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The precise measurement of a jet’s kinematics is a critical component of the physics program
based on proton–proton collision data recorded by the ATLAS detector at the Large Hadron
Collider. The determination of the energy and mass of jets containing bottom quarks 𝑏-jets is
particularly difficult as, for example, they have different radiation patterns compared to the
average jet and can contain heavy-flavour decays into a charged lepton and an unobserved
neutrino. This document reports on a novel calibration technique for jets focusing on 𝑏-jets
using transformer-based neural networks trained on simulation samples to correct reconstructed
jet properties to the true values. Separate simulation-based regression methods have been
developed to estimate the transverse momentum of small-radius jets and the transverse
momentum and mass of large-radius jets. In both cases, the regression methods move the
median measurement closer to the true value. A relative resolution improvement with respect
to the nominal calibration between 18% and 31%, depending on the transverse momentum, is
demonstrated for small-radius jets. Both the large-radius jet transverse momentum and mass
resolution are shown to improve by 25–35%.
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1 Introduction

Hadronic jets are abundantly produced in proton–proton (𝑝𝑝) collisions at the Large Hadron Collider
(LHC). Many studies of the Standard Model (SM) and searches for physics beyond the SM rely on precisely
measuring these jets. Several key signatures contain 𝑏-jets, jets produced by the hadronisation of a 𝑏-quarks,
such as the production of top quarks or heavy flavour decays of the Higgs (𝐻) and 𝑍 bosons.

In the ATLAS experiment [1], particle-flow algorithms are used to reconstruct jets and determine their
kinematic properties such as the transverse momentum 𝑝T and the mass 𝑚 [2, 3]. The objects from which
a jet is made are referred to as constituents. Depending on the physics object being captured, ATLAS
utilises small-radius (small-𝑅) or large-radius (large-𝑅) jets built with the anti-𝑘𝑡 algorithm [4] using
a radius parameter of 𝑅 = 0.4 and 𝑅 = 1.0, respectively. Small-𝑅 jets are appropriate to capture the
hadronic activity of jets formed from the hadronisation and fragmentation of high-𝑝T partons (quarks and
gluons), while large-𝑅 jets capture the hadronic decay products of boosted massive particles, such as a
high-momentum 𝐻 → 𝑏𝑏̄ decay, where the large-𝑅 jet mass 𝑚J corresponds to the mass of the initial
particle.

The current calibration scheme, referred to as the nominal calibration and documented in Refs. [5] and [6],
is used to measure jet energy and mass from detector signals in the ATLAS detector. The calibration aims
to adjust the reconstructed jet energies such that for a fixed true energy, the most probable calibrated energy
matches that true energy. Central to the calibration are studies of the response, the ratio of a jet observable
from jets reconstructed after the detector simulation divided by the value from jets reconstructed using
generated particles. The width of the response is a measure of the jet resolution. A response of unity
and resolution of zero is the ideal behaviour. In the current ATLAS calibration scheme, simulation-based
corrections are derived from studies of response as a function of a limited number of jet parameters.
Further corrections for jets in data are obtained from collider data using known physical processes or
well-reconstructed objects.

Machine learning methods based on deep neural networks (DNNs) have been employed to perform a
particular step of the energy calibration for small-𝑅 jets [7] and have been shown to improve the large-𝑅
jet energy and mass calibrations [8]. In the latter, the DNN method enhances the large-𝑅 jet response
by incorporating inter-dependent summary parameters of the reconstructed jets, such as jet substructure
variables and sums of charged and neutral energy constituents, which cannot be easily added to the current
calibration methods. The regression networks explored in this work, based on the transformer architectures
used to identify 𝑏-jets (flavour-tagging) [9, 10], utilise jet constituents and charged particle tracks within
the jet to improve the response and the resolution.

The ATLAS jet calibration is primarily derived from light quark and gluon jets [5, 6]. Due to the large
𝑏-quark mass and the relatively large semileptonic branching fraction of 𝑏-hadrons, around 20%, the
radiation patterns of 𝑏-jets significantly differ from those of light quarks or gluons. Furthermore, in a
semileptonic decay containing a muon-neutrino pair, the muon’s energy is not accounted for in the jet
clustering, and the neutrino traverses the ATLAS detector undetected. Therefore, the estimated energy for
a 𝑏-jet can deviate considerably from its true underlying energy, motivating further corrections.

So far, several ATLAS analyses have included such corrections. Muon-in-jet and PtReco described in
Ref. [11] are two common methods used to correct the energies of small-𝑅 𝑏-tagged jets. The muon-in-jet
correction adds the muon four-momentum to the jet four-momentum and removes the energy deposited by
the muon in the calorimeter. For small-𝑅 jets, the correction utilises the closest muon to the jet axis within
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Δ𝑅 = 0.41 with a 𝑝T greater than 5 GeV. The PtReco method applies a correction based on the jet 𝑝T from
the residual difference in the response from unity versus jet 𝑝T. These two corrections can improve the mass
resolution of the reconstructed Higgs boson mass in its decay to a 𝑏𝑏̄ pair by about 20% if the two 𝑏-quarks
are reconstructed as two small-𝑅 jets [11]. The muon-in-jet method is also regularly used to correct
energies of large-𝑅 𝑏-tagged jets, utilising multiple muons within the jet to improve the reconstructed
Higgs mass resolution by between 5% and 12%, depending on the applied kinematic selection [12–14].

In the CMS experiment, a DNN-based regression method has been implemented to correct for the energies
of the small-𝑅 𝑏-tagged jets [15]. For large-𝑅 jets, a flavour-aware jet energy and resolution regression has
been recently included within the flavour-tagging approach [16].

The agreement between data and simulation for the energy measurement of small-𝑅 𝑏-jets has been studied
in ATLAS using top-quark-pair events [17] and balanced against a well-calibrated photon [7]. Good
agreement was reported in both studies.

This note presents a regression method to predict a correction to the calibrated jet momentum or mass,
focusing on 𝑏-jets. The two jet regression networks, one for small-𝑅 and one for large-𝑅 jets predict
an additional simulation-based correction for 𝑏-jets on top of the nominal ATLAS jet calibration to
improve the response. While both networks had similar origins, the adaptations to the regression problem
were performed in separate yet complementary directions. Both regression algorithms use the kinematic
properties of the jet along with charged constituents, similar to the flavour-tagging networks. The small-𝑅
jet network explored semileptonic 𝑏-hadrons decays by adding lepton information to the input features
and modifying the truth jet definition to account for the neutrinos and muons from the 𝑏-hadron decay.
The large-𝑅 network attempted to capture all the activity within the jet by using both charged and neutral
constituents along with additional tracks in the jet that were not included in the clustering. Both models
predict the ratio of the true value to the calibrated value of the transverse momentum 𝑝T (and mass 𝑚𝐽

for large-𝑅 jets) based on training with simulated samples enriched in true 𝑏-jets. The prediction is then
applied as a correction to the calibrated jet to obtain an updated estimate of the true jet kinematics. All
methods and their presented performance in this note are based on simulations with the conditions of the
ATLAS Run 2 data-taking (2015–2018) of 𝑝𝑝 collisions at a centre-of-mass energy

√
𝑠 of 13 TeV.

