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The search for heavy resonances beyond the Standard Model (BSM) is a key objective at the
LHC. While the recent use of advanced deep neural networks for boosted-jet tagging significantly
enhances the sensitivity of dedicated searches, it is limited to specific final states, leaving vast
potential BSM phase space underexplored. We introduce a novel experimental method, Signature-
Oriented Pre-training for Heavy-resonance ObservatioN (Sophon), which leverages deep learning to
cover an extensive number of boosted final states. Pre-trained on the comprehensive JetClass-II
dataset, the Sophon model learns intricate jet signatures, ensuring the optimal constructions of
various jet tagging discriminates and enabling high-performance transfer learning capabilities. We
show that the method can not only push widespread model-specific searches to their sensitivity
frontier, but also greatly improve model-agnostic approaches, accelerating LHC resonance searches
in a broad sense.

I. INTRODUCTION

Discovery of heavy resonances beyond the Standard
Model (BSM) is a long-standing goal of the LHC pro-
gram. Despite tremendous efforts to search for reso-
nances up to the TeV mass scale, no concrete evidence
of a BSM resonance has been established [1–7]. To
date, besides these extensive experiments focusing on
specific theoretical models, model-agnostic search tech-
niques have also seen consistent progress [8–22] and their
experimental implementations have been initiated [23–
25]. Their common goal is to enhance the sensitivity
to new physics as much as possible in potentially unex-
pected phase space.

The boosted topology is widely explored in BSM
searches at the ATLAS and CMS experiments as it fo-
cuses on high-momentum phase space where high-mass-
scale new physics is likely to appear first. When probing
signals with boosted hadronic final states, recent LHC
measurements of Higgs boson properties [26–29] reveal
that the main driver of the sensitivity is the enhanced
performance of the deep neural network (DNN) used for
large-radius (large-R) jet tagging [30–32] resulting from
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rapid progress in deep learning applied to jet tagging [33–
36]. Training and deploying state-of-the-art jet networks
in all possible boosted-jet final states should bring us to
the sensitivity frontier for various BSM signal searches.
However, current boosted-jet taggers deployed in exper-
iments cover limited final states as they are developed
for specific tagging purposes [30–32, 37–41]. In contrast,
unknown BSM processes may produce jets with unpre-
dictable signatures and may be initiated from arbitrary
combinations of SM particles [42, 43]. This leaves the
majority of such BSM signal phase space underexplored.
Therefore, a tool that enables us to push a broad range
of final states towards their sensitivity frontier will accel-
erate our search for heavy new resonances at the LHC.

In this work, we propose novel LHC experimen-
tal methodology called Signature-Oriented Pre-training
for Heavy-resonance ObservatioN (abbreviated Sophon)
to achieve the goal. This methodology introduces a
boosted-jet DNN model (the Sophon model) learned from
a comprehensive jet dataset. It is capable of pushing a
broad range of hadronic final-state searches toward the
sensitivity frontier and also improving model-agnostic ap-
proaches. The Sophon model is pre-trained on a large-
scale jet dataset, including various resonance decays that
span as wide a range of jet signatures as possible. Thus,
it is expected to learn a comprehensive latent represen-
tation of jets. For the pre-training task, this work im-
plements large-scale classification, using finely catego-
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rized labels indicating which partons, leptons, or com-
binations thereof initiated the jet. In total, there are
188 classes. When used in LHC experimental searches,
as shown in Fig. 1, the model offers the ability to con-
struct various tagging discriminants directly from its out-
put nodes, which are already optimized for dedicated sig-
nals. Moreover, one can adopt the transfer learning tech-
nique [44, 45], specifically, using its latent representation
nodes as input to train a lightweight DNN for dedicated
model-specific or model-agnostic tasks. This approach is
highly performant in both tagging capabilities and com-
putational efficiency.

The rest of this paper is organized as follows. Sec-
tion II introduces the new dataset, the Sophon model,
and training details. Section III describes a benchmark
of its tagging performance. Section IV presents several
experiments demonstrating its large potential for LHC
resonance searches. Finally, Section V offers our conclu-
sion and outlook.

