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Clustering algorithms are at the basis of
several technological applications, and are
fueling the development of rapidly evolv-
ing fields such as machine learning. In
the recent past, however, it has become
apparent that they face challenges stem-
ming from datasets that span more spatial
dimensions. In fact, the best-performing
clustering algorithms scale linearly in the
number of points, but quadratically with
respect to the local density of points. In
this work, we introduce qLUE, a quantum
clustering algorithm that scales linearly in
both the number of points and their den-
sity. qLUE is inspired by CLUE, an algo-
rithm developed to address the challenging
time and memory budgets of Event Re-
construction (ER) in future High-Energy
Physics experiments. As such, qLUE
marries decades of development with the
quadratic speedup provided by quantum
computers. We numerically test qLUE in
several scenarios, demonstrating its effec-
tiveness and proving it to be a promis-
ing route to handle complex data analy-
sis tasks – especially in high-dimensional
datasets with high densities of points. The
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code we used for these simulations is avail-
able at Ref. [1]

1 Introduction

Clustering is a data analysis technique that is
crucial in several fields, owing to its ability to
uncover hidden patterns and structures within
large datasets. It is essential for simplifying com-
plex data, improving data organization, and en-
hancing decision-making processes [2–5]. For in-
stance, clustering has been applied in marketing
[6, 7], where it helps segment customers for tar-
geted advertising [8], and in biology, for classify-
ing genes and identifying protein interactions [9–
12]. In the realm of computer science and artifi-
cial intelligence, it is invaluable for image [13] and
speech recognition [14, 15], as well as recommen-
dation systems [16, 17] that personalize content
for users. Finally, clustering techniques are piv-
otal for Event Reconstruction (ER), where data
points that originated from the same “event”
must be collected together. In High-Energy
Physics, for instance, clustering algorithms re-
construct the trajectories of subatomic particles
in collider experiments. It is expected that the
endcap high granularity calorimeter (HGCAL)
[18] being built for the CMS detector at the High
Luminosity Large Hadron Collider will provide
extremely large volumes of data that must be
tackled by new generations of clustering algo-
rithms such as CLUE. The discovery of the Higgs
boson [19], awarded the Nobel prize in 2012, was
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made possible by such algorithms.

ER enables the interpretation of data ob-
tained from particle collision events, including
those occurring at the Large Hadron Collider
(LHC) at CERN. Several clustering algorithms
like DBScan, K-Means, and Hierarchical Clus-
tering among others [20–22] can be employed for
ER. Our work is based on CERN’s CLUstering of
Energy (CLUE) algorithm [23], which is adopted
by the CMS collaboration [24–26]. It is designed
for the future HGCAL detector due to the limita-
tions of the currently employed algorithms. De-
spite these limitations, such algorithms are al-
ready at the basis of several discoveries, such as
the doubly charged tetraquark [27], the obser-
vation of four-top quark production in proton-
proton collisions [24] and the study of rare B me-
son decays to two muons [25].

The efficiency of clustering algorithms, as illus-
trated by the CLUE algorithm [23], is crucial for
handling extensive datasets. Initially designed
for two-dimensional datasets, CLUE reduces the
search complexity from O(n2) to O(mn) through
the use of local density and a tiling procedure,
where n (m) represents the (average) number of
points (per tile).

𝕕

𝕕

𝕕

𝕕

Figure 1: Scaling of point density and complexities of
classical and quantum algorithms for the unstructured
search problem with dimension d. In (a), different d-
dimensional lattices for d = 1, 2, 3 and a = 3 points
per edge. In (b), best-known classical (solid lines) and
quantum (dashed lines) algorithmic scalings for the Un-
structured Search Problem [28] applied to square d-
dimensional lattices with the values of a reported in the
plot. Classically, the cost O(m) reflects the need to it-
erate through all the m points to find the desired one.
Grover achieves the same in O(

√
m) steps, providing a

quadratic advantage. This advantage increases with the
density of points in the considered dataset, which grows
exponentially with respect to the dimension d according
to m = ad.

In the context of CLUE, where data sets are
limited to two dimensions, m is small, making
this approach to ER particularly effective. How-
ever, as the dimensionality of the dataset is incre-
mented, the value of m generally increases expo-
nentially. This is highlighted by Fig. 1(a), where
for a d-dimensional lattice with a points per edge,
m follows the relation m = ad. This is a serious
challenge to CLUE and classical clustering algo-
rithms in general.

A first step towards extending CLUE to more
dimensions is done by 3D-CLUE [23, 29]. In this
work, data points from different layers of detec-
tors are first projected onto a single d = 2 sur-
face, where clustering is then performed. How-
ever, this projection from the original d = 3
dataset to a d = 2 surface comes at the cost of
a slower algorithm since m becomes effectively
larger. The solid lines in Fig. 1(b) show the in-
crease in average points per tile in d-dimensional
datasets made of the lattices in panel (a). While
the improved performance of 3D-CLUE in ER
tasks [23, 29] justifies the increased computa-
tional overhead, extending this enhancement to
higher dimensions and larger datasets is challeng-
ing. Finding practical approaches to deal with
datasets where d is large is therefore extremely
important, not only for ER tasks but also in other
fields such as gene analysis [30] and market seg-
mentation in business [31].

Quantum computers provide a route to miti-
gate the complexity blowup arising from higher
dimensional datasets. Ref. [32] addresses the task
of jet clustering in High-Energy Physics, while
Ref. [33] targets spectral clustering, which it-
self uses the efficient quantum analog of k-means
clustering [34]. Other approaches include quan-
tum k-medians clustering [35] and a quantum al-
gorithm for density peak clustering [36].

In this work we develop qLUE, a CLUE-
inspired quantum algorithm. Similarly to other
quantum algorithms [37, 38], qLUE leverages the
advantage provided by Grover Search [28]. A
comparison of classical and quantum (Grover)
runtimes is presented in Fig. 1(b), where the solid
[dashed] lines refer to the classical O(m) [quan-
tum O(

√
m)] scaling. As can be seen, the com-

plexity advantage that Grover search provides
can be substantial, particularly for large values
of d or a.