This note is organised as follows. The ATLAS experiment and the simulation samples used in these studies
are described in Sections 2 and 3. Object definitions are given in Section 4. The methods to derive the 𝑏-jet
energy and mass corrections are detailed in Section 5, and their performances on simulation are shown in
Section 6. Concluding remarks are given in Section 7.

2 The ATLAS detector

The ATLAS experiment [1] at the LHC is a multipurpose particle detector with a forward–backward
symmetric cylindrical geometry and a near 4𝜋 coverage in solid angle. It consists of an inner tracking
detector surrounded by a thin superconducting solenoid providing a 2 T axial magnetic field, electromagnetic

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector
and the 𝑧-axis along the beampipe. The 𝑥-axis points from the IP to the centre of the LHC ring, and the 𝑦-axis points upwards.
Polar coordinates (𝑟, 𝜙) are used in the transverse plane, 𝜙 being the azimuthal angle around the 𝑧-axis. The pseudorapidity is
defined in terms of the polar angle 𝜃 as 𝜂 = − ln tan(𝜃/2) and is equal to the rapidity 𝑦 = 1

2 ln
(
𝐸+𝑝𝑧𝑐
𝐸−𝑝𝑧𝑐

)
in the relativistic limit.

Angular distance is measured in units of Δ𝑅 ≡
√︁
(Δ𝑦)2 + (Δ𝜙)2.
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and hadronic calorimeters, and a muon spectrometer. The inner-detector system (ID) provides charged-
particle tracking in the range |𝜂 | < 2.5. The high-granularity silicon pixel detector covers the interaction
region and typically provides four measurements per track, the first hit generally being in the insertable
B-Layer (IBL) followed by the B-Layer. It is followed by the SemiConductor Tracker (SCT), which
usually provides eight measurements per track. These silicon detectors are complemented by the transition
radiation tracker (TRT), Lead/liquid-argon (LAr) sampling calorimeters provide electromagnetic (EM)
energy measurements with high granularity within the region |𝜂 | < 3.2. A steel/scintillator-tile hadronic
calorimeter covers the central pseudorapidity range (|𝜂 | < 1.7). The endcap and forward regions are
instrumented with LAr calorimeters for EM and hadronic energy measurements up to |𝜂 | = 4.9. The muon
spectrometer (MS) surrounds the calorimeters and is based on three large superconducting air-core toroidal
magnets with eight coils each. The field integral of the toroids ranges between 2.0 and 6.0 T m across most
of the detector. The muon spectrometer includes a system of precision tracking chambers up to |𝜂 | = 2.7
and fast detectors for triggering up to |𝜂 | = 2.4. The luminosity is measured mainly by the LUCID–2 [18]
detector, which is located close to the beampipe. A two-level trigger system is used to select events [19].
The first-level trigger is implemented in hardware and uses a subset of the detector information to accept
events at a rate below 100 kHz. This is followed by a software-based trigger that reduces the accepted event
rate to 1 kHz on average depending on the data-taking conditions. A software suite [20] is used in data
simulation, in the reconstruction and analysis of real and simulated data, in detector operations, and in the
trigger and data acquisition systems of the experiment.

3 Simulated samples

The training and evaluation of the jet regression networks presented are performed on a per-jet basis, using
jets from simulated 𝑝𝑝 collisions at

√
𝑠 = 13 TeV. A separate mix of samples is used for small-𝑅 and large-𝑅

jets motivated by kinematic differences. Both include a training dataset of samples used consistently for
training, validation, and testing and a separate dataset of evaluation samples to test the performance on
leading simulations of SM resonances. In an analysis setting, flavour-tagging results in a sample dominated
by 𝑏-jets with a varying degree of non-𝑏-jets depending on the exact requirements applied. Instead of
applying requirements on the continuously improving ATLAS flavour-tagging discriminants, the training
samples include a mixture of jet flavours, including those without any 𝑏-hadron decays, to ensure good
performance in various analysis settings.

All simulation samples used in this study are passed through the ATLAS full detector simulation [21]
based on GEANT4 [22] and reconstructed using detector geometry and algorithms corresponding to the
2015–2018 data-taking period of the LHC. The effect of multiple interactions in the same and neighbouring
bunch crossings (pile-up) was included by overlaying the simulated hard-scattering event with inelastic 𝑝𝑝

collisions generated with Pythia 8.186 [23] using the NNPDF2.3lo PDF [24] and the A3 set of tuned
parameters [25]. The decays of 𝑏- and 𝑐-hadrons are modelled by EvtGen [26], except for samples
generated with the Sherpa [27] event generator where the internal hadrons++ module is used [28].

3.1 Small-𝑹 jet samples

The training dataset used in the small-𝑅 regression algorithms consists of jets from 𝑡𝑡 production with
at least one top quark decaying leptonically, as well as from 𝑍 (𝜇𝜇)+jets production enriched in 𝑏-jets.
The 𝑍 (𝜇𝜇)+jets sample increases the statistics of low-𝑝T jets. The dataset is composed of 266 million
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𝑏-jets from 𝑡𝑡 decays and 19 million jets from 𝑍 (𝜇𝜇)+jets production. A flavour ratio of 9:1:9 is used for
light:charm:bottom jets.

The evaluation samples include jets from Higgs boson or 𝑍 boson decays. The performance on 𝐻 decays to
two 𝑏-jets 𝐻 (𝑏𝑏̄) is evaluated on simulated SM Higgs boson production in association with a leptonically
decaying 𝑍 boson. Similarly, the SM 𝑍𝑍 production process where one 𝑍 boson decays to 𝑏𝑏̄ and the
other decays leptonically is considered to evaluate the performance on a resonance not included in the
training dataset.

The details on versions of the MC event generators, tunes and parton distribution functions (PDF) used
in the simulation samples for training and evaluating small-𝑅 regression algorithm are summarised in
Table 1.

Table 1: Details of the simulation samples used for training and evaluating the small-𝑅 jet calibration algorithm.
ℓ = 𝑒, 𝜇, 𝜏. † Enriched in 𝑏-jets.

Process Generator Parton shower PDF set
Training, validation and test samples

𝑝𝑝 → 𝑡𝑡 fully/semileptonic Powheg [29–31] Pythia 8.230 [23] NNPDF3.0nlo [24]with A14 [32]

𝑝𝑝 → 𝑍 (𝜇𝜇)+jets† MadGraph5_aMC@NLO [33] Pythia 8.245 with A14 NNPDF3.0nlo+ FxFx [34]
Evaluation samples

𝑝𝑝 → 𝑍 (ℓℓ)𝐻 (𝑏𝑏̄) Powheg Box v2 [29–31] Pythia 8.230 with NNPDF3.0nlo+ MiNLO [35–37] AZNLO [38]
𝑝𝑝 → 𝑍 (ℓℓ)𝑍 (𝑏𝑏̄) Sherpa [27] Sherpa 2.2.11 NNPDF3.0nnlo

3.2 Large-𝑹 jets samples

The training and evaluation datasets include multiple simulated Higgs boson samples. Jets that contain a
Higgs boson decay to 𝑏𝑏̄ or 𝑐𝑐 pairs are sourced from the simulation of a 𝐻 boson produced in association
with a 𝑍 boson (𝑍𝐻) decaying to muons. To avoid artificial mass peaks being created when evaluating the
large-𝑅 jet regression network, the training sample is generated with a biased phase-space sampling by
choosing the Higgs boson width to be 400 GeV and a Higgs boson mass range between 25–200 GeV. This
achieves an approximately uniform, or flat, distribution of the jet mass. In contrast, the evaluation sample
consists of SM 𝑍𝐻 production where the Higgs boson mass and width are set to SM values; the jet 𝑝T has
a smoothly falling physical distribution, and the jet mass is sharply peaked. Production of 𝑍𝐻 events was
simulated at next-to-leading-order (NLO) accuracy in quantum chromodynamics (QCD) using the Powheg
program [29–31] as discussed in Ref. [39].