(a) Pre-training

(b) Usage

Sophon model
(main structure)

Nlatent = 128  classesNout = 188
resonant jets 

(2 prongs)

resonant jets 
(3, 4 prongs)

QCD jets

Transfer learning
Constructing 
discriminantsInput Layer ∈ ℝ¹⁰

⃗g

discr. = ∑ g
∑ g + ∑ g

Input Layer ∈ ℝ⁸ Hidden Layer ∈ ℝ¹⁴ Output Layer ∈ ℝ¹⁰

Input Layer ∈ ℝ⁸ Hidden Layer ∈ ℝ¹⁰ Hidden Layer ∈ ℝ¹⁰ Output Layer ∈ ℝ²

Train new layers

FIG. 1. Illustration of (a) the Sophon model pre-trained as a
large-scale classifier over 188 classes of finely categorized jet
signatures, and (b) the usage of the Sophon model by per-
forming transfer learning or constructing discriminants from
selected output scores.

II. DATASET AND MODEL

A prerequisite for making the Sophon method effective
is having a large-scale and comprehensive dataset. We
present the JetClass-II dataset, which includes 188 jet
classes to facilitate Sophon model training. Compared
with the JetClass dataset [36, 46], JetClass-II con-
tains resonant jets with a broader mass range and an
extended set of final states. A resonant jet may contain
2, 3, and 4 prongs, where each prong is initiated by a
quark, gluon, or lepton. They are finely categorized with

respect to the particle types, quark or lepton flavors, and
the tau lepton’s decay mode. Specifically, to generate
two-prong jets, we consider a generic spin-0 resonance X
with mass up to 500GeV, transverse momentum pT up
to 2500GeV, either charged or neutral, that decays to di-
parton bb, cc, ss, qq (q = u/d), bc, cs, bq, cq, sq, and gg,
dilepton ee, µµ, τhτe, τhτµ, and ditau τhτh signatures,
where τe/µ/h represents a tau lepton that subsequently
decays into an e, µ, or hadrons, respectively. For jets with
3 or 4 prongs, a decay of X → Y (∗)Y (∗) is first performed
with a wide mY range, mY /mX ∈ (0.2, 0.8), followed by
a similar diparton and dilepton decay of the secondary
resonance Y with the additional inclusion of Y → eν,
µν, τeν, τµν, and τhν signatures. Thus, a complete set

of jet final states arising from Y (∗) pairs is considered.
This results primarily in 4-prong signatures but can also
be 3 prongs if an object leaks out of the jet cone or if one
of the objects is a neutrino. In addition to the resonant
jet, the background jets from quantum chromodynamics
(QCD) multijet events are simulated to cover a wide pT
and mass range, and they are subdivided into 27 classes
based on the number of quarks within the jet and their
flavors. A summary of the jet classes can be found in
Appendix A.

The simulation of the JetClass-II dataset follows
the JetClass simulation workflow [36], while addition-
ally emulating for the effect of pileup (PU) with an av-
erage of 50 PU interactions and adopting the PU per
particle identification algorithm [47] to remove the PU,
with a configuration similar to that used in the CMS
experiment [48]. This creates a more realistic dataset
that mimics LHC data collected in Run 2. Large-R jets
are clustered from the processed E-flow objects in the
delphes software [49] using the anti-kT algorithm [50]
with R = 0.8.

To train the Sophon model, we use the Particle Trans-
former (ParT) as the backbone with the same model con-
figuration as in Ref. [36], except that the fully connected
multilayer perceptron (MLP) is now expanded to two lay-
ers, first increasing the dimension to 512, then back to
Nout = 188 output nodes. The neuron values before pass-
ing through the MLP have a dimension of Nlatent = 128.
They are treated as the Sophon model’s latent features
used for transfer learning. Notably, we adopt two special
training techniques in addition to the original ParT train-
ing [36]. First, jet samples are selected with a predefined
probability during training to ensure a smooth pT and
soft-drop mass (mSD) [51, 52] spectrum.This essentially
performs a reweighting on pT and mSD of the training
dataset, a technique previously explored to minimize the
tagger’s correlation with jet pT and masses in LHC ex-
periments [32, 34, 53]. The decorrelation with jet mass
is especially important for resonance searches to avoid
sculpting the background mass distribution when apply-
ing a selection on the tagger score. Secondly, the four-
momentum of the jet and its constituents are all scaled
by a coefficient to satisfy jet pT = 500GeV before gather-
ing the jet inputs. This improves the scale-invariance of
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the model and generalizes the tagging performance over
a wide mass range. More technical details can be found
in Appendix B.