Overall, we find that qLUE performs well in
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a wide range of scenarios. With ER-inspired
datasets as a specific example, we demonstrate
that clusters are correctly reconstructed in typ-
ical experimental settings. Similar to other
quantum approaches to clustering that rely on
Grover Search [35, 39], qLUE also showcases a
quadratic speedup compared to classical algo-
rithms. The specific advantages of qLUE are its
CLUE-inspired approach to cluster reconstruc-
tion (which demonstrated to be extremely suc-
cessful [24, 25, 40]), and its consequent seam-
less integration with the classical framework cur-
rently employed by the CMS collaboration [23,
29, 41].

This paper is structured as follows. In Sec. 2,
we describe our algorithm qLUE. Specifically, we
provide a general overview of its subroutines –
namely the Compute Local Density, Find Near-
est Higher, and the Find Seeds, Outliers and
Assign Clusters steps. We describe the results
of our simulated version of qLUE on a classical
computer in Sec. 3. In more detail, we explain
the scoring metrics we use to quantify our re-
sults, and describe qLUE performance when the
dataset is subject to noise and different clusters
overlap. Conclusions and outlook are finally pre-
sented in Sec. 4.

2 qLUE

qLUE is a quantum adaptation of CERN’s CLUE
and 3D-CLUE algorithms [23, 29], that is specif-
ically developed for ER, yet it is suitable to
work with any (high dimensional) dataset. The
main advantage of qLUE stems from employing
Grover’s algorithm, which provides a quadratic
speedup for the Unstructured Search Problem
[28]. While qLUE is designed to work in arbi-
trary dimensions, for clarity we restrict ourselves
to d = 2. This simplifies the following discussions
and allows us to simulate qLUE with meaningful
datasets on a classical computer. Generalizations
to higher dimensions can be done following the
steps outlined below. Furthermore, to provide a
better connection with CLUE and 3D-CLUE, we
employ a similar notation.

In Sec. 2.1, we offer an overview of the al-
gorithm and its different subroutines. Sec. 2.2
is dedicated to the first subroutine of qLUE,
namely, calculating the Local Density. We then
explain how to determine the Nearest Highers

(Nj), Seeds, and Outliers in Sec. 2.3. Finally,
Sec. 2.4 delves into the conclusive Cluster Assign-
ment subroutine, where the points in the dataset
are effectively heirarchically clustered.

2.1 Overview and Setting
As for CLUE and 3D-CLUE [23, 29], we con-
sider a dataset with spatial coordinates and an
energy for every point. Similar datasets can also
be found in medical image analysis and segmen-
tation [42, 43], in the analysis of asteroid re-
flectance spectra and hyperspectral astronomical
imagery in astrophysics [44–46] and in gene anal-
ysis in bioinformatics [30, 47].

In d = 2 dimensions, the spatial coordinatesXj

for point j are Xj = [xj,1, xj,2], that are promptly
generalized for larger values of d. Both CLUE
and qLUE first perform tiling over the dataset to
reduce the search and therefore enhance the effi-
ciency of the algorithm. Tiling is the process of
partitioning the dataset into a grid of rectangu-
lar tiles □k, where k is the tile index (see Fig. 2).
Therefore, our input dataset comprises of point
and tile indices j and k, respectively, the coordi-
nates Xj , and a parameter Ej associated to each
point. Following CLUE’s notation, we call Ej the
energy, yet this should be considered as a label
that can be employed to improve the clustering
quality for any given dataset. The tiling proce-
dure of qLUE and CLUE enables searching only
over Search Spaces S marked by the tiles in green
in Fig. 2(a) as opposed to the full dataset. In
case of CLUE, this allowed for an improvement
in scaling from O(n2) to O(mn). The scaling of
qLUE is investigated below.

In this work, we employ a qRAM to store and
access data, which is an essential building block
for quantum computers. Following Ref. [48], we
therefore assume that we can efficiently prepare
the state ∑

j

|j⟩ qRAM−−−−→ |j⟩ |Dj⟩ , (1)

where Dj is the data associated with a given in-
dex j, e.g. the jth point in the database. For
convenience, here and throughout this paper we
do not explicitly write the normalization factors
of quantum states.
The qLUE algorithm consists of the following

steps:
Local Density : The first step is to calculate the
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Figure 2: Pictorial representation of the main subroutines of qLUE. In (a), the Local Density computation subroutine
is represented. The consideration circle of radius dc (light blue) centered at the base point j (black) contains all points
(green) that satisfy di,j ≤ dc. This consideration circle intersects 2 tiles □k (indexed by tile index k), highlighted in
blue, that form the search space S. As per Eq. (2), the Local Density computation step determines the set of green
points from all points in the search space (green and grey) and then computes the local density. In (b), we pictorially
present the Find Nearest Higher (Nj) subroutine. The consideration circle (green) around base point j (black) has
radius dm. This consideration circle, containing the green points as well as the Nearest Higher Nj (pink), intersects
the 4 tiles highlighted in green, which form the search space S. In (c), we describe the Find Seeds, Outliers and Assign
Clusters subroutines. The seeds (red) and outliers (blue) are determined via Grover search on the dataset. In this
specific example there are two clusters in the dataset whose non-seed points are in orange and purple, respectively.
Followers (see main text) in these clusters are connected by dashed arrows. The Cluster Assignment subroutine is
shown to be working on the orange cluster where the cluster C currently consists of the seed (red, dashed border)
and the first of its followers (orange, dotted border). Followers are being found within the Dynamic Search Space
(DSS, light red box with solid red border). The DSS is formed as the set of tiles □k covered partially or fully by the
minimum bounding box of the square windows that contains all the search spaces S of the points within C.

local density ρj of all points j [e.g, black point in
Fig. 2(a)] that is defined by

