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Abstract

Thin layers can lead to unfavorable meshes in a finite element (FE)
analysis. Thin shell approximations (TSAs) avoid this issue by removing
the need for a mesh of the thin layer while approximating the physics
across the layer by an interface condition. Typically, a TSA requires the
mesh of both sides of the TSA interface to be conforming. To alleviate this
requirement, we propose to combine mortar methods and TSAs for solv-
ing the heat equation. The mortar TSA method’s formulation is derived
and enables an independent discretization of the subdomains on the two
sides of the TSA depending on their accuracy requirements. The method
is verified by comparison with a reference FE solution of a thermal model
problem of a simplified superconducting accelerator magnet.
keywords: finite element method, thin shell approximation, mor-
tar method

1 Introduction

Superconducting electromagnets are used for example in particle accelerators.
To ensure operational safety, multiphysical — in particular thermal and electro-
magnetic — models of these magnets are simulated. Unfortunately, the magnets
often include thin volumetric layers, such as electrical insulation or turn-to-turn
contacts. The existence of these layers presents a challenge for numerical simu-
lations, as e.g. a naive finite element (FE) discretization can lead to unfavorable
meshes, either due to a high number of degrees of freedom or low-quality mesh
elements [1]. To alleviate this problem, thin shell approximations (TSAs) col-
lapse the thin volumetric layer into a surface and approximate the physics inside
the thin layer, commonly leading to field discontinuities across the surface.
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Figure 1: Cross-section of computational domain Ω for the meshed reference
(left) and mortar TSA (right), which also shows a sketch of a non-conforming
mesh. The reference mesh is omitted for the sake of a clear visualization.

For the model computational domain Ω, we assume a thin volumetric layer
Ωi called the internal subdomain, separated from the two external subdomains
Ωe,1 and Ωe,2 by the interfaces Γ1 and Γ2. An illustration of the configuration
is shown in Fig. 1. Typically, TSAs link the problem formulations on Ωe,1,Ωe,2

and Ωi by enforcing equality of the respective interface terms in a strong sense.
This procedure requires conforming meshes for Γ1 and Γ2 [1, 5, 7]. However,
using different discretization levels of Ωe,1 and Ωe,2 (as shown on the right in
Fig. 1) can be advantageous in the engineering context. Mortar methods enable
the use of different discretizations on different subdomains. Equality on the
interfaces is then imposed not in a strong sense, but by introducing Lagrange
multipliers [4, Section 2.5.1]. The proposed mortar TSA method enables the
use of TSAs with non-conforming meshes by combining TSAs with the mortar
method.

2 Classical Weak Formulation

The starting point for introducing the mortar TSA is a weak formulation with
conforming mesh. We solve the heat equation:
Find T ∈ Vg =

{
u ∈ H1(Ω) : u = g on ΓDir ⊂ ∂Ω

}
s.t.

(κ∇T,∇T ′)Ω + (CV ∂tT, T
′)Ω = (Q,T ′)Ω +

〈
n⃗ · κ∇T, T ′〉

∂Ω
∀T ′ ∈ V0 . (1)

Herein, T is the temperature, κ the thermal conductivity, CV the volumetric
heat capacity, Q a heat source, n⃗ the outward-oriented normal vector andH1(Ω)
the space of square integrable (L2) functions with square integrable weak gra-
dient. The L2-inner product, that is the integral of the scalar product of two
functions, is denoted by (·, ·)Ω for three dimensional and by ⟨·, ·⟩∂Ω for two di-
mensional regions. Suitable boundary conditions (BCs) have to be defined on

2



∂Ω. In addition to the Dirichlet-BCs imposed in the space of permissible solu-
tions Vg, we use adiabatic homogeneous Neumann and Robin BCs, that is

n⃗ · (κ∇T ) = 0 on ΓNeu ⊂ ∂Ω , (2)

n⃗ · (κ∇T ) = h (Tref − T ) on ΓRob ⊂ ∂Ω , (3)

with a reference temperature Tref and the heat transfer coefficient h.

3 Mortar Thin Shell Formulation

In order to introduce the mortar TSA and starting from (1), the external subdo-
main Ωe := Ωe,1∪ Ωe,2 and the internal subdomain Ωi are considered separately.
They are connected via the interface contributions〈

n⃗1 · κ∇T, T ′〉
Γ1

+
〈
n⃗2 · κ∇T, T ′〉

Γ2
=: B(T, T ′) , (4)

where the normal vectors n⃗1, n⃗2 are oriented outwards w.r.t. Ωi. Preserving
the possibility to enforce Robin-BCs on parts of ∂Ωe \ {Γ1 ∪ Γ2} and assuming
either Dirichlet or homogeneous Neumann BCs everywhere else, we find the two
sub-problems

(κ∇T,∇T ′)Ωe
+ (CV ∂tT, T

′)Ωe
+

〈
h(T − Tref), T

′〉
ΓRob

= (Q,T ′)Ωe
−B(T, T ′) ,

(5)

(κ∇T,∇T ′)Ωi
+ (CV ∂tT, T

′)Ωi
= (Q,T ′)Ωi

+B(T, T ′) , (6)

where the external problem (5) is defined on Ωe, and the internal problem (6)
is defined on Ωi. For the TSA, we then seek an approximate solution T̂ of
the internal problem (6), for which we consider the heat equation on Ω̂i, a
(potentially approximate) representation of the original thin volumetric layer Ωi.