Another process used in both training and evaluation is jet production from purely QCD processes, or
multijet production, which includes a mixture of jet flavours. In order to ensure a sufficient population
of QCD jets at high momenta, the multijet process simulation is performed in slices of leading truth jet
𝑝T [40] (further defined in Section 4.) Multijet production, dictated by QCD, contains a small fraction of
𝑏-jets. To maximise the number of QCD jets with two 𝑏-hadrons for training, a multijet sample, denoted
as multijet (𝑏𝑏̄), is created and requires the presence of four small-𝑅 truth jets with 𝑝T >15 GeV of which
at least two are 𝑏-jets.
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Boosted SM resonances, which are not included in the training sample, provide a robust test case for
evaluating the network’s generalisation and performance on unseen data. Top-quark jets are produced in
the decay of a hypothetical 𝑍 ′ boson (𝑍 ′ → 𝑡𝑡) of mass 4 TeV. This ensures the population of boosted
top-quark jets in the high-𝑝T region is large. For the same reason, 𝑍 (𝑏𝑏̄) jets are taken from a sample of 𝑍
decays to 𝑏𝑏̄ where the 𝑍 boson is produced with a 𝑝T above 200 GeV.

The training dataset contains 80 million large-𝑅 jets, which consists of 15 million flat-mass 𝐻 (𝑏𝑏̄) jets, 15
million flat-mass 𝐻 (𝑐𝑐) jets, 25 million QCD jets from multijet production without flavour selection, and
25 million QCD jets containing two 𝑏-hadrons from the multijet (𝑏𝑏̄) sample. The number of jets in the
evaluation sample is approximately 15 thousand SM 𝐻 (𝑏𝑏̄) jets, 575 thousand 𝑍 (𝑏𝑏̄) jets, 725 thousand
top-quark jets, and 800 thousand QCD jets. The versions of the MC event generators, tunes and parton
distribution functions (PDF) used are detailed in Table 2 for training and evaluation samples.

Table 2: Details of the simulation samples used for training and evaluating the large-𝑅 jet calibration algorithm.
ℓ = 𝑒, 𝜇. † QCD jets refer to multijet jet production with heavy-flavour hadron content determined from quantum
chromodynamics. ‡ The multijet (𝑏𝑏̄) sample provides QCD jets with two 𝑏-hadrons, QCD (𝑏𝑏̄), as described in the
text.

Jet type Process Event generator and tune PDF set
Training, validation and test samples

𝐻 (𝑏𝑏̄) 𝑞𝑞 → 𝑍𝐻, 𝑍 → 𝜇+𝜇− Pythia 8.306 [23] with A14 [32] NNPDF3.0nlo [24]
𝐻 (𝑐𝑐) 𝑞𝑞 → 𝑍𝐻, 𝑍 → 𝜇+𝜇− Pythia 8.306 with A14 NNPDF3.0nlo
QCD † Multijet Pythia 8.235 with A14 NNPDF2.3lo

QCD (𝑏𝑏̄) ‡ Multijet (𝑏𝑏̄), Pythia 8.235 with A14 NNPDF2.3lo
𝑁jet ≥ 4, 𝑁𝑏−jet ≥ 2

Evaluation samples

𝐻 (𝑏𝑏̄) 𝑞𝑞/𝑔𝑔 → 𝑍𝐻, Powheg v2 +Pythia 8.212 [30] NNPDF3.0nlo
𝑍 → ℓℓ̄/𝜈𝜈̄/𝑞𝑞 with AZNLO [38]

Top 𝑍 ′ → 𝑡𝑡 Pythia 8.235 with A14 NNPDF2.3lo
𝑍 (𝑏𝑏̄) 𝑍 → 𝑏𝑏̄ Sherpa 2.2.11 [27] NNPDF3.0nnlo
QCD † Multijet Pythia 8.235 with A14 NNPDF2.3lo

4 Object definitions

Multiple types of jet definitions are considered for this study: truth, small-𝑅, and large-𝑅 constructed
from charged and neutral objects. All jets are created using the anti-𝑘𝑡 algorithm [4] implemented in
fastjet [41]. The movement of charged particles through the ID is reconstructed as tracks from individual
hits in tracking layers [42]. Neutral and charged particles, including electrons, photons, and hadrons,
deposit their energy in the electromagnetic and hadronic calorimeters and are reconstructed as massless
topological clusters of calorimeter cells [43]. Muons penetrate the calorimeters, typically depositing only
3 GeV before traversing the MS [44]. Neutrinos pass through the detector without interacting and are not
reconstructed.

Tracks and calorimeter clusters are combined to form higher-level flow objects that are utilised to construct
jets. Particle flow objects (PFOs) represent a single particle and were designed to improve jet performance
at low 𝑝T. Charged PFOs are created through the association of tracks and topoclusters to leverage superior
energy measurement from the ID at low 𝑝T and not double-count energy deposits. This improves the
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accuracy of the charged-hadron measurement while retaining the calorimeter measurements of neutral
PFOs [2]. Track-calo clusters (TTCs) [45] are flow objects designed to improve reconstruction at high
𝑝T, where the excellent energy resolution of the calorimeter complements the precise angular resolution
of the tracking system. Unified flow objects (UFOs) are created from the union of the PFO and TCC
algorithms to provide optimal performance across a wide kinematic range [3]. UFOs can be charged or
neutral depending on the presence of a track object. Tracks used to create muons passing the Medium [46]
identification criteria are removed from the set of tracks used to create PFO and UFO objects.

4.1 Truth jets

Truth-jets are created by clustering stable particles originating from the hard-scatter interaction in the
simulation event record with a lifetime 𝜏 in the particle rest frame such that 𝑐 𝜏0 > 10 mm. In particular,
𝑏-hadrons are not stable, and only the stable decay products of 𝑏-hadrons are used in the clustering
algorithm. Particles that do not leave significant energy deposition in the calorimeter (i.e. muons and
neutrinos) are generally excluded. For the small-𝑅 regression, an alternative to the truth-jet definition used
to derive the nominal calibration is employed. This alternative includes leptons from resonance decays,
specifically those expected from the decay of a 𝑏-hadron. The small-𝑅 truth jet clustering algorithm uses
the anti-𝑘𝑡 algorithm with radius parameter 𝑅 = 0.4 implemented in fastjet [41]. Large-𝑅 truth jets
use as radius parameter 𝑅 = 1.0 and are groomed as those reconstructed from the detector information,
incorporating the grooming procedure within the jet definition described below.