ρj = Ej + 1
2

∑
di,j<dc

Ei (2)

and it is indicative of the energy in a neigh-
bourhood of point j. As can be seen from
Eq. (2) and Fig. 2(a), ρj is a weighted sum over
the energies Ei of all points i whose distance

di,j =
√∑d

α=1(xi,α − xj,α)2 from the base point
j is within a user-specified critical radius dc that
characterizes the consideration circle for the Lo-
cal Density computation subroutine (light blue
circle in the figure). As such, Ei is the energy
of the ith point which is di,j away from point j.
The choice of weight 1/2 for Ej in the definition
of ρj in Eq. (2) is empirically found to yield bet-
ter performances for CLUE [23].
Find Nearest Higher : After calculating the local
densities, we determine the nearest highers. The
Nearest Higher Nj of a point j is the point near-
est to j with a higher local density ρNj > ρj . As

better explained in Sec. 2.4, the Nearest Higher
are used to heirarchically cluster points together
in the Cluster Assignment process at the end of
qLUE. In Fig. 2(b), the Nearest Higher Nj of the
base point j (black point) is the pink point.
Find Seeds, Outliers and Assign Clusters: As
schematically represented in Fig. 2(c), seeds (red
points) are the points whose distance dj,Nj from
their Nearest Higher Nj and whose local den-
sity ρj are lower bounded by user defined thresh-
olds. Outliers (blue points) are the points whose
distance from Nearest Higher is similarly lower
bounded but whose Local Density has an upper
threshold. As such a point j is

a seed if dNj ,j > dc and ρj > ρ̃, (3a)
an outlier if dNj ,j > δdc and ρj < ρ̃. (3b)

Here, δ is the Outlier Delta Factor that deter-
mines the upper bound on the allowed local den-
sity for outliers. Furthermore, ρ̃ is the critical
density threshold – the lowest local density a
point can have to be classified as a seed. Both
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Figure 3: Algorithm flow for Local Density computa-
tion and for Assigning Clusters. The quantum state is
initialized in the green “Initialize” box. For Local Den-
sity Computation (Cluster Assignment), it comprises all
points in the DSS S (in the DSS). The “Grover” (light
blue) block performs Uψ and UP in succession O(

√
m)

times, and returns all points satisfying the required con-
dition. The inset considers the case of Local Density
computation where the condition is di,j < dc. For the
cluster assignment step, we check if points in the DSS
are followers of the points in the cluster C (see Sec. 2.4).
The output of the Grover subroutine is then measured
to yield an index that is checked for validity in the grey
“Valid?” diamond. If the point satisfies the chosen con-
dition, the Y branch is executed. Within the “Update”
(light blue) step this point is then removed from either
S or the DSS and stored to be returned in the “Return”
orange box. Once all points are found, the “Valid?” con-
dition triggers the N branch to terminate the algorithm.
Depending on the chosen subroutine, the returned in-
dices are employed to compute the Local Density from
Eq. (2), or to construct C.

δ and ρ̃ are user-specified and can be varied to
enhance the quality of the output. Seeds are gen-
erally located in areas of high energy density, and
will be employed as starting points to build clus-
ters. Outliers are points that are likely to be
noise in the dataset and are therefore discarded.

Once seeds and outliers are determined, the
clusters are constructed. From the seeds, we it-
eratively combine “followers”. If point Nj is the
Nearest Higher of point j, then point j is termed
as Nj ’s follower. The follower of a point is most
likely generated by the same process as the point
itself (in the context of ER, by the same particle),
and as such shall be included in the same cluster.
In Fig. 2(c), the orange and purple points form
two different clusters, and the followers of the
points in the purple one are indicated by arrows.

2.2 Local Density Computation

In this section, we describe the subroutine
(schematically represented in Fig. 3) that com-
putes the Local Density ρj of the point j, as de-
fined in Eq. (2). To perform the computation,
all points i whose distance di,j from point j is
smaller than the threshold dc need to be deter-
mined from the search space S. This search space
is the smallest set of tiles □k required to cover the
di,j < dc consideration circle. In Fig. 2(a), S is
highlighted in light blue.

We shall refer to S as the local dataset that,
as explained above, can be efficiently prepared
with the qRAM [48]. To do so, we only require
determining the tiles □k that are in the search
space, which can be done efficiently classically
[23]. The initial state of this subroutine, after
being prepared via the qRAM, is therefore∑

k∈S

∑
i∈□k

|i⟩ qRAM−−−−→
∑
k∈S

∑
i∈□k

|i⟩ |Xi, Ei⟩ , (4)

where the index i is unique for each point in S.
i ∈ □k indicate all indices within tile k [either
of the light blue squares in Fig. 2(a)]. Ancil-
lary qubits, omitted for clarity in Eq. (4), are
employed within the Grover search (for more in-
formation, see App. A).

At this stage, we must find the points i [green
dots in Fig. 2(a)] that are within a radius of dc
from the base point j [black point in Fig. 2(a)].
As shown in Fig. 3, we perform Grover Search to
prepare [49]∑

i

|i⟩ |Xi, Ei⟩
Grover−−−−→

∑
di,j<dc

|i⟩ |Xi, Ei⟩ . (5)

Here, the first register of the Grover output con-
tains all points characterized by indices i such
that di,j < dc. As shown in the inset of the figure,
the Grover Search consists of O(

√
m) repetitions

(where m is the number of points in S) of the Uψ
and UP operators. UP is the diffusion operator
and Uψ is the unitary associated with the oracle
of Grover Search [28]. Further details regarding
Grover Search and the unitaries we use for our
algorithm can be found in App. A.

When the algorithm is run, measurement ei-
ther yields a point that satisfies this distance con-
dition, or (if there are no valid indices left) an in-
dex that does not satisfy this condition. This is
verified by the grey “Valid?” diamond in Fig. 3.
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The branched logic following this block ensures
that the algorithm loops until all the required
points are returned by the algorithm in the “Re-
turn” block.

