
A
TL

-P
H

Y
S-

PR
O

C
-2

02
4-

04
8

14
/0

8/
20

24

Journal of Physics: Conference Series

ATLAS Geant4 Simulation Optimizations

Mustafa Schmidt1, Akanksha Vishwakarma2, Andrei Sukharev3,
Benjamin Michael Wynne2, Benjamin Morgan4, Caterina Marcon5,
Dongwon Kim6, Evangelos Kourlitis7, Evgueni Tcherniaev8,
Guilherme Amadio8, John Apostolakis8, John Derek Chapman9,
Marilena Bandieramonte10, Miha Muskinja11, Mihaly Novak8,
Tommaso Lari5, Walter Hopkins7

1Bergische Universität Wuppertal, 2The University of Edinburgh (GB), 3Budker Institute of
Nuclear Physics (RU), 4University of Warwick (GB), 5 INFN Sezione di Milano (IT), 6

Stockholm University (SE), 7Argonne National Laboratory (US), 8 CERN (CH), 9University
of Cambridge (GB), 10University of Pittsburgh (US), 11Lawrence Berkeley National
Laboratory (US)

E-mail: muschmidt@uni-wuppertal.de

Abstract. Several optimization techniques are implemented in the ATLAS Geant4 detector
simulation to improve CPU and memory usage. These optimizations include tracking methods
for gammas, the usage of static linking, adjustments to electromagnetic range cuts, a Russian
Roulette process for reducing simulation steps, and advanced geometry management. The
latest performance benchmarks show significant improvements in simulation speed and resource
efficiency, crucial for future LHC high-luminosity operations. Consequently, more projects are
initiated to improve the ATLAS full simulations even further, mainly concerning improving the
CPU time. This paper summarizes the validated and ongoing tasks as well as the obtained
performance increase.

1. Introduction
The ATLAS experiment at the Large Hadron Collider (LHC) relies heavily on simulated event
samples produced using full Geant4 detector simulations [1]. Monte Carlo (MC) simulations
based on Geant4 are major consumers of computing resources, a trend that is expected to
continue in the High-Luminosity LHC (HL-LHC) era [2]. Therefore, optimizations in full
Geant4 simulations are crucial for efficient resource utilization. This paper discusses various
optimizations that are already implemented and validated or still ongoing. Throughout the
past years, the computation time for the existing MC production campaigns, such as mc20,
has continuously decreased [3]. All presented benchmark values in the following sections are
comparisons between the Run3 setup for mc23 and the unoptimized configuration applied for
the Run2 configuration in mc16. The overall goal is an improvement of CPU and memory
consumption without compromising physics accuracy. All optimizations are done in close
collaboration with the Geant4 collaboration which always results in fruitful feedback loops
between both groups. Many optimization results were already included in the main Geant4
software framework, while others are only used within the ATLAS offline simulation and
reconstruction framework Athena [4].

2. Implemented & Validated Optimizations
2.1. Woodcock Tracking for Gammas
Woodcock tracking [5] was found to have the largest impact on the overall computation time.
Its goal is to optimize the tracking of neutral particles, particularly photons, especially in
highly segmented detectors due to the many simulation steps that have to be performed on
each boundary. Woodcock tracking limits these simulation steps by performing the particle
propagation in a unified geometry using the material with the highest macroscopic cross-section,
such as lead (Pb). The interaction probability is then adjusted based on the ratio of cross-
sections of the true material and Pb. This method is implemented as a special wrapper process
for gammas directly in Geant4 and can be used in other experiments as well. The results of this
optimization include a 50% reduction in steps within the region of the ATLAS electromagnetic
endcap calorimeter (EMEC) [6] and an overall 17.5% speedup in Athena simulations.

2.2. Static Linking
The static linking optimization aims to use Geant4 as a static library to avoid lookup table
delays. The approach involves defining a BigSimulation shared library by grouping all libraries
from Athena packages that use Geant4. Since the states are identical, no physics validation is
required for this task. This optimization results in a speedup of 5-7%, depending on the compiler
version.