4.2 Small-𝑹 jets

Jets used in the small-𝑅 regression are reconstructed using the same algorithms applied to the corresponding
truth jets. They are created by clustering PFOs using the anti-𝑘𝑡 algorithm with radius parameter 𝑅 = 0.4
implemented in fastjet [41]. Jets must have a Jet Vertex Tagger discriminant of values greater than 0.5 to
suppress pile-up contamination [47]. Jets are matched to a truth jet, where the truth jet with the largest
𝑝T within Δ𝑅 < 0.4 of the reconstructed jet is selected. If no truth jet is found, the jet is discarded. Jets
entering the training are required to have reconstructed and truth 𝑝T above 10 and 7 GeV, respectively. The
selection requirement on the truth 𝑝T is looser to avoid biases in the calibration.

Tracks passing the Loose [48] quality criteria and vertex-association requirement given in Table 3 are used
as input for the regression model. The selection is looser than that used to create charged PFOs. Neutral
PFOs are not incorporated into the small-𝑅 jet regression network.

Small-𝑅 jets are assigned a flavour label depending on the number and type of hadrons with 𝑝T > 5 GeV
found within Δ𝑅 < 0.3 of the jet in question. A 𝑏-jet is defined by the presence of a truth 𝑏-hadron, 𝑐-jets
are those with a truth 𝑐-hadron and no 𝑏-hadrons, while the light jets do not have any heavy-flavour hadrons
near the jet axis.

Muons passing the Medium identification criteria are considered for the muon-in-jet correction with their
energy deposited in the calorimeter removed to avoid double-counting. For the regression model, rather
than applying the muon-in-jet correction directly, soft-electrons and soft-muons information is provided as
input features to the regression network. An electron with 1 < 𝑝T < 50 GeV and |𝜂 | < 2.5 within the jet
cone, which has the highest probability of being from a heavy flavour decay based on the ATLAS Electron
Identification tool [50] is identified as a soft electron. Similarly, a muon within the jet cone is identified as
soft based on the output of the ATLAS Run 2 Soft Muon Tagger tool [51].
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Table 3: Loose [48] track selection requirements used for the small-𝑅 jet calibration algorithm, where 𝑑0 is the
transverse impact parameter (IP) of the track, 𝑧0 is the longitudinal IP with respect to the primary vertex and 𝜃 is the
track polar angle. Shared hits are hits used in the reconstruction of multiple tracks which have not been classified as
split by the cluster-splitting neural networks [49]. A hole is a missing hit, where one is expected, on a layer between
two other hits on a track.

Parameter Requirement
Track selection

𝑝T > 500 MeV
Silicon hits ≥ 8
Shared silicon hits ≤ 1
Silicon holes < 2
Pixel holes < 1

Track-to-vertex association
|𝑑0 | < 3.5 mm
|𝑧0 sin 𝜃 | < 5 mm

4.3 Large-𝑹 jets

Large-𝑅 jets are built from UFOs using the anti-𝑘𝑡 algorithm with radius parameter 𝑅 = 1.0 implemented
in fastjet [3]. Pile-up and underlying event contributions are removed via grooming with the Soft-Drop
algorithm [52, 53] along with Constituent Subtraction [54] and SoftKiller [55]. Jets are matched to a truth
jet where the truth jet with the largest 𝑝T within Δ𝑅 < 0.75 of the reconstructed jet is selected. The truth
definition used for the large-𝑅 jet studies does not include leptons from resonance decays. Large-𝑅 jets are
required to have 𝑝T > 200 GeV and |𝜂 | < 2.

UFO constituents are the primary regression model input and must satisfy the selection criteria based on
their properties. Tracks used to construct UFOs must pass the Tight Primary [48] criteria and be associated
with the primary vertex (PV) using a working point that is designed to select all prompt and non-prompt
tracks from a given vertex. The Run 2 adaptive multi-vertex finder [56] uses a weighted Kalman filter
to minimise the sum of standardised distances (𝜒 = 𝑑/𝜎𝑑) of tracks to the vertex. Track compatibility is
evaluated through a 𝜒2-like measurement called weight. The “MaxWeight” working point assigns tracks
used in any vertex fit to the vertex for which they have the highest weight. If a track is not used in any vertex
fit, the selection reverts to impact parameter (IP) requirements (|𝑑0 | < 5 mm and |𝑧0 sin 𝜃 | < 5 mm).

Additional tracks that are not associated with the selected UFOs and are ghost-associated [7, 57] to the
large-𝑅 jet are also used as model inputs if they satisfy a looser track selection criteria and are compatible
with the PV. Both the UFO and looser track selection criteria are summarised in Table 4.

Large-𝑅 jets are assigned a type and flavour label depending on the number and type of truth particles
matched to the jet using ghost association. Jet type is defined by the presence of and compatibility with
a massive truth particle checked in order from top quark, 𝑊 , 𝑍 , then 𝐻 [58, 59]. A jet failing to match
any massive truth particle is labelled as a QCD jet. Top-quark jets are required to contain the subsequent
hadronic 𝑊 boson decays and a 𝑏-hadron. 𝐻 jet flavour is 𝐻 (𝑏𝑏̄) if two 𝑏-hadrons are associated with the
jet. Otherwise, it can be an 𝐻 (𝑐𝑐) jet if two 𝑐-hadrons are found. A similar definition is used for 𝑍 (𝑏𝑏̄)
jets. The QCD jet flavour label is determined by first counting the number of 𝑏-hadrons. If there are fewer
than two, 𝑐-hadrons are counted. If there are no 𝑏- and 𝑐-hadrons, the jet is labelled as a light jet.
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Table 4: UFO constituents and additional track selection requirements, where 𝑑0 is the transverse impact parameter
(IP) of the track, 𝑧0 is the longitudinal IP with respect to the primary vertex and 𝜃 is the track polar angle. Shared hits
are hits used in the reconstruction of multiple tracks which have not been classified as split by the cluster-splitting
neural networks [49]. A hole is a missing hit, where one is expected, on a layer between two other hits on a track.
𝑁IBL and 𝑁B-Layer are the number of hits a track has on the IBL and B-Layer, respectively. UFO selection corresponds
to Tight Primary [48] track selection and “MaxWeight” track-to-vertex operating point [56]. †IP requirements are
used for tracks not included in any vertex fit. See the text for more information.

Parameter UFO constituents requirement Additional track requirement
Track selection

𝑝T > 500 MeV > 500 MeV
Silicon hits ≥ 9(11) if |𝜂 | ≤ 1.65(≥ 1.65) ≥ 8
Shared silicon hits ≤ 1 –
Silicon holes ≤ 2 < 3
Pixel holes 0 < 2
𝑁IBL + 𝑁B-Layer > 0 –

Track-to-vertex association
Tracks in vertex fits MaxWeight –
|𝑑0 | < 5 mm† < 5 mm
|𝑧0 sin 𝜃 | < 5 mm† < 5 mm

For training, all jets with 𝑝T in the range 200 GeV to 1.5 TeV, |𝜂 | < 2.0 and reconstructed invariant mass in
the window 20 GeV < 𝑚J < 300 GeV when applying the nominal calibration are considered. The relatively
low mass cut for the training sample ensures the truth mass distribution is unbiased above 50 GeV, allowing
for a smooth response from the neural network predictions. For evaluation, the mass window is changed to
40 GeV < 𝑚J < 300 GeV after the jet regression network correction has been applied.