Once we have obtained all indices i of points
satisfying the distance condition (di,j < dc), we
perform the summation in Eq. (2). This is com-
puted and stored in the original dataset for each
point. The database is now updated using qRAM
with local density values for all points where the
jth point in the database has the corresponding
computed local density ρj .
The scaling of the subroutine that determines

the local density of a single point is given by the
number of points in the blue consideration cir-
cle in Fig. 2(a) such that di,j < dc. If we say
this number is p, O(p) runs are required. This
is therefore a O(p

√
m) algorithm as opposed to

the O(m) classical iterative algorithm for the Un-
structured Search Problem.

As a final remark, we highlight that it is in
principle possible to design a unitary that com-
putes the Local Density directly and stores the
output in a quantum register. This unitary would
remove the requirement of finding individually
the indices i such that di,j < dc, thus removing
the overhead of p in O(p

√
m). However, design-

ing this circuit is non-trivial and its depth may
be large. This is therefore left for future investi-
gations.

2.3 Find Nearest Higher
Here, we describe qLUE’s subroutine for finding
the Nearest Highers (Nj) introduced in Sec. 2.1.
As a reminder, Nj is the nearest point to the base
point j whose local density ρNj is more than the
local density ρj of the base point, see Eq. (3a).
Similar to the initialization carried out for the

Local Density Computation step, we use qRAM
to initialize the quantum state∑

k∈S

∑
i∈□k

|i⟩ qRAM−−−−→
∑
k∈S

∑
i∈□k

|i⟩ |Xi⟩ |ρi⟩ . (6)

Here, the indices i are within the tiles □k, as in
Eq. (4), and S is the considered search space,
schematically represented by the light green box
in Fig. 2(b). This search space is determined
from dm as opposed to dc, which is the user-
defined threshold that is set to be δdc. Note that
the energy Ei, employed for determining the den-
sities ρi in Sec. 2.2, is hereon not required.

𝑑𝑡 = 𝑑𝑚

𝑑𝑡

𝑑𝑡

𝑑𝑙𝑜𝑤 𝑑𝑙𝑜𝑤

𝑑𝑡

𝑑𝑙𝑜𝑤

𝑑𝑡

𝑑𝑙𝑜𝑤𝑑𝑙𝑜𝑤

𝑑𝑙𝑜𝑤
𝑑𝑡

𝑑𝑖 𝑑𝑖
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j
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N?
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𝒩 =𝑖

𝑅𝑒𝑡𝑢𝑟𝑛𝒩
𝑑𝑡

𝑡

= 𝑑𝑡−1
𝑑𝑙𝑜𝑤 = 𝑑

A

A: First �me checking "?"

B: just ran Y
OR just ran B

B

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒

G
EB

S

𝑑𝑚

(a)

(b)

(I) (II) (III) (IV) (V) (VI)

j

Figure 4: (a) Diagrammatic representation of the al-
gorithm. GEBS determines successive candidates for
the “Nearest Higher” until the proper one is found.
The quantum state in Eq. (6) is prepared in the “Ini-
tialize” step (green box). Grover Search (larger dia-
mond) is then performed to find the points satisfying
dL < di,j < dt, ρi < ρj . If this condition is satisfied
(‘Y ’ branch), dt is updated and Grover run again. If not
(‘N ’ branch), control flows to the “?” diamond. The
branch A is entered if the “?” condition is being checked
for the first time or if branch B was just run. Branch
B is entered if branch Y was just run. (b) The algo-
rithm’s working is shown step-by-step (numbers at the
bottom) for the search space S in the inset in the top
right corner. The points are mapped to a line where the
height represents the distance di,j from the base point
j (black dot at the bottom). The grey (orange) points
are outside (inside) the green consideration circle with
radius dm [see also Fig. 2(b)]. At each step of GEBS,
the thresholds dL and dt are updated according to the
logic in panel (a). The dot with the red border indicates
the current candidate for Nj ; when filled (empty) it is
(not) found by Grover Search at that step. The yellow
point is the Nearest Higher N| that is found at the end
of GEBS.

To find the Nearest Higher, we use a Grover-
Enhanced Binary Search (GEBS) where each
search step is enhanced by Grover’s algorithm.
The output of every Grover run,∑

dL<di,j<dt,
ρi>ρb

|i⟩ |Xi, ρi⟩ , (7)

is a superposition over all points i whose distance
di,j from the base point j lies between the thresh-
olds dL and dt. Furthermore, their local den-
sity ρi should be higher than that of the base
ρj . At each step, dL and dt are updated based
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on whether a point satisfying the conditions in
the grey diamond of Fig. 4(a) is found. Ancilla
registers are used here as detailed in App. A.

To better understand the algorithm, we pro-
vide a step-by-step walkthrough of the example
in Fig. 4(b). The search space S is schemati-
cally represented by the inset in the right hand
side, where each dot represents a point with a
size that is proportional to its local density. The
consideration circle (light green, dotted border)
highlights all points within a radius dm = δdc.
In this work, we set the outlier delta factor δ to
2. The consideration circle in the inset corre-
sponds to dL = 0 and dt = dm, shown in step
(I). In the main panel, vertical lines refers to
the steps (I-VI) of GEBS that are reported be-
low, and schematically represent the distances of
all points (coloured dots) from the base point j
(black one at the bottom).

GEBS starts with the higher threshold set as
dt = dm and the lower threshold dL = 0 as
shown in vertical line (I) of Fig. 4(b). Follow-
ing the probabilistic nature of quantum mechan-
ics, assume that the point with a red border
indexed i is found after measuring the output
of the Grover Search in Eq. (7). This triggers
the updates in the Y branch in the diagram of
Fig. 4(a), such that we assign Nj = i and update
dt 7→ (di,j + dL)/2 . The point indexed i is then
removed from the search space, as can be seen in
(II). Now, since no point satisfies the conditions
in the diamond of the flow diagram [see (II)] and
dt was just set to (di,j + dL)/2, the B branch is
carried out. This updates the thresholds dt and
dL for the next iteration of the algorithm, see
(III).