2.3. EM Range Cuts
The motivation behind EM range cuts [7] is that different energy thresholds in Geant4 are
relevant for the production of secondary particles. This tuning was already successfully applied
for e+/e− processes in previous MC campaigns. The approach sets the secondary production
threshold for ionization and bremsstrahlung at the cross-section level. This involves setting
a minimum range for secondary electrons and a minimum absorption length for gammas.
Below these thresholds, the remaining energy is deposited at the end of the production step.
Simulations related to Run3 include additionally the application of gamma processes (Comptom
scattering, photo-electric effect, and conversion processes) that were previously turned off by
default. The benchmark of this optimization shows an 8% CPU speedup and a significant
reduction of 60% in simulated low-energy electrons.

2.4. Russian Roulette
The Russian Roulette technique [7] is motivated by the fact that neutrons and photons consume
most of the CPU time, particularly in the Barrel EM calorimeters and EMEC. The approach
involves the Photon/Neutron Russian Roulette (PRR/NRR) method, which randomly discards
particles below an energy threshold and weights the energy deposits of the remaining particles
accordingly. This technique achieves a 10% speedup with a 2 MeV threshold for neutrons.

2.5. G4GammaGeneralProcess
The motivation for the G4GammaGeneralProcess optimization is to reduce computation
time caused by multiple gamma processes, such as photoeffect, compton scattering, or pair-
production. To address this issue, a collective physics process for photons is introduced, which
reduces the number of instructions and calculations required at geometry boundary crossings.
This optimization results in an overall 3% CPU speedup.

2.6. Magnetic Field Optimizations
Tracking particles in a magnetic field is resource-intensive. The optimization approach involves
switching off the magnetic field in the region of the liquid argon colorimeter (LAr) without

EM Barrel
13%

EM End-Cap
47%

FCAL
7%

Hadronic End-Cap
3%

Tile
1%

Tracker
17%

Muons
2%

Oth.LAr
6%

Other
4%

ATLAS Simulation Preliminary
Subdetectors CPU Fraction, mc20
100 𝑡𝑡̅ events EM Barrel

13%

EM End-Cap
49%

FCAL
6%

Hadronic End-Cap
2%

Tile
1%

Tracker
16%

Muons
0.5%

Oth.LAr
6%

Other
6%

ATLAS Simulation Preliminary
Subdetectors CPU Fraction, mc21
100 𝑡𝑡	#events

EM Barrel
17%

EM End-Cap
38%

FCAL
7%

Hadronic End-Cap
3%

Tile
2%

Tracker
20%

Muons
0.5%

Oth.LAr
7%

Other
6%

ATLAS Simulation Preliminary
Subdetectors CPU Fraction, mc23
100 𝑡𝑡̅ events

Figure 1. CPU time fractions for different subetectors of ATLAS for all MC campaigns.

affecting the shower shape. It is furthermore not used for muons or high-energy electrons and
positrons. This optimization results in a 3% speedup.

2.7. EMEC Custom Solid
The ATLAS electromagnetic endcap calorimeter (EMEC) [6] custom solid optimization aims to
improve the efficiency of EMEC, which was described using the solid class G4Polycone. Within
this approach, G4Polycone is replaced with the class G4ShiftedCone, which is not a standard
Geant4 shape, and the outer wheel is divided into conical-shaped sections. The G4ShiftedCone
class is a copy from standard G4Cons and modified to represent a 2π cone and to have an
arbitrary position along the z-axis. In addition, further subdivisions of the new wheel into thick
slices along the z-axis were done. This optimization results in a 5-6% speedup.

2.8. VecGeom Integration
The VecGeom integration involves optimizing the implementation of geometrical shapes using
the VecGeom library [8], which leverages explicit and implicit vectorization. This approach only
replaces polycons, cones, and tubes relevant to the geometry. The results of this optimization
show a speedup of 2-7%.