5 Neural network architecture

5.1 Network architecture

The model architecture used for jet calibration is based on the GN2 and GN2X flavour-tagging models
for small- and large-𝑅 jets [9, 10]. Both models utilise the same overall architecture as the GN1 model
described in Ref. [9], but use the Transformer network architecture [60] as in the GN2-type models instead
of a Graph Neural Network. In the following, the architecture is detailed, and schematics can be found in
Appendix A.

The models take as input a set of jet kinematic properties and variables associated with each charged
flow object or track and neutral flow object (later referred to as “constituent-level”). The full list of
features is outlined in Section 5.2. Jet- and constituent-level inputs are concatenated, and the combined
jet-constituent sequence vectors are fed into a per-constituent initialiser network. In the case of large-𝑅 jets,
additional charged and neutral UFO information is fed into separate initialiser networks to allow separate
representations to be learned for each input type. Each initialiser network uses a Deep Sets style [61]
architecture but does not contain a reduction operation over the output constituent representations. The
initialiser network for each input type consists of a single dense layer of size 256 and a rectified linear unit
(ReLU) activation function [62–64] projecting the input representations to an embedding dimension of
256.
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The constituent representations are fed into a Transformer Encoder where the transformer architecture
utilised follows that introduced in Ref. [65]. Multiple Layer Normalisation layers [66] are used to aid in
providing stability during training along with residual connections. The small-𝑅 jet (large-𝑅 jet) regression
model employs 4 (3) encoder blocks with 8 (2) attention heads. The model does not use separate transformer
encoders for each input type due to the significant increase in the number of parameters required.

The output representation of each constituent is then combined to form a global representation of the jet
to be used for calibration. This global representation is formed by a weighted sum over the constituent
representations, where the attention weights for the sum are learned during training.

The training targets for each regression are the ratio of truth and reconstructed level values of a kinematic
variable. Each regression task takes the global jet representation as input, and the small-𝑅 jet (large-𝑅 jet)
model consists of a dense neural network with four layers of size 128 (256), 128, 64, 32 neurons, followed
by a ReLU (Mish [67]) activation layer. The regression loss function used is the Mean Absolute Error
(MAE), also known as L1 loss. The total number of trainable parameters in the small-𝑅 jet (large-𝑅 jet)
model is approximately 1.7 (2.4) million.

The training datasets are split 80/10/10 into training, validation, and test samples. The training and
validation samples are used to train a network and monitor for overtraining. In contrast, the test sample is
used to evaluate the model’s performance on a per-jet basis.

5.2 Input features

The input objects for the small-𝑅 jet regression network are tracks within the jet that pass the requirements
in Table 3 as discussed in Section 4.2. Therefore, the jet regression is trained on jet-level kinematic features
and the constituent-level features from tracks listed in Table 5 as well as soft lepton features listed in
Table 6.

The input objects and features used for the large-𝑅 jet regression network are the same as the GN2X
flavour-tagging network [10]. The input objects are all the UFO jet constituents and additional tracks
within the jet that pass the requirements in Table 4 as discussed in Section 4.3. Jet-level kinematic features,
constituent-level features from tracks and both types of UFOs listed in Table 5 are used. Two separate tasks
are used for mass and 𝑝T regression.

The effect of simplifying the set of input features on the regression performance was studied. Four soft
muon variables measure significance of compatibility between ID and MS tracks, as well as the track
and the PV location; these variables are not highly correlated to jet energies but rather represent object
quality. The track 𝑞/𝑝 is highly correlated to another input feature, 𝑝T. The calorimeter variables for soft
electrons help distinguish electrons from other objects and any derived improvement to the electron energy
measurement is small compared to the total jet energy. Removing all of these variables increases the width
of the response calculated with the small-𝑅 jet regression network by approximately 2%. A suite of input
feature ablation studies is left for future studies.

Adopted from the flavour-tagging models, a comprehensive description of each track or charged flow object
– including the two IPs and their associated significances, the track momentum and angular distance from
the jet with the associated uncertainties, and nine hit multiplicity counts – is provided to the networks.
The optimal set of input features can differ for classification and regression networks. For example, track
hit content influences the IP resolution and, thus, flavour-tagging performance, but it does not strongly
correlate with jet kinematics. Removing all nine track hit multiplicity variables from the large-𝑅 network
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degrades the model’s achieved mass resolution by about 1%. Removing the variables related to the IPs
results in an approximate 3% performance loss. Other feature ablations would eliminate essential energy
and angular information and are therefore left for future studies.

Table 5: Input features to the regression models. Features are separated into jet features, track and charged UFO
constituent (flow) features, and charged and neutral UFO constituent features. Tracks and charged UFO constituents
have a common set of input features related to the ID and tracking. Charged and neutral UFO constituents have a
separate set of common features related to the calorimeter energy measurements. Only features associated with jets,
tracks and ones marked with † are used for small-𝑅 jets. Jet features, constituent-level features from tracks and both
types of UFOs, and ones marked with ‡ are used for large-𝑅 jets.

Jet feature Description
𝑝T Transverse momentum
𝜂 Signed pseudorapidity
𝑚 ‡ Jet mass
Track & charged UFO feature Description
𝑞/𝑝 Track charge divided by reconstructed momentum
d𝜂 Pseudorapidity of track relative to the jet 𝜂
d𝜙 Azimuthal angle of the track, relative to the jet 𝜙
𝑑0 Transverse IP: Closest distance from track to beam-line in the transverse plane
𝑧0 sin 𝜃 Longitudinal IP: Closest distance from track to PV in the longitudinal plane
𝜎(𝑞/𝑝) Uncertainty on 𝑞/𝑝
𝜎(𝜃) Uncertainty on track polar angle 𝜃

𝜎(𝜙) Uncertainty on track azimuthal angle 𝜙

𝑠(𝑑0) Significance of transverse IP
𝑠(𝑧0 sin 𝜃) Significance of longitudinal IP times the sin of the polar angle
nPixHits Number of pixel hits
nSCTHits Number of SCT hits
nIBLHits Number of IBL hits
nBLHits Number of B-layer hits
nIBLShared Number of shared IBL hits
nIBLSplit Number of split IBL hits
nPixShared Number of shared pixel hits
nPixSplit Number of split pixel hits
nSCTShared Number of shared SCT hits
LeptonID † Information on if the track was used in lepton reconstruction
Charged & neutral UFO feature Description
𝑝Flow

T ‡ Transverse momentum of charged flow constituent
𝐸Flow ‡ Energy of charged flow constituent
d𝜂Flow ‡ Pseudorapidity of track relative to the large-𝑅 jet 𝜂
d𝜙Flow ‡ Azimuthal angle of the track, relative to the large-𝑅 jet 𝜙
d𝑟Flow ‡ Angular distance of the track from the large-𝑅 jet direction

6 Regression performance

The performance of small-𝑅 and large-𝑅 jet regression networks is presented in the relevant phase space,
with the response defined as the ratio of a reconstructed jet quantity over the corresponding truth jet
quantity. The jet 𝑝T response is presented for both small-𝑅 and large-𝑅 jets, and the jet mass response is
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Table 6: Additional soft muon and electron input features used for the small-𝑅 jets regression [50, 51].