III. PERFORMANCE BENCHMARK

We first compare the Sophon model with the best
jet taggers achievable in current experiments as a per-
formance benchmark. Our experiment is delivered on
a dataset dedicated to the SM processes, simulated in
LHC pp collision at

√
s = 13TeV and corresponding to

the 100 fb−1 of data. This dataset is produced in addi-
tion to JetClass-II, using the same configuration for
delphes simulation. It imposes a trigger requirement
dedicated to the boosted topology study, i.e., the scalar
pT sum of all R = 0.8 jets is larger than 800GeV, and
one of the jets should have a trimmed mass [54] larger
than 50GeV. Based on the leading-order cross section
calculated from MadGraph5 amc@nlo [55], this SM
dataset includes 5 × 107 events from QCD multijet pro-
cess, 9 × 105 V (= W/Z)+jets events, 3 × 105 events
from top quark-antiquark pair (tt) and single top (ST)
quark processes, and other processes including the dibo-
son (V V ) and Higgs production.

The performance of tagging resonant X → bb and
X → bs jets is used for benchmarking. Here, the X → bb
tagging task evaluates the Sophon model’s direct tagging
capability by constructing discriminants from its output
nodes, while X → bs tagging examines its transfer learn-
ing ability since there is no direct correspondence in the
model’s training classes to the bs signature. The BSM
signal process originates from a hypothetical heavy spin-
0 (Higgs-boson-like) resonance X0 with a mass equal to
200GeV, decaying to bb or bs. For both signal and SM
processes, the leading R = 0.8 jet satisfying the trigger
requirement is used for evaluating various algorithms.

For X → bb tagging, we begin by discussing the op-
timal way to construct discriminants from the Sophon
model output. A trained multi-class classifier with mini-
mum cross-entropy loss estimates the likelihood ratios of
the input classes through the so-called “likelihood-ratio
trick” [56]. Specifically, the ith (i = 1, · · · , Nout) classi-
fier output score gi(x) given input x satisfies

gi(x) =
p(class = i|x)∑Nout

j=1 p(class = j|x)
, (1)

under the ideal DNN assumption, i.e., with sufficient
model capacity and data such that the loss reaches the
theoretical minimum. Note that the binary classifier form
(Nout = 2) of this property has been widely explored in
high energy physics [56–58], but its extension to mul-
tiple classes form has been investigated less. Here, we
show two important properties that can be derived from
Eq. (1). They will guide the construction of Sophon’s
tagging discriminants throughout this work.

Property 1 Class division property: Consider a classi-
fier with an input class c that is subdivided into multiple
exclusive subclasses {c1, . . . , cN} to form a new classifier.
Let gi(x) and g′i(x) denote the output scores of the orig-
inal and new classifiers, respectively. The output scores
of the two classifiers are related as follows.

gc(x) =

N∑
l=1

g′cl(x), and gi(x) = g′i(x) for i ̸= c. (2)

Property 2 Extraneous classes property: Consider a
classifier that is augmented with additional new input
classes {e1, · · · , eN} to form a new classifier. The ra-
tios of the output scores for the original classes should
remain unchanged, i.e.,

gi(x)

gj(x)
=

g′i(x)

g′j(x)
, for i, j /∈ {e1, · · · , eN}. (3)

Built on the above properties, the optimal discriminant
for distinguishing X → bb from QCD jets is constructed
as

discr (X → bb vs. QCD) =
gX→bb

gX→bb +
∑27

l=1 gQCDl

, (4)

where gX→bb corresponds the X → bb output score and
gQCDl

corresponds to the scores of 27 QCD classes. Ide-
ally, this should be equivalent to training a binary clas-
sifier DNN to classify the same X → bb jets and the
undivided QCD jets, then using the X → bb score as
the discriminant. According to the Neyman–Pearson
lemma [59], this serves as the strongest discriminant to
distinguish the X → bb and QCD jets.
For X → bs tagging, transfer learning is applied to the

Sophon model from its latent features with a dimension
Nlatent = 128, using a two-layer MLP with (512, 2) nodes.
The parameters of the first linear layer are preloaded
from the corresponding part in the Sophon model to ease
the learning. It only has two output nodes for classify-
ing X → bs jets and QCD jets. Here, X → bs jets are
again produced with variable mX in the same kinemat-
ics as jets in JetClass-II. The same mass-decorrelation
technique is applied during training. The transfer learn-
ing training is much simpler and faster than the original
Sophon model training. Only a small fraction (1/320) of
the total Sophon training dataset is needed for the trans-
fer learning and the total computational cost (in terms
of floating point operations per second) is 1/1 000 000 of
the original training.
Figure 2 shows the tagging performance in terms of