3. Performance Studies
3.1. Computing Fractions
The performance studies analyze the CPU time distribution among different subdetectors during
the MC campaigns mc20, which was the last Run2 MC campaign, mc21 being the first Run3
MC campaign, and mc23 as the latest Run3 MC campaign. The largest CPU fraction is found
in the EMEC, followed by the tracker and Barrel EMC, while the Tile and the muon detector
show the smallest impact on performance. An overview of the newest performance results can
be found in Figure 1.

The analysis of CPU time focuses on the time spent per event simulating 100 tt̄ events, which
is an important benchmark for simulations. The study examines the time spent for each major
subdetector and each particle type. Significant time is spent in the EMEC, as shown in Figure 2,
due to the processing of electrons and gammas. However, a strong improvement since the MC
campaign mc20 is visible. The total improvement achieved is a 50% reduction in CPU time
compared to the Run2 configuration.

In addition to the plots above, the number of steps required for the propagation of each
particle species in all relevant subdetectors was computed. The results using all previously
described optimizations are shown in Figure 3. Each two neighboring bars represent both
important MC campaigns mc20 and mc23 used for a direct comparison with the latest obtained
optimization results.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

EM
Barrel

EM End-
Cap

FCAL Hadronic
End-Cap

Tile Tracker Muons Oth.LAr Other

CP
U

tim
e

mc20 mc21 mc23

ATLAS Simulation Preliminary
Major subdetectors normalized CPU time
100 𝑡𝑡̅ events

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Electrons Positrons Gammas Neutrons Other Particles

C
PU

 ti
m

e

mc20 mc21 mc23

ATLAS Simulation Preliminary
Per particle event normalized CPU time
100	𝑡𝑡̅ events

Figure 2. CPU time fractions for different subetectors (left) of ATLAS and particle species
(right) comparing all MC campaigns.

4. Ongoing & Future Tasks
4.1. EMEC Geometry Optimization
The current implementation of the EMEC uses custom solids that do not exist in Geant4.
The optimization approach involves defining the geometry of EMEC with standard G4 shapes
(G4GenericTrap) for faster simulation and compatibility with GPU usage. Additional slices in
the z-direction provide further improvements. Ongoing comparisons between different geometry
options and configurations are being conducted. Preliminary results show an improvement in
CPU time by 19% in a standalone simulation framework called FullSimLight. Currently, the
geometry optimizations are transferred into the Athena software framework to validate the
obtained results.

4.2. Advanced Compiler Optimization
The goal of advanced compiler optimization is to speed up simulations using two different
approaches. This involves smarter usage of the compiler for more efficient use of computing
resources. There are two possible ways (link-time-optimization and profile-guided optimization)
to achieve this goal which are explained in the following.

4.2.1. Link-Time Optimization (LTO) LTO [9] is already validated successfully and is mainly a
compilation technique that optimizes the entire program at the linking stage. Unlike traditional
compilation, which optimizes individual files separately, LTO considers the whole program and
thus allows for more aggressive and comprehensive optimizations. This can result in significant
performance improvements because the optimizer has a global view of the code. Preliminary
benchmarks show a 3-4% speedup with LTO.

4.2.2. Profile-Guided Optimization (PGO) PGO [10] is a method where the compiler uses
runtime profiling data to optimize the program. The process involves two steps: at first, the
program is compiled and run with representative input to collect profiling data and after that,
the program is recompiled using this data. The profiling information helps the compiler make
informed decisions about inlining, branch prediction, loop unrolling, and other optimizations.
This optimization can lead to better performance by tailoring the compiled code to actual usage
patterns. In total, 3-5% speedup with PGO seems to be achievable according to preliminary
results.