Now, assume that the new point with a red
border is found [step (III)]. Updates in the Y
branch of Fig. 4(a) are carried out again with a
new index i and the search region is reduced to
contain a single point. In the next step (IV), that
point (yellow) is found and, for the third and last
time, the nearest higher and the thresholds are
triggered according to the Y branch. Next, since
no point is found in (V), qLUE executes the up-
dates in the B branch of the diagram. In the last
iteration (VI), no points satisfy the desired con-
ditions. The parameter dt was just set to dt−1,
i.e, the subroutine just ran B which means that
the A branch is now executed and Nj is returned.

The runtime complexity of the GEBS proce-

dure, with m points in the search space S, is
O(α

√
m) as opposed to O(m) classically. The α

term is due to the binary search procedure and
depends on the size of the quantum register used
to encode the distance. Specifically, for a chosen
precision 2−∆ used for the positions of the points
in the datasets, α = ∆.

2.4 Find Seeds, Outliers, and Assign Clusters

Once the Nearest Highers Nj are determined for
all points j in the dataset, Seeds and Outliers
are found via another Grover Search over all
points in the dataset. As per the definition in
Eq. (3a), Seeds [red points in Fig. 2(c)] are the
points with highest local density within a neigh-
bourhood. Outliers [blue points in Fig. 2(c)] are
mathematically described by Eq. (3b), are most
likely noise, and therefore do not belong to any
cluster.

Similar to the previous subroutines, the quan-
tum registers for these procedures are initialized
via qRAM. Seeds and outliers are then deter-
mined based on the corresponding conditions via
Grover Search. Two quantum registers, the first
marking whether a point is an outlier and the
second to store the seed number – which is also
the cluster number – are added to the quantum
database.

The final subroutine of qLUE is the assignment
of points to clusters. At this stage, outliers have
been removed from the input dataset, as they
have been already identified. The algorithm flow
is the same as that of the Local Density step in
Fig. 3. For a chosen seed s, we define C to be
the set containing the indices of all points de-
termined to be in the associated cluster at the
end of this subroutine. To assign points to C, we
follow a procedure similar to that of the Local
Density step in Fig. 3. In the “Initialize” step,
C is initialized to {s} and the quantum registers
are initialized via qRAM to the state∑

i∈DSS

|i⟩ qRAM−−−−→
∑
i

|i⟩ |Vi⟩ , (8a)

|Vi⟩ = |Xi, ρi, dNi,i, XNi⟩ . (8b)

In the “Grover” block, we search over a super-
position of points in the dataset which we call
the Dynamic Search Space (DSS). The DSS dif-
fers from the search space S in the Local Density
step as it is dynamic. This is because it depends
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on the points in C, which are updated at each
iteration. In Fig. 2(c), for instance, the red seed
and the orange point both with black borders are
the elements of the current C. To find the DSS, a
square window of edge 2dm is first opened for ev-
ery point in C (in the figure, the squares with the
same border style as the corresponding points).
A rectangular region (red box) is then obtained
by finding the axis-aligned minimum bounding
box for these windows. The set of tiles □k cov-
ered partially or fully by this minimum bounding
box is the DSS. For example, in Fig. 2(c), it com-
prises the 9 tiles highlighted in light red.

With a similar procedure as for the Local Den-
sity subroutine, the “Grover” block now system-
atically identifies all followers of all points within
set C. Here, in the “Update” step in Fig. 3, as the
point found by the “Grover” block has passed the
“Valid” condition, it is appended to C. Once no
more points are found, the “Return” block yields
C, following the same flow as the Local Density
computation subroutine.

The complexity of the Cluster Assignment step
is similar to the one of the Local Density Com-
putation subroutine. The quantum advantage
stems from the quadratic speedup provided by
the Grover algorithm, which allows determining
the follower faster if compared to CLUE. If there
are f points in a cluster C and m points in the
corresponding DSS, the classical complexity of
the Cluster Assignment step is O(m), while the
quantum algorithm has a runtime of O(f

√
m).

3 Results

In this section, we test qLUE in multiple sce-
narios, each designed to investigate its perfor-
mance for different settings. In Sec. 3.1, we in-
troduce the scoring metrics used for our analysis.
In Sec. 3.2, we describe the performance of the
algorithm applied on a single cluster in a uni-
form noisy environment. In Sec. 3.3, we study
the performance on overlapping clusters. Finally,
in Sec. 3.4, we study the performance of qLUE
on non-centroidal clusters with and without an
energy profile.

3.1 Scoring metrics: Homogeneity and Com-
pleteness scores

To weigh more energetic points such as seeds
higher than the others, we use modified, energy-
aware versions [51] of the Homogeneity (FH) and
Completeness (FC) scores [52]. These metrics are
defined in terms of the predicted cluster labels
Cp obtained from qLUE, and the true cluster la-
bels Ct of the generated dataset. FH and FC are
based on the energy aware [51] mutual informa-
tion I(Cp : Ct), the Shannon entropy H(Ct), and
the joint Shannon entropy H(Ct, Cp) [53]:

FH = I (Cp : Ct)
H (Ct)

and FC = I (Cp : Ct)
H (Cp) , (9a)

H (Cp) = −
∑
a

Ea
E

log2
Ea
E
, (9b)

H (Ct) = −
∑
b

Eb
E

log2
Eb
E
, (9c)

H (Cp, Ct) = −
∑
a

∑
b

Ea,b
E

log2
Ea,b
E

, (9d)

I (Cp : Ct) = H (Cp) +H (Ct) −H (Cp, Ct) . (9e)