the discovery significance Z [60] as a function of the SM
background selection efficiency, using 40 fb−1 of data and
considering events within the mass window 150 < mSD <
230GeV. Several tagging models are compared at a given
number of signal injections. To illustrate the current
tagging performance achievable at LHC experiments, we
train two dedicated tagging models for both tasks: one
using state-of-the-art ParT [36] architecture, and one us-
ing the ParticleNet model [61]. These are representative
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of the current tagging capability within the CMS experi-
ment [27, 29, 62]. These models are trained as binary
classifiers to distinguish X → bb (bs) jets against the
QCD jets, applying similar training settings. The per-
formance of the Sophon model in X → bb tagging and its
transfer learning version in X → bs tagging already sur-
passes that of dedicated ParT or ParticleNet trainings.
This demonstrates the ability of the method to adapt to
various model-specific jet tagging tasks 1.
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FIG. 2. Benchmark of Sophon model’s performance in the
X → bb and X → bs jet tagging tasks, with the signal orig-
inated from a BSM resonance X0 with mX0 = 200GeV that
decays to bb and bs, and backgrounds corresponding to the
40 fb−1 of the full SM processes. The performance of vari-
ous DNN models is compared in terms of the search’s discov-
ery significance versus SM background efficiency calculated
within the mass window 150 < mSD < 230GeV. A major
conclusion is that the Sophon model’s direct tagging discrim-
inant (for X → bb tagging) and its transfer learning version
(forX → bs tagging) both outperform the current best results
achievable in the LHC experiment using a ParT or ParticleNet
tagger. It also confirms that the model improves performance
when trained by large-scale classification.

Additional comparisons are presented in Fig. 2. First,
to study whether the Sophon model gained superior
X → bb vs. QCD jet tagging performance from the
large-scale classification task, we conduct an ablation
study by training the model only on 42 classes (denoted
Sophon*), including all 2-prong resonant-jet classes and
the QCD classes. These results show that the Sophon

1 Note that the absolute tagging performance does not necessarily
match real experiments due to the discrepancies between the
delphes modeling and real detector conditions. Our purpose is
to compare methods and draw conclusions about the capabilities
of different models. This will remain valid for real experimental
conditions.

model trained on 188 classes significantly improves the
discovery significance at a fixed background efficiency,
highlighting the importance of pre-training on a large
and comprehensive dataset. Second, to confirm that the
high performance in X → bs vs. QCD jet tagging relies
on knowledge transferred from the latent space instead
of recycling the tagging ability from existing classifica-
tion nodes, we identify the output node for X → bq jets
that shares the closest similarity with X → bs jets and
check the performance when using Sophon’s X → bq vs.
QCD jet tagging discriminant. The latter significantly
underperforms, confirming the important role of transfer
learning.

IV. IMPLICATIONS FOR RESONANCE
SEARCH

After demonstrating the high performance of the
Sophon model, we discuss how this approach, once de-
ployed on LHC experiments, will help to accelerate the
search for BSM resonances. We discuss two scenarios to
combine the Sophon model with resonance search.
The first method leverages the all-inclusive classifica-

tion nodes of the Sophon model. Since we are unsure
about the exact final state of the resonant, we can use
these 188 scores to make certain combinations, build-
ing the numerator and denominator as shown in Fig. 1
(b), to create a discriminant for jet selection. A typi-
cal bump hunt strategy can then be performed on the
mass spectrum to search for potential resonances. This
method utilizes the extensive classification ability of the
Sophon model to distinguish various jet signatures op-
timally. The second method embeds Sophon’s transfer
learning into fast-evolving model-agnostic search strate-
gies. Formally, this only involves replacing the existing
method’s input jet feature space with the Sophon model’s
latent feature space. Yet, the extensive knowledge of
jet signatures encoded in the feature space is expected
to yield improved signal-finding performance for a broad
class of signal models.
We evaluate the methods above in the single-jet and

the dijet topologies. The first topology aims to identify
resonance structure in a single jet mSD spectrum. Utiliz-
ing the above techniques, we aim to reveal the existence
of SM particles amidst the overwhelming QCD multijet
backgrounds. The second experiment performs a stan-
dard dijet resonance search to find the resonance peak
at the TeV mass scale in the dijet invariant mass mJJ .
This serves as a benchmark for the proposed methods by
comparing them with established model-agnostic strate-
gies.
First, in the single-jet resonance search, we consider

the following discriminant to veto QCD jets while puri-
fying certain signal processes,