We subdivide the domain Ω̂i into N disjoint layers [7], that is Ω̂i =
⋃N

k=1 Ω̂
(k)
i

and introduce a local coordinate system u⃗, v⃗, w⃗ with w⃗ normal to the virtual
interface Γ̂ and u⃗, v⃗ in tangential direction. We then use a tensor product
ansatz for the layers, i.e.

Ω̂
(k)
i = Γ̂× [wk−1, wk] , (7)

as is illustrated in Fig. 2. Denoting by T̂ (k) := T̂ |
Ω̂i

(k) the solution within the

layer Ω̂
(k)
i and by Γ̂0 = Γ̂× w0 and Γ̂N = Γ̂× wN the outer boundary surfaces

of Ω̂i, the (approximate) internal problem can be rewritten as

B̂(T̂ , T̂ ′) =
〈
n⃗1 · κ∇T̂ (0), T̂ ′(0)〉

Γ̂0
+

〈
n⃗2 · κ∇T̂ (N), T̂ ′(N)

〉
Γ̂N

(8)

=

N∑
k=1

{(
κ∇T̂ (k),∇T̂ ′(k)

)
Ω̂

(k)
i

+
(
CV ∂tT̂

(k), T̂ ′(k)
)
Ω̂

(k)
i

−
(
Q, T̂ ′(k)

)
Ω̂

(k)
i

}
.
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Figure 2: Tensor product discretization of Ω̂i.

This approximates (4). We then assume a product decomposition within each
layer, i.e.

T̂ (k)(u, v, w, t) =

k∑
j=k−1

T̂j(u, v, t)Ψj(w) , (9)

with the degrees of freedom (DoFs) T̂j of the TSA supported on Γ̂ and the
one dimensional basis functions Ψj e.g. chosen as first-order Lagrange basis

functions. As the DoFs T̂j are independent of w, we then use the tensor product
ansatz (7) to decompose the integration domain∫

Ω̂(k)

dΩ̂ =

∫
Γ̂

∫ wk

wk−1

dw dΓ̂ , (10)

and explicitly evaluate the integrals w.r.t. w. Using the notations(
K̂(k)

κ

)
ij
= K̂

(k)
κ,ij :=

∫ wk

wk−1

κ∂wΨj(w)∂wΨi(w)dw ,(
M̂(k)

κ

)
ij
= M̂

(k)
κ,ij :=

∫ wk

wk−1

κΨj(w)Ψi(w)dw ,(
M̂(k)

cV

)
ij
= M̂

(k)
cV ,ij :=

∫ wk

wk−1

cV Ψj(w)Ψi(w)dw ,(
q̂(k)

)
i
= q̂

(k)
i :=

∫ wk

wk−1

QΨi(w)dw ,

(11)
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for the matrices corresponding to this one dimensional discretization, we find
for the terms in the (approximate) internal problem (8):

(
κ∇T̂ (k),∇T̂ ′(k)

)
Ω̂

(k)
i

=

k∑
j=k−1

k∑
i=k−1

〈
K̂

(k)
κ,ij T̂j , T̂

′
i

〉
Γ̂
+

〈
M̂

(k)
κ,ij ∇T̂j ,∇T̂ ′

i

〉
Γ̂
,

(
CV ∂tT̂

(k), T̂ ′(k)
)
Ω̂

(k)
i

=

k∑
j=k−1

k∑
i=k−1

〈
M̂

(k)
CV ,ij ∂tT̂j , T

′
i

〉
Γ̂
, (12)

(
Q, T̂ ′(k)

)
Ω̂

(k)
i

=

k∑
i=k−1

〈
q̂
(k)
i , T̂ ′

i

〉
Γ̂
.

This yields the internal problem formulation:

N∑
k=1

k∑
j=k−1

k∑
i=k−1

{〈
K̂

(k)
κ,ij T̂j , T̂

′
i

〉
Γ̂
+

〈
M̂

(k)
κ,ij ∇T̂j ,∇T̂ ′

i

〉
Γ̂
+

〈
M̂

(k)
cV ,ij ∂tT̂j , T

′
i

〉
Γ̂

}

= B̂(T̂ , T̂ ′) +

N∑
k=1

k∑
i=k−1

〈
q̂
(k)
i , T̂ ′

i

〉
Γ̂
. (13)

The decomposition of the internal problem in integrals over Γ̂ and 1D FE ma-
trices in [wk−1, wk] leads to a formulation of the internal problem in which no
volumetric mesh of Ω̂i is needed. A detailed derivation is found in [5].