Soft Muon Input Description
𝑝T Transverse momentum
𝜂 Signed pseudorapidity
𝜙 Azimuthal angle
𝑑𝑅 Angular distance of the soft muon from the small-𝑅 jet axis
𝑞/𝑝 Muon charge divided by the reconstructed momentum
Momentum Balance Significance Ratio of the difference in momentum measured by the ID and MS to the

uncertainty on the energy loss measured by the calorimeters
Scattering Neighbour Significance Sum of the significances of the angular difference Δ𝜙 between pairs of

adjacent hits along the track, multiplied by the particle charge
𝑝rel

T Orthogonal projection of the muon 𝑝T onto the jet axis
𝑑0 Transverse IP: Closest distance from track to beam-line in the transverse

plane
𝑧0 Longitudinal IP: Closest distance from track to PV in the longitudinal plane
𝜎(𝑑0) Uncertainty on measurement of transverse IP
𝜎(𝑧0) Uncertainty on measurement of longitudinal IP
𝑑0/𝜎(𝑑0) Significance of transverse IP
𝑧0/𝜎(𝑧0) Significance of longitudinal IP
Soft Electron Input Description
𝑝r

T Relative 𝑝T of the electron with respect to the jet
𝑑𝑅 Angular separation between electron and jet axis
𝑝iso

T Isolation variable
|𝜂 | Absolute value of pseudorapidity
𝑠(𝑑0) Transverse IP: Closest distance from track to beam-line in the transverse

plane
𝑧(𝑑0) Longitudinal IP: Closest distance from track to PV in the longitudinal plane
𝑠(𝑑0/𝜎𝑑0 ) Significance of the transverse IP
Δ𝜙res The azimuthal angle difference Δ𝜙 between the cluster position in the middle

layer and the track.
𝐸/𝑝 Ratio of the cluster energy to the track momentum
𝑅had Ratio of 𝐸T in the hadronic calorimeter to 𝐸T of the EM cluster
𝑅had1 Ratio of transverse energy 𝐸T in the first layer of the hadronic calorimeter to

𝐸T of the EM cluster
𝐸ratio Ratio of the energy difference between the largest and second-largest energy

deposits in the cluster over the sum of these energies
𝑤𝜂2 Lateral shower width
𝑅𝜂 Ratio of the energy in 3 × 7 cells over the energy in 7 × 7 cells centered at

the electron cluster position
𝑓1 Ratio of the energy in the strip layer to the total energy in the EM accordion

calorimeter
𝑓3 Ratio of the energy in the back layer to the total energy in the EM accordion

calorimeter
𝑝HF Probability of being from heavy flavour decay
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presented for large-𝑅 jets. Key performance metrics include the median response and the relative response
resolution, defined as one-half the inter-quantile range (IQR) between 15.9% and 84.1% percentiles,
divided by the median. Achieving a median response close to one and uniform across the phase space is
crucial for minimising the complexity and uncertainties in the ultimate calibration procedure. Resolution
improvements are quantified using the root square difference (RSD) defined as sgn (𝜎′ − 𝜎)

√︃��𝜎′2 − 𝜎2
��,

where 𝜎 (𝜎′) denotes the nominal calibration (regression) relative resolution. Resolutions closer to zero are
indicative of better performance as the reconstructed values are closer to the true values. The uncertainty
on the median and IQR are both calculated as the standard deviation of the same quantity calculated with
100 sub-samples.

6.1 Small-𝑹 jet regression network performance

This section describes the performance of the small-𝑅 regression model trained on the training dataset
defined in Section 3.1 using the Transformer network and baseline inputs defined in Section 5. With
the simulation-based corrections of the nominal calibration applied [5], the small-𝑅 regression network
performance is compared to the nominal calibration with and without the muon-in-jet and PtReco corrections.
Performance is only shown for jets matched to truth 𝑏-jets and satisfying 𝑝truth

T > 20 GeV, imitating the
minimum kinematic selection generally applied to 𝑏-jets in physics analyses.

0.0 0.5 1.0 1.5 2.0

b-jet preco
T /ptruth

T

10
1

10
2

10
3

10
4

10
5

10
6

N
um

be
r o

f b
-je

ts

N  = 0

0.0 0.5 1.0 1.5 2.0

b-jet preco
T /ptruth

T

N  = 1

0.0 0.5 1.0 1.5 2.0

b-jet preco
T /ptruth

T

N  = 2

s  = 13 TeV, tt Powheg+Pythia
anti-kt R=0.4 PFlow jets

ATLAS Simulation Preliminary Nominal Calibration
+PtReco

Small-R Regression

Figure 1: Distribution of 𝑏-jet 𝑝T response split by the number of muons in the jet. The performance is evaluated on
the 𝑏-jets in the 𝑡𝑡 samples from the test set of the training samples listed in Table 1. Uncertainties are not shown.

Figure 1 shows the distribution of 𝑏-jet 𝑝T response split by the number of muons in the jet. The absolute
number of jets is presented, indicating the roughly 15% rate of finding a muon within the jet. Jets without
muons typically have a hadronically decaying 𝑏-hadron, leading to a response distribution for the nominal
calibration centred at unity with an expected upward shift from the PtReco correction. However, the
nominal calibration response for jets with at least one muon shows a decrease in median response of around
25%.
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Figure 2 shows the 𝑏-jet response as a function of the truth jet 𝑝T. The median 𝑝T response of the nominal
calibration is within 5% of unity. It changes non-linearly with jet 𝑝T, while the median response after
the PtReco and muon-in-jet corrections varies by up to 20%, and the median response of the regression
changes by up to 10% over the 𝑝T range studied. A smaller relative 𝑝T resolution translates to a better
resolution on the mass of heavy particles decaying to two separate, or resolved, 𝑏-jets. For 𝑏-jets with 𝑝T
within 40-100 GeV, typical for decays of heavy SM particles (𝑊/𝑍/𝐻/𝑡), the PtReco correction improves
the relative resolution by 20% while the regression model improves by around 30%.

Figure 3 shows the 𝑏-jet response as a function of the number of muons in the jet. The response is stable
for jets with at least one muon, while the nominal calibration response is degraded for jets with muons. The
regression model improves the relative resolution for all muon multiplicities by 5% for jets with exactly
one muon and 15% for jets with two or more muons relative to the PtReco correction.