As discussed in [51], Ea is the energy aggregated
over all points that qLUE classifies into cluster
a. Eb is the energy aggregated over all points
in cluster b in the true dataset. Ea,b is the sum
of energies of all points in cluster b in the true
dataset that are also assigned to cluster a by
qLUE. E is the accumulated energy of all points
in the dataset. We remark that for unit ener-
gies, Eqs. (9) reduce to the more common form
presented in Ref. [52].

qLUE applied to an input dataset yields ho-
mogeneity FH = 1 if all of the predicted clusters
only contain data points that are members of a
single true cluster. On the other hand, FC = 1 is
obtained if all the data points that are members
of a given true cluster are elements of the same
reconstructed cluster. Therefore, these metrics
are better suited to different scenarios. The im-
pacts of noise and cluster overlap investigated in
Secs. 3.2 and 3.3 are better captured by FH . In-
deed, if qLUE incorrectly classifies noise points
into predicted clusters, FC is unaffected. On the
other hand, FC shall be employed when studying
non-centroidal clusters in Sec. 3.4, since FH = 1
if one true cluster is divided by qLUE into many
sub-clusters.
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Figure 5: Numerical results from qLUE simulated on a classical machine. (a-c) qLUE’s performance in noisy envi-
ronments. The dataset generated for these experiments and visualized in panels (a) and (b) consists of a cluster
(noise) with NC = 750 (NN ) points sampled from the Gaussian distribution in Eq. (10) (uniform distribution) over
a square of size 500. The energy of noise points is sampled uniformly between zero and one, while each cluster
point is assigned an energy that is the probability of being sampled multiplied by a factor A = 500. (a-b) Computed
clusters at NN/NC = 0.33, σ = 32, and NN/NC = 1, σ = 10, respectively. In (c), FH is plotted against NN/NC
for the σ in the legend. (d-f) Performance for overlapping clusters. In (d), FH vs r/σ is shown for σ = 30 and
different ratios N1/N2. Here, r is the distance between the centers of two clusters with N1 = 500 and N2 points,
and we assign to each point an energy that is equal to its sampling probability in Eq. (10). (e-f) Computed clusters
at r/σ = 2.0, N1/N2 = 1, and r/σ = 2.67, N1/N2 = 2, respectively. The shadowed regions in (c-d) represent
the standard deviations of FH over 30 iterations. (g-j) Performance over non-centroidal clusters of 500 points each
generated from scikit− learn [50]. In (g-h) the points’ energy profile is uniform, while in (i-j) is varied linearly with
respect to the distance such that each cluster has a single, most energetic point (see Sec. 3.4). For all experiments,
dc was set to 20 and ρ̃ was set to 25. (a-f) use the energy-aware metric in Eqs. (9) while in (g-j), since the energy
profile is assigned by the user and is not part of the dataset itself, in the scoring process we set all points to have the
same energy.

3.2 Noise
Here, we study the performance of qLUE for a
single cluster in a noisy environment. We vary
the number NN of noise points sampled from a
uniform distribution over a square region of fixed
size. A cluster of NC points with coordinates
Xj = [xj,1, xj,2] is sampled from the multivariate
Gaussian distribution

pdf(Xj) = e− 1
2 (Xj−µj)T Σ−1(Xj−µj)

(2π)
n
2 |Σ|

1
2

, (10)

where µ = [µx1 , µx2 ]T is the mean of the distri-
bution (set to [0, 0]T in our case) and Σ the co-
variance matrix. Here, we choose Σ = σI, with
I being the identity matrix and σ a positive real
number.
Examples of the generated clusters (in orange)

and noise (in blue) are given in Fig. 5(a-b) for
NN/NC = 0.33 at σ = 32 and NN/NC = 1 at
σ = 10, respectively. The energy assigned to each
point Xj in the cluster is given by A × pdf(Xj)
[see Eq. (10)] with A = 5 × 102. The energy
of each noise point is randomly sampled between

zero and one. This choice resembles the typical
scenarios in ER tasks which CLUE [23] was de-
signed for.

In Fig. 5(c), we show the variation of ho-
mogeneity score FH with respect to the ratio
NN/NC . We employ the values of σ reported
in the legend, that are associated to different
colours in the plot. As can be seen, the clus-
tering performance is inversely proportional to
both NN/NC and σ. When these parameters
are small, the typical distance between cluster
points is much smaller than that between noise
points, and FH approaches unity. With a higher
chance of labeling noisy points as within the clus-
ter, however, FH is lowered. As such, the degrad-
ing of FH is proportional to the probability of a
noise point being in the cluster region, which in-
creases with both σ and NN/NC .

3.3 Overlap

Here, we consider the case of two circular clusters
with N1 and N2 points respectively, each sam-
pled from the multivariate Gaussian distribution
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in Eq. (10) and with Σ = σI. The energy pro-
file is determined by pdf(Xj) for coordinates Xj .
The centers µ1 and µ2 (two instances of µ) are
chosen to be (r/2, 0) and (−r/2, 0), respectively,
such that the distance between the cluster centers
is r.

In Fig. 5(d), we study the variation of homo-
geneity score FH as a function of r/σ for sev-
eral values of N2/N1. The computed clusters
for r/σ = 2 at N2/N1 = 1 and r/σ = 2.67 at
N2/N1 = 2 are shown in panels (e) and (f), re-
spectively, to showcase the typical scenarios con-
sidered here.

For all N1/N2, FH is zero for low r/σ (high
overlap). There is then a region where FH in-
creases with r/σ and then saturates at unity for
high r/σ (little to no overlap). When the two
clusters are too nearby, i.e., r/σ ≪ 1, they are in
fact indistinguishable and qLUE labels all points
together. Increasing the ratio r/σ makes the clus-
ters move away from each other and thus qLUE
can discern them. Importantly, large values of
FH are already attained when the clusters still
have a significant overlap. In this scenario, em-
ploying the energy labels and the energy density
considerably contributes to assigning the points
to the right cluster. In fact, the nearest higher
points are more likely to connect the points near
or on the decision boundary with the more ener-
getic core, thus separating the clusters better.