The connection of the external and internal problem is established in [5]
by enforcing T |Γ1

= T̂ |Γ̂0
and T |Γ2

= T̂ |Γ̂N
in a strong sense. This requires

conforming meshes of Γ̂, Γ1 and Γ2. We propose to circumvent this constraint
by using a mortar method to couple the external and internal problems. To this
end, we introduce the two Lagrange multipliers

λ1 ∈ Λ1 = H−1/2(Γ1) and λ2 ∈ Λ2 = H−1/2(Γ2) , (14)

where for j ∈ {1, 2}, H−1/2(∂Ωe,j) denotes the trace space of L2(Ωe,j), and
H−1/2(Γj) its restriction to the interface Γj . To achieve weak continuity across
the interfaces Γ1 and Γ2, we require weak equality of both temperature and heat
flux for the two sides of each interface. To enforce weak equal temperature, we
introduce the additional conditions〈

T, λ′
1

〉
Γ1

=
〈
T̂ , λ′

1

〉
Γ̂0

∀λ′
1 ∈ Λ1 ,〈

T, λ′
2

〉
Γ2

=
〈
T̂ , λ′

2

〉
Γ̂N

∀λ′
2 ∈ Λ2 .

(15)

Weak equality of the interface fluxes is achieved by inserting λ1 in place of both
n⃗1 · κ∇T |Γ1

in (4) and n⃗1 · κ∇T̂ (0)|Γ̂0
in (8). With an analogous approach for

λ2, we thereby find the modified interface contributions

B(T, T ′) =
〈
λ1, T

′〉
Γ1

+
〈
λ2, T

′〉
Γ2

,

B̂(T̂ , T̂ ′) =
〈
λ1, T̂

′(0)〉
Γ̂0

+
〈
λ2, T̂

′(N)
〉
Γ̂N

.
(16)
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Let us note that by choosing Γ̂ conformal to Γ1 (or Γ2), λ1 (or λ2) can be
eliminated. The final formulation is recovered by inserting the modified interface
contributions (16) in the internal (13) and external (5) problem formulations.

An extension of the mortar TSA method for magnetodynamic H⃗–φ TSA
formulations [6] is straightforward but requires to work with the corresponding
subsets of the edge element space H(curl,Ω) and their traces.

4 Numerical Example

To demonstrate the correctness of the mortar TSA method, we consider a
non-linear model problem based on an accelerator magnet geometry. In this
two dimensional problem, we consider two adjacent superconducting Niobium-
Titanium composite cables separated by thin Kapton insulation layers, for which
the mortar TSA is used. Below the cables is a gap, which is assumed to be filled
with Kapton as well, followed by a steel collar. The cables are heated via a con-
stant heat source Q = 1× 105 Wm−2 to model the resistive losses encountered
in a quench event. For the right cable, we employ a Robin boundary condition
to model cryogenic cooling of the material. An illustration of the configuration
at hand is given in Fig. 4.

As a reference, we use a conforming FE model with meshed insulation and a
mesh size of 0.1mm in the entire domain. The corresponding solution is shown
in Fig. 6. To illustrate non-conforming meshes on both sides of the interface, the
mortar TSA model uses a mesh size of 0.1mm in the right cable and 0.25mm
in the rest of the domain. The TSA for the insulation layers indicated in Fig. 4
consists of N = 3 shells, which use the finer interface mesh to obtain a single
Lagrange multiplier space. The cables are almost isothermal due to their high
thermal conductivity. Temperature gradients appear mostly across insulation
layers. Figure 3a shows the maximum temperature Tmax in the right cable of the
reference solution over time. A stationary constant temperature is reached due
to a balance between constant heating Q and the cryogenic cooling condition.
The relative error of the mortar TSA solution compared to the reference solution
is shown in Fig. 3b with excellent agreement between the two models. Both
mortar TSA and reference model are implemented in the free and open-source
FE framework GetDP [2], using material property functions provided by [8].
The implementation of the problem is publicly available at [3].

5 Conclusion

In this work, the concepts of mortar methods and thin shell approximations have
been combined to present the mortar TSA technique. It alleviates the need for
conforming meshes in the TSA. The problem formulation has been derived for
the heat equation and implemented in the free and open-source finite element
framework GetDP, with the source code publicly accessible at [3]. Good agree-
ment between the method and a classical conforming finite element solution with
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Figure 3: Maximum temperature Tmax in the right cable. Reference solution
and relative error over time.
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Figure 4: Simplified accelerator magnet
model with temperature-dependent mate-
rial properties (not to scale). Blue lines des-
ignate mortar TSA insulation layers. The
model heats up over time due to the heat
source in the cables.

a meshed insulation layer was shown for a two dimensional non-linear model
problem of a simplified superconducting accelerator magnet. Future research
may address a mathematical analysis of the formulation, study the effect on
T- and X-shape thin shell geometries and the extension to magneto-quasistatic
formulations.
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Figure 6: Comparison of reference and mortar TSA solution at time t = 2 s.
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