0

20

40

60

80

100

120

140
610×

S
te

ps
 /

E
ve

nt neutrons
electrons
photons
other

ATLAS Simulation Preliminary

 eventst=13 TeV, 10k ts

mc20

mc23

E
M

 e
nd

-c
ap

E
M

 b
ar

re
l

ID
 s

er
vi

ce
s

T
R

T

LA
r

se
rv

ic
es

H
ad

. e
nd

-c
ap

F
C

al
1

T
ile

F
C

al
2/

3

P
ix

el

P
re

sa
m

pl
er

S
C

T

M
uo

n

O
th

er

Volumes

0.5

1

m
c2

3
/ m

c2
0

Figure 3. Number of processed steps for each particle species in all relevant ATLAS
subdetectors comparing mc20 and mc23.

4.3. ISF Particle Killer
The ISF Particle Killer aims to eliminate primary particles that generate secondaries close to the
beam pipe because these particles do not contribute to the physics analysis as not being visible
by important detector components, but they can increase the overall CPU time significantly.
This involves generating a large sample of particles to map out relevant signals and using a new
particle killer to drop irrelevant particles.

4.4. Voxel Density Optimization
The voxel density is a member variable of the Geant4 logical volume classes. As a consequence,
variations of this parameter are not expected to influence the physics performance which speeds
up the validation process. The related optimization aims to find optimal values for voxel density
to improve CPU time and memory consumption, as previous studies with certain geometries
have indicated promising results. This involves tuning the size and granularity of voxels and
making improvements in memory consumption for geometry optimizations. Preliminary results
indicate small improvements, however, these results are highly influenced by statistical and
systematic uncertainties. Hence, follow-up studies have to be done to confirm and refine these
results.

5. Conclusion & Outlook
Significant optimizations have been implemented in the ATLAS Geant4 simulation, improving
CPU time and memory efficiency without sacrificing physics accuracy. A total reduction of over
50% compared to Run2 samples has been achieved. The overall improvements of mc23 compared
to mc20 and mc21 are shown in Figure 4. Key advancements include Woodcock tracking, EM
range cuts, the optimized geometry, and the new G4GammaGeneralProcess. For that purpose,
a close collaboration with the Geant4 team has been crucial to obtaining these achievements.

Figure 4. Overall Performance Improvements in simulations for Run3 [3]
.

Ongoing improvements focus on leveraging modern computing architectures and refining
simulation precision and resource usage. Continuous validation against Geant4 ensures high
standards of physics accuracy. These efforts will help maintain the efficiency and accuracy of
simulations as the ATLAS experiment progresses into the HL-LHC era.

References
[1] John Apostolakis et al. Geometry and physics performance improvements in geant4. In Journal of Physics:

Conference Series, volume 608, page 012023. IOP Publishing, 2015.
[2] John Apostolakis et al. Hep software foundation community white paper working group–detector simulation.

arXiv preprint arXiv:1803.04165, 2018.
[3] ATLAS Collaboration. Software and computing for run 3 of the atlas experiment at the lhc.

arXiv:2404.06335, 2024.
[4] G. Aad et al. The atlas experiment at the cern large hadron collider: a description of the detector

configuration for run 3. Journal of Instrumentation, 19(05):P05063, May 2024.
[5] D. Legrady, B. Molnar, M. Klausz, and T. Major. Woodcock tracking with arbitrary sampling cross section

using negative weights. Annals of Nuclear Energy, 102:116–123, 2017.
[6] H Abreu et al. Performance of the electronic readout of the atlas liquid argon calorimeters. Journal of

Instrumentation, 5(09):P09003, sep 2010.
[7] Miha Muškinja, John Derek Chapman, and Heather Gray. Geant4 performance optimization in the atlas

experiment. EPJ Web Conf., 245:02036, 2020.
[8] John Apostolakis, Gabriele Cosmo, Andrei Gheata, Mihaela Gheata, Raman Sehgal, and Sandro Wenzel. A

vectorization approach for multifaceted solids in vecgeom. EPJ Web Conf., 214:02025, 2019.
[9] T. Glek and J. Hubicka. Optimizing real world applications with gcc link time optimization. arXiv:1010.2196,

2010.
[10] Baptiste Wicht, Roberto A. Vitillo, Dehao Chen, and David Levinthal. Hardware counted profile-guided

optimization. arXiv:1411.6361, 2014.