The performance of qLUE is also affected by
the ratioN1/N2. When one cluster contains more
points than the other, it is more likely to “cap-
ture” points from the smaller. The resulting loss
in homogeneity score FH for low r/σ ratios is ev-
ident from Fig. 5(d), where it can be seen that
clusters of similar sizes are better distinguished
from each other.

3.4 Non-centroidal Clusters

Finally, we study the performance of qLUE on
non-centroidal clusters. For this purpose, we use
the Moons and Circles datasets in Fig. 5(g-j),
generated using scikit− learn [50]. Two settings
are considered - one where a uniform energy pro-
file is applied over the points [panels (g-h)] and
one where a linear gradient energy profile is em-
ployed [panels (i-j)].

In the latter case, for each cluster we assign
the highest value of the energy to a single point
and lower the energies of all other points propor-

tionally to their x2 coordinate. In the case of the
moon dataset, E = x2 for the upper moon (so
the top point of the upper moon has the max-
imum energy in the cluster) and E = 60 − x2
for the lower moon (so the bottom point has
the highest energy in the cluster). For the cir-
cles, E = |x2 − 200|/10 for the inner circle and
E = |x2 + 100|/5 for the outer one.

Since these datasets have no noise and are well
separated, FH is always one and we employ FC

to characterize the performance of qLUE. As in
Fig. 5(g-h) the energy profile is uniform, and sev-
eral points satisfy the seed condition. There-
fore, qLUE groups each circle into several clus-
ters, such that we obtain limited values for FC .
On the contrary, cases with an energy profile as-
signed [Fig. 5(i-j)] results in less seeds that are
better recognized by qLUE, and the complete-
ness score FC is considerably enhanced.

4 Conclusion and Outlook

We introduced qLUE, a novel quantum clus-
tering algorithm designed to address the com-
putational challenges associated with high-
dimensional datasets. The significance of qLUE
lies in its potential to efficiently cluster data
leveraging quantum computing, mitigating the
escalating computational complexity encoun-
tered by classical algorithms as dimensions in-
crease. The algorithm’s ability to navigate
high-dimensional spaces is particularly promising
when the density of points is very large, such that
local searches become too demanding for classi-
cal computers. Therefore, qLUE will be benefi-
cial in multiple scenarios, ranging from quantum-
enhanced machine learning [54, 55] to complex
data analysis tasks [56].

According to our numerical results, qLUE
works well and its performance is significantly
enhanced when an energy profile is assigned.
Specifically, we study qLUE in noisy environ-
ments, on overlapping clusters, and on non-
centroidal datasets that are commonly used to
benchmark clustering algorithms [57, 58]. In sce-
narios that are typically encountered in ER tasks,
qLUE correctly reconstructs the true clusters to a
high level of accuracy. On the other hand, an en-
ergy profile can significantly boost qLUE perfor-
mance in the case of non-centroidal clusters. Our
numerical results, backed up by the well-studied
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CLUE and by the quadratic speedup stemming
from Grover search, make qLUE a promising can-
didate for addressing high-dimensional clustering
problems [32, 33, 36].

As a first outlook, we identify the implementa-
tion of qLUE on NISQ hardware [59–65]. This
requires a comprehensive consideration of real
device constraints. Aspects such as circuit op-
timization [66], and the impact of noise will be
critical and must be carefully addressed. Second,
it is possible to improve the scaling of qLUE by
devising a unitary that mitigates the need for re-
peating Grover’s algorithm and thereby eliminat-
ing the factors of p, α, and f in the scaling of the
subroutines outlined in Secs. 2.2, 2.3 and 2.4 re-
spectively. Finally, it is worth investigating varia-
tions of qLUE that improve the quality of cluster-
ing in different scenarios. For instance, one can
devise more sophisticated criteria for the Nearest
Higher or Local Density computation steps. One
can also improve performance by performing ex-
haustive hyperparameter searches or via hyper-
parameter optimization algorithms [67].
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Appendix

A Grover’s Algorithm
Grover’s algorithm is a quantum algorithm to
solve the Unstructured Search Problem. From a
superposition of all states to be searched over,

Grover’s algorithm involves successive applica-
tions of two operators Uψ and UP to ensure that
the measurement result at the end of the algo-
rithm gives the search output with high proba-
bility. We use this algorithm extensively in our
work. The inset of Fig. 3 describes the flow of
this algorithm for our Local Density computa-
tion step. For m points, this involves O(

√
m)

successive applications of the operators

Uψ = 2 |ψ⟩ ⟨ψ| − 1, (11a)

UP |x⟩ =
{

− |x⟩ f(x) = 1
|x⟩ f(x) = 0

. (11b)

Here, f(x) = 1 when the current point satisfies
a desired condition (e.g in the context of Local
Density Computation, it lies in the critical radius
dc). If this condition is not satisfied, f(x) = 0.

To implement the operators in Eqs. (11), we
require A(dd) and M(ultiply) circuits. We use
the ones introduced in Ref. [68], which perform
the following operations

A |Xi⟩ |0⟩ = |Xi⟩ |x1i + x2i⟩ , (12a)
M |Xi⟩ |0⟩ = |Xi⟩ |x1i · x2i⟩ . (12b)