The relative scalar sum of track 𝑝T over the jet 𝑝T (Σ𝑝track
T /𝑝jet

T ) is used within the jet calibration pipeline
as part of the simulation-based corrections known as the global sequential calibration. This correction
improves the jet 𝑝T resolution and associated uncertainties by removing the dependence of the reconstructed
jet response on jet observables [5]. The DNN replacement uses similar information [7] but was not available
for the studies presented here. Figure 4 shows the 𝑏-jet response as a function of the relative scalar sum of
track 𝑝T. There is a substantial reduction in the median response of nominal calibration 𝑝T when the track
𝑝T sum is greater than 40% of the calibrated jet 𝑝T. The PtReco procedure over-corrects the jet 𝑝T when
the sum of the track 𝑝T is less than 80% of the jet 𝑝T and mitigates the strong reduction in the median
response seen in the nominal calibration alone. When the regression model is used, the median response is
stable and always within 2% of unity. The largest region of improvement from the regression model is
when the scalar sum of track 𝑝T is greater than the jet momentum.
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Figure 2: The median (left) and relative resolution (right) of the 𝑏-jet 𝑝T response are plotted as a function of truth
jet 𝑝T. The performance is evaluated on 𝑏-jets in the 𝑡𝑡 samples from the test set of the training samples listed in
Table 1. The width of the coloured lines represents the statistical uncertainty. In the bottom left panel, the ratio of the
muon-in-jet and PtReco (𝜇+PtReco) median and the jet regression network median to the nominal calibration median
is shown. In the bottom right panel, the RSD compares the relative resolution of the 𝜇+PtReco and the jet regression
network to the nominal calibration.

To further evaluate the performance of small-𝑅 regression, the invariant mass of either the Higgs or the 𝑍

boson is reconstructed in SM 𝑍 (ℓℓ)𝐻 (𝑏𝑏̄) or 𝑍 (ℓℓ)𝑍 (𝑏𝑏̄) evaluation samples, respectively. The invariant
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Figure 3: The median (left) and relative resolution (right) of the 𝑏-jet 𝑝T response are plotted as a function of number
of muons found in the jet cone. The performance is evaluated on 𝑏-jets in the 𝑡𝑡 samples from the test set of the
training samples listed in Table 1. The width of the coloured lines represents the statistical uncertainty. In the bottom
left panel, the ratio of the muon-in-jet and PtReco (𝜇+PtReco) median and the jet regression network median to the
nominal calibration median is shown. In the bottom right panel, the RSD compares the relative resolution of the
𝜇+PtReco and the jet regression network to the nominal calibration.
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Figure 4: The median (left) and relative resolution (right) of the 𝑏-jet 𝑝T response are plotted as a function of relative
scalar sum of track 𝑝T (Σ𝑝track

T /𝑝jet
T ). The performance is evaluated on 𝑏-jets in the 𝑡𝑡 samples from the test set of the

training samples listed in Table 1. The width of the coloured lines represents the statistical uncertainty. In the bottom
left panel, the ratio of the muon-in-jet and PtReco (𝜇+PtReco) median and the jet regression network median to the
nominal calibration median is shown. In the bottom right panel, the RSD compares the relative resolution of the
𝜇+PtReco and the jet regression network to the nominal calibration.
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mass 𝑚𝑏𝑏̄ of the parent particle reconstructed using the two 𝑏-jets after applying nominal calibration,
muon-in-jet and PtReco corrections, and small-𝑅 regression calibration are compared. Figure 5 shows
the 𝑚𝑏𝑏̄ distribution from 𝑍 (𝑏𝑏̄) and 𝐻 (𝑏𝑏̄) decays in the mass range 𝑚𝑏𝑏̄ < 200 GeV. Only events with
exactly two 𝑏-jets are selected to reconstruct the shown invariant mass.
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Figure 5: Invariant mass of the two 𝑏-jets using truth 𝑏-jets, 𝑏-jets reconstructed using the nominal calibration,
muon-in-jet and PtReco corrections, as well as small-𝑅 regression calibration using a loose event selection. The
truth-particle heavy-flavour hadron content defines a 𝑏-jet. The width of the coloured lines represents the statistical
uncertainty.

Figure 6 presents the individual mass distributions for different samples and processes. For the 𝑍 (𝑏𝑏̄)
process, the median values of the mass distribution are 79.0 GeV for the nominal calibration and 87.6 GeV
for the muon-in-jet plus PtReco corrections. When using the small-𝑅 regression, the median 𝑚𝑏𝑏̄ shifts to
86.5 GeV. This adjustment results in a 22% improvement in the relative response resolution compared to
the nominal calibration and a 6% improvement over the muon-in-jet plus PtReco corrections. Similarly, for
the 𝐻 (𝑏𝑏̄) process, the median 𝑚𝑏𝑏̄ values are 103.0 GeV for the nominal calibration and 112.8 GeV for
the muon-in-jet plus PtReco corrections. With the regression-calibrated 𝑏-jets, the median 𝑚𝑏𝑏̄ shifts to
112.9 GeV. This shift corresponds to a 23% enhancement in resolution compared to the nominal calibration
and a 6% enhancement over the muon-in-jet plus PtReco corrections.
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Figure 6: Reconstructed invariant mass of the two 𝑏-jets with a loose event selection using the nominal calibration,
muon-in-jet and PtReco corrections, as well as small-𝑅 regression calibration in 𝑍 (𝑏𝑏̄) (left) and 𝐻 (𝑏𝑏̄) (right)
events. The 𝜇 and 𝜎/𝜇 show the median and the relative resolution of the plotted 𝑚𝑏𝑏̄ distributions. The relative
resolution is defined as the half of the central 68.2% quantile ratio to the median of the response. The width of the
coloured lines represents the statistical uncertainty. The truth-particle heavy-flavour hadron content defines a 𝑏-jet.
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Figure 7: The mass (left) and 𝑝T (right) large-𝑅 jet calibration response distributions. Response is defined as the ratio
of truth to reconstructed level jet mass and 𝑝T, respectively. The mixed jet sample denotes the test set of samples
listed in the first half of Table 2 and is a mixture of 𝐻 (𝑏𝑏̄), 𝐻 (𝑐𝑐) and QCD jets. The bottom panels show the ratio
of the jet regression network response to the nominal calibration response.

6.2 Large-𝑹 jet regression network performance

This section describes the performance of the large-𝑅 regression model trained on the training dataset
defined in Section 3.2 using the Transformer network and inputs defined in Section 5. The performance is
evaluated using several metrics. Mass and 𝑝T regressions are considered separately from each other. As
leptons are not included in the large-𝑅 jet truth inputs, the muon-in-jet correction is not considered.

The response, median and relative resolutions are defined above in Section 6 for both the jet 𝑝T and mass.
Response distributions can be found in Figure 7, which show the model performance for the test set (from
the training samples listed in Table 2). For mass regression, the response peak of the large-𝑅 jet model
predictions offers a nearly 30% resolution improvement compared to the nominal calibration. The median
of the mass response is also shifted closer to the optimal value. However, the median for both distributions
is less than a percentage away from one, so the improvement is relatively small. Similarly, the 𝑝T regression
achieves 33% better response resolution and slightly improves the median.

