same result in SdSET.

We showed how the appearance of the anomalous dimension relies on the presence of

non-dynamical operators with unique scaling behavior. These terms are essential to the

calculation of the scaling dimensions, and also to ensure that the power spectra of real

fields are positive.

In the process, we have further developed the use of Mellin space as a tool to understand

cosmological correlators. While there has been significant progress pure dS calculations

using the Källén-Lehmann representation [77–79], inflationary backgrounds break the de

Sitter isometeries [90–92] and make defining a complete basis of states more challenging.

The Mellin representation has no such limitation [40,71,72,93], so the techniques developed

here are directly applicable to inflationary models as well. Moreover, the Mellin space

calculations have a natural interpretation in the language of the SdSET, which therefore

exposes many features that help simplify the understanding of loop corrections.

There remains much to understand about operator mixing both in the context of dS

and inflation. Interacting light fields display much more complex behavior. In the massless

limit, an infinite number of operators can mix [46, 69], giving rise to stochastic inflation.

Determining non-trivial corrections to stochastic inflation is then equivalent to comput-

ing anomalous dimensions that correct this operator mixing [50, 94, 95] (see also [96, 97]).

These light fields can also mix with heavy fields to produce novel cosmological collider sig-

nals that have only recently begun to be explored [51, 98, 99]. Furthermore, at a practical

level, a systematic scheme for regulating and renormalizing the calculation of cosmological

correlators remains a work in progress [70, 87]. It would be illuminating to show that the

non-dynamical SdSET operators introduced here could be identified using a method-of-

regions style analysis [87]. In addition, we would like a better non-perturbative under-

standing of the constraints on cosmological correlators, including an argument that all

divergences can be renormalized by counterterms for the scaling operators. Much like the

study of scattering amplitudes [100], progress in direct calculations informs the bootstrap

approach, and vice versa. Therefore, the pursuit of a deeper understanding will likely

require a combination of new computational tools and new conceptual insights.
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Appendix

A Series Sum

In this appendix, we fill in some details for the calculation in Sec. 2.3, by explaining how

to manipulate the triple series sum in Eq. (2.31) into a form that can be directly used to

compare our results with the Källén-Lehmann spectral representation. For brevity, we will

only consider the case τ > τ ′:

⟨σ2(⃗k, τ)σ2(⃗k ′, τ ′)⟩′ →− H4

32π4

∑
±1,±2,±3

∞∑
n1,n2,n3=0

Γ

(
s4 +

iν

2

)
Γ

(
s4 −

iν

2

)

× (−1)n1+n2+n3

n1!n2!n3!
Γ(∓1iν − n1)Γ(∓2iν − n2)Γ(∓3iν − n3) (A.1)

×
(
− i

2
τ
)3+(±11±21)iν+2(n1+n2) ( i

2
τ ′
)−(±11±21)iν−2(n1+n2) ,

where

s4 =
3

2
+ i(±11±2 1±3 1)

ν

2
+ n1 + n2 + n3 . (A.2)

As an example, we are going to set ±1 → +, ±2 → − and sum over ±3. This will give rise

to part of the term
∑

n c(n)(−τ)2n+3(τ ′)−2n, the other two terms in the final sum can also

be obtained using the same manipulations.

First notice that the exponents of τ, τ ′ only depend on the sum of n1 + n2, therefore it

is possible to rearrange the sum into a form that does not involve explicitly summing over

powers of τ and τ ′. If we set n = n1 + n2 and change the summation bounds accordingly,

we get:

∞∑
n=0

(−1)n
(
− i

2
τ
)2n ( i

2
τ ′
)−2n−3

(
n1=n∑
n1=0

1

n1!(n− n1)!
Γ(−iν − n1)Γ(iν − n+ n1)

)

×
(∑

±3

∞∑
n3=0

(−1)n3

n3!
Γ(∓3iν − n3)Γ

(
3

2
+ n+ n3 ±3 iν

)
Γ

(
3

2
+ n+ n3

))
. (A.3)

For fixed n, the sum over n3 and n1 factorizes. Both sum can be performed using the series

representation of the hypergeometric function 2F1(a, b, c, z). For the sum over n3 we find

∑
±3

∞∑
n3=0

(−1)n3

n3!
Γ(∓3iν − n3)Γ

(
3

2
+ n+ n3 ±3 iν

)
Γ

(
3

2
+ n+ n3

)

=
2−1−2nπ5/2Γ(3

2
+ n)

(1 + cosh(2πν)) Γ(n+ 2)Γ(−1
2
− n− iν)Γ(−1

2
− n+ iν)

(A.4)
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The finite sum over n1 is

n1=n∑
n1=0

Γ(−iν − n1)Γ(iν − n+ n1)

n1!(n− n1)!
=

(−1)n22nπ3/2csch(πν)2Γ(1
2
+ n)

n!Γ(n+ 1− iν)Γ(n+ 1 + iν)
. (A.5)

This is used in deriving Eqs. (2.37) above.
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[20] SPHEREx Collaboration, O. Doré et al., “Cosmology with the SPHEREX All-Sky

Spectral Survey,” arXiv:1412.4872 [astro-ph.CO].

[21] DESI Collaboration, D. J. Schlegel et al., “A Spectroscopic Road Map for Cosmic

Frontier: DESI, DESI-II, Stage-5,” arXiv:2209.03585 [astro-ph.CO].

[22] D. J. Schlegel et al., “The MegaMapper: A Stage-5 Spectroscopic Instrument Concept for

the Study of Inflation and Dark Energy,” arXiv:2209.04322 [astro-ph.IM].

[23] D. Green, M. Lewandowski, L. Senatore, E. Silverstein, and M. Zaldarriaga, “Anomalous

Dimensions and Non-Gaussianity,” JHEP 10 (2013) 171, arXiv:1301.2630 [hep-th].

[24] X. Chen, Y. Wang, and Z.-Z. Xianyu, “Loop Corrections to Standard Model Fields in

Inflation,” JHEP 08 (2016) 051, arXiv:1604.07841 [hep-th].

[25] N. Agarwal, S. Ho, and S. Shandera, “Constraining the initial conditions of the Universe

using large scale structure,” JCAP 02 (2014) 038, arXiv:1311.2606 [astro-ph.CO].

[26] J. Gleyzes, R. de Putter, D. Green, and O. Doré, “Biasing and the search for primordial
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