For the local density step, the quantum cir-
cuit UP to implement the search function f is
given in Fig. 6. The overall idea is to com-
pute the Euclidean distance between every input
point and the base point and check if this dis-
tance is higher than dc. The |sign⟩ qubit stores
the output of this computation. The F gates
are Xsign gates which are X on the sign qubit
and act as the identity on every other qubit,
such that F |x1i⟩ = |−x1i⟩. These are used such
that the first and second levels of Add gates A
compute xi1 − xi2 into |ai⟩ and |bi⟩ respectively.
The M multiply gates then set the |mi⟩ states
to (xi1 − xi2)2 taking ai and bi as inputs. An
A gate next acts on m1 and m2 to set |ans⟩ to
(x11 −x12)2+(x21 −x22)2. The Asign gate is a sub-
circuit of the addition circuit A that finally com-
putes the sign of (x11 − x12)2 + (x21 − x22)2 − d2

c

and stores it in |sign⟩. Thus, |sign⟩ = |f(x)⟩
[with f(x) as in Eq. (11b)] for the Local Density
computation step.
For the Nearest Higher Procedure, a similar

circuit can be used with additional registers |ρi⟩
for the Local Density and |ρ̃⟩ for the critical den-
sity threshold ρ̃. dc is replaced by dL and the

signs of
∣∣∣d2
i,j

〉
− |ans⟩ and ρi − ρ̃ are additionally

11



+

+

=

=

+

+

x

x

+

+

+

+

+

+

+

+

=

=

=

=

=

x

x

=

Figure 6: Circuit corresponding to the marking operator
UP in Eq. (11b). First, it computes the Euclidean dis-
tance d1,2 between points 1 and 2, as defined in Sec. 2.1.
Then, it compares d1,2 to the threshold dc and marks the
index based on the sign qubit |sign⟩. A and B are de-
fined in Eq. (12) and in Ref. [68]. Bars before gates are
employed to indicate that the corresponding qubits are
unaffected. In the figure, the first subscript on theregis-
ter contains the spatial coordinate and the second sub-
script contains the index. So, for example, |x1i

⟩ con-
tains the x1 coordinate of the ith point. The flip gates
F flip the sign bit of the input. The ancillas a1 and
b1 contain the output of computation x1i − x1j , while
a2 and b2 contain the output of computation x2i − x2j ,
after the first two levels of A gates. The M gates then
set m1 and m2 to (x1i

− x1j
)2 and (x2i

− x2j
)2 re-

spectively. The pre-final A gate sets the |ans⟩ state to
(x1i

− x1j
)2 + (x2i

− x2j
)2. The final Asign gate com-

putes (x1i −x1j )2 +(x2i −x2j )2 −d2
c . However, for this

final Asign gate, we need only compute the sign qubit of
the computation and so only the sign qubit computation
subcircuit of A features in Asign.

computed in order to find only the points that lie
between di,j and dL and satisfy the ρ̃ threshold.
These signs can be combined with the Toffoli gate
to compute the required function f(x)
For Seeds and Outliers, the condition is simi-

lar to that in the Nearest Higher (GEBS) pro-
cedure in that the distance criterion is only a
lower bound as opposed to a window. The GEBS
blackbox without the upper distance bound com-
putation can be used.

For the Cluster Assignment step, the operator
UP needs to check if the Nearest Higher index
of the points over which Grover Search is carried
out lies within C. The UP operator for this can
be generated using X and CnZ gates. CnZ gates

map |1⟩⊗n to − |1⟩⊗n and act as the identity on
all the other elements of the computational ba-
sis. Let us consider a simple example where the
dynamic search space DSS has 8 points indexed
from 000 to 111 in binary. So, the Nearest Higher
index will always be in this range. If C consists
of indices 0(000) and 5(101), we would use UP
as defined in Fig. 7. This flips the phase of 000
and 101 in the input superposition as required
(following Eq. (12b)). As shown in Fig. 7, oper-
ators for each index can be sequentially applied
to check for multiple indices in C.

Figure 7: Circuit for UP to check if the Nearest Higher
indices are in C, which here has 2 elements: 5(101) and
0(000). In the above circuit, the first part of the cir-
cuit flips the phase of the state if the register is in the
|101⟩ state that corresponds to index 5. The second
part flips the phase of the state if the register is in the
|000⟩ state that corresponds to index 0. Note that the
X gates performed at the end of the two subcircuits are
uncomputation steps that ensure that the input to the
subsequent subcircuits are as required and unaffected by
our initial X gates.
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[65] A. D. Córcoles et al. “Demonstration of
a quantum error detection code using
a square lattice of four superconducting
qubits”. In: Nature Communications 6.1
(2015), p. 6979. doi: 10.1038/ncomms7979.

[66] Beatrice Nash, Vlad Gheorghiu, and
Michele Mosca. “Quantum circuit opti-
mizations for NISQ architectures”. In:
Quantum Science and Technology 5.2
(2020), p. 025010. doi: 10.1088/2058-
9565/ab79b1.

[67] Jia Wu et al. “Hyperparameter Opti-
mization for Machine Learning Models
Based on Bayesian Optimizationb”.
In: Journal of Electronic Science and
Technology 17.1 (2019), pp. 26–40. doi:
https://doi.org/10.11989/JEST.1674-
862X.80904120.

16

https://doi.org/10.1090/conm/305/05215
https://doi.org/10.1088/2632-2153/acb0b4
https://doi.org/10.1080/00107514.2014.964942
https://doi.org/10.1103/PhysRevX.10.021057
https://doi.org/10.1103/PhysRevX.10.021057
https://doi.org/10.1038/nature24622
https://doi.org/10.1038/nature18274
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1126/science.1208001
https://doi.org/10.1038/nature18648
https://doi.org/10.1038/ncomms7979
https://doi.org/10.1088/2058-9565/ab79b1
https://doi.org/10.1088/2058-9565/ab79b1
https://doi.org/https://doi.org/10.11989/JEST.1674-862X.80904120
https://doi.org/https://doi.org/10.11989/JEST.1674-862X.80904120


[68] Raphael Seidel, Nikolay Tcholtchev, Se-
bastian Bock, Colin Kai-Uwe Becker,
and Manfred Hauswirth. Efficient Floating
Point Arithmetic for Quantum Computers.
2021.

17


	Introduction
	qLUE
	Overview and Setting
	Local Density Computation
	Find Nearest Higher
	Find Seeds, Outliers, and Assign Clusters

	Results
	Scoring metrics: Homogeneity and Completeness scores
	Noise
	Overlap
	Non-centroidal Clusters

	Conclusion and Outlook
	Acknowledgements
	Appendix
	Grover's Algorithm
	References