A more detailed look at the calibration performance in different 𝑝T regimes can be found in Figure 8 and
Figure 9 for mass and 𝑝T, respectively. For both, the relative resolution is more uniform across all 𝑝T bins,
ensuring consistent performance. The median of the mass response shows clear improvements for 𝑝T
> 500 GeV. For 200 < 𝑝T < 400 GeV jets, the relative deviation from the mean is of the same magnitude
but in opposite directions. The deviation in the median of the 𝑝T response is reduced by the regression
for 200 < 𝑝T < 700 GeV and is comparable for higher values. The relative 𝑝T resolution is consistently
25-35% better across the studied 𝑝T range.

To evaluate the large-𝑅 jet mass calibration further, the mass distributions between the truth jet and
reconstructed jets with either the nominal calibration or regression model predictions are compared for the
evaluation samples. Figure 10 shows an overview of all samples in the mass range 50 < 𝑚J < 230 GeV,
while Figure 11 shows each sample and mass peak individually. In both figures, the jet 𝑝T range is
400–1500 GeV to ensure the SM Higgs jets have sufficient Lorentz boost to capture both 𝑏-hadrons within
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Figure 8: (left) The jet mass response median as a function of truth jet 𝑝T. Response is defined as the ratio of truth to
reconstructed level jet mass. The bottom panel shows the ratio of the jet regression network median to the nominal
calibration median. (right) The relative jet mass resolution as a function of truth jet 𝑝T. Relative resolution is defined
as the half of central 68.2% quantile ratio to the median of the response. The RSD in the bottom panel compares the
relative resolution of the nominal calibration and large-𝑅 regression. In both plots, the mixed jet sample denotes the
test set of samples listed in the first half of Table 2 and is a mixture of 𝐻 (𝑏𝑏̄), 𝐻 (𝑐𝑐) and QCD jets. The width of the
coloured lines represents the statistical uncertainty.
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Figure 9: (left) The 𝑝T response median as a function of truth jet 𝑝T. Response is defined as the ratio of truth to
reconstructed level jet mass. The bottom panel shows the ratio of the jet regression network median to the nominal
calibration median. (right) The relative 𝑝T resolution as a function of truth jet 𝑝T. Relative resolution is defined as
the half of central 68.2% quantile ratio to the median of the response. The RSD in the bottom panel compares the
relative resolution of the nominal calibration and large-𝑅 regression. In both plots, the mixed jet sample denotes the
test set of samples listed in the first half of Table 2 and is a mixture of 𝐻 (𝑏𝑏̄), 𝐻 (𝑐𝑐) and QCD jets. The width of the
coloured lines represents the statistical uncertainty.
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a jet. Only jets within the limits of the plots in Figure 11 are considered for the median and resolution
estimations.

The large-𝑅 jet regression model achieves an improvement in resolution for all samples of around 10–15%,
even for 𝑍 (𝑏𝑏̄) and top-quark jets that were not explicitly present in the training dataset. Defining the peak
position as the median of the mass distributions in Figure 11, the differences between the truth jets, the
nominal jet calibration, and the regression network are on the order of 1–3 GeV. Artificial peaks are not
created within the QCD sample.
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Figure 10: Mass distributions for truth, jets reconstructed using the nominal calibration, as well as large-𝑅 regression
model predictions. The distributions are shown for the evaluation samples listed in Table 2 where QCD jets are from
multijet jet production with the heavy-flavour hadron content determined from quantum chromodynamics. The width
of the coloured lines represents the statistical uncertainty.
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Figure 11: Mass distributions for truth, jets reconstructed using the nominal calibration, as well as large-𝑅 regression
model predictions. The distribution is shown for the evaluation samples listed in Table 2: 𝑍 boson (top left), Higgs
boson (top right), top quark (bottom left) and QCD jets (bottom right). QCD jets are from multijet jet production
with the heavy-flavour hadron content determined from quantum chromodynamics. Besides the inherent differences
between a scalar and a boson, the difference between the shape of the 𝐻 (𝑏𝑏̄) and 𝑍 (𝑏𝑏̄) truth mass peaks can be
attributed, in part, to the difference from MC generators [68–70]. The width of the coloured lines represents the
statistical uncertainty.
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7 Conclusion

New methods to calibrate the energy of 𝑏-jets are presented for both small-𝑅 and large-𝑅 jets. The new
methods are based on transformer encoder neural networks first deployed by ATLAS in the context of
flavour tagging. This note presents the application of these models to regress the transverse momentum and,
in the case of large-𝑅 jets, also the mass of jets. The training of these algorithms uses simulated samples
that are enriched in 𝑏-jets. The input information used in these algorithms includes low-level features such
as jet constituents and tracks associated with the jets. The algorithms show significant improvements in the
jet 𝑝T response and relative resolution over the nominal calibrations employed in ATLAS.

In the case of small-𝑅 jets, evaluating the performance on true 𝑏-jets, the response is closer to the true jet
𝑝T and the improvements in relative resolution range between 18% and 31% depending on the transverse
momentum regime. The largest improvements are achieved for jets with a true jet 𝑝T between 40 GeV and
100 GeV. The method also shows improvements to the methods previously explored by ATLAS analyses,
muon-in-jet and PtReco corrections, in the true jet 𝑝T regime between 30 GeV and 150 GeV and comparable
performance in regime with lower or higher 𝑝T. Considering the presence of at least one muon inside the
reconstructed small-𝑅 jet, the presented regression method shows considerable improvements over nominal
calibration methods, clearly demonstrating the ability to correct for the energy of muons and neutrinos that
are not clustered within the jet and are not considered in nominal calibration methods. The regression
model improves the resolution of the reconstructed Higgs and 𝑍 boson mass distributions by around 22%
and 6% when compared to the nominal, and muon-in-jet and PtReco calibrations, respectively.

Similar significant improvements are reported for the regression model developed for large-𝑅 jets. The
response of the jet 𝑝T is improved, with 25% to 35% better relative resolutions. The largest improvements
observed are for jets with 𝑝T between 400 GeV and 1.2 TeV. The model for the large-𝑅 jets is also trained
to regress a jet mass correction. The model succeeds in regressing the mass and transverse momentum
simultaneously, and the reported improvements for the mass resolution are 26% for jets with a 𝑝T of
200 GeV and increase to 33% for jets with 𝑝T exceeding 1.2 TeV. The regression model reduces the
width of the jet mass distribution for simulated 𝑍 boson, Higgs boson, and top-quark jets by around 10%.
Comparisons to the large-𝑅 jet DNN calibration in Ref. [8], which deliver significant improvements over
the nominal calibration, are left to future work where the balance between performance and the level of
information included can be studied in samples with similar jet flavour composition.

The regression models studied show significant enhancement in the jet 𝑝T and the mass response of
simulated jets selected using truth information to include 𝑏-hadron decays. Next, studies with collider data
using jets after a selection on the flavour-tagging discriminants Refs. [9] and [10] are necessary before
such models can be deployed within analyses.
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Appendix

A Transformer Network Model Schematics

Schematics of the small-𝑅 and large-𝑅 jet regression network are shown in Figure 12 and Figure 13,
respectively.
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Figure 12: Schematics of the transformer-based small-𝑅 jet regression networks described in Section 5.
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Figure 13: Schematics of the transformer-based large-𝑅 jet regression networks described in Section 5.
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