discr (A vs. QCD) =
gA

gA +
∑27

l=1 gQCDl

. (5)
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This study considers three choices for the signature A for
illustration:

gA1 = gX→cs, gA2 = gX→bb,

gA3 = gX→bqallqall ≡
∑

sig∈{ccb,ssb,
qqb,bcs,bcq,bsq}

gX→sig, (6)

where the gA3 term aims to select all existing 3-prong
signatures composed of three quarks with exactly one b
quark included. By selecting jets on the three discrimi-
nants, Fig. 3 shows the change in the mSD spectrum of
the 40 fb−1 of the SM events as the selections become
tighter. The stacked histograms are also shown at a se-
lection efficiency of ϵB = 10−4. Interestingly, the corre-
sponding resonant signatures from the W , Z bosons, and
the t quark are revealed. This example demonstrates the
Sophon model’s broad ability to construct discriminants
and sensitively probe resonances with unknown proper-
ties.
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Select by X bqallqall vs. QCD discr.

FIG. 3. Distributions of the leading R = 0.8 jet mSD for
the 40 fb−1 of simulated SM events by imposing selections on
different Sophon tagging discriminants (X → bb, X → cs,
and X → bqallqall vs. QCD) at various selection efficiencies
ϵ. The blue and black curves represents ϵ ranging from 100

to 10−4, where the black one corresponds to ϵ = 10−4. The
stacked histograms show the contribution of various SM pro-
cesses at ϵ = 10−4. TheW/Z/t peaks can be revealed from the
flat QCD multijet background in different cases. The graph
demonstrates that constructing various tagging discriminants
allows signals with corresponding jet signatures to be puri-
fied, revealing distinct signal peaks.

To show the feasibility of using Sophon’s learned
knowledge in a model-agnostic search, we use the
Simulation Assisted Likelihood-free Anomaly Detection
(SALAD) method [10] as an illustration. This method

utilizes a simulated background dataset to assist in prob-
ing the small number of signal events in the data. To
search for resonance at mSD ∼ m0, we define the signal
region (SR) as (m0−15, m0+15)GeV and the mass side-
band (SB) as (m0−25, m0−15)∪(m0+15, m0+25)GeV.
Intuitively, this method first learns how to reweight the
SB simulation to SB data; with this information, it esti-
mates the background density in SR and trains a classi-
fier to distinguish the estimated SR background from the
SR data. The classifier output is theoretically allowed to
identify the signal events in SR optimally. We choose
the QCD background from 20 fb−1 of data as the sim-
ulated background. For the rest of the dataset, 40 fb−1

samples are used for training, and the other 40 fb−1 are
used to test the performance. We apply the method with
sliding mass windows, changing m0 from 65 to 295GeV
with a step of 10GeV. The trained classifier discrimi-
nant is applied to the test data in the narrow bin of
(m0−5, m0+5)GeV at a fixed working point to suppress
the QCD backgrounds to the 10−3 level. Practically,
the major difference compared to the original SALAD
method [10] is that the input is changed to the jet la-
tent features provided by the Sophon model 2. Figure 4

50 75 100 125 150 175 200 225 250
mSD [GeV]

0

1000

2000

3000

4000

5000Ev
en

ts
Anomaly detection with SALAD

QCD
W+jets
Z+jets

tt+ST
VV

Higgs
SM total unc.

FIG. 4. Distributions of the leading R = 0.8 jet mSD for
the 40 fb−1 of simulated SM events by applying the Simu-
lation Assisted Likelihood-free Anomaly Detection (SALAD)
method. The classifier is trained with a sliding mass win-
dow, and the selection is applied for each classifier at a QCD
multijet efficiency working point of 10−3. The proportion of
non-QCD processes is enhanced. The plot shows the feasi-
bility of combining the transfer learning technique with the
model-agnostic search strategy.

shows the mSD spectrum in the test data after the se-
lection is applied, with the W/Z/t related processes be-
ing more pronounced. Since no dedicated information on

2 Note that the original SALAD method is applicable in scenar-
ios where the simulation and data have subtle differences in
event generation patterns. This study employs a background
simulation using the same generator configuration for simplic-
ity. Nonetheless, It can demonstrate the feasibility of the model-
agnostic approach, as the fundamental principle of training a
weakly-supervised classifier is preserved under our conditions.
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the signatures is provided throughout the process, this
experiment shows that it is feasible to adopt the Sophon
method in model-agnostic searches.

We then experiment with the techniques in a widely
explored dijet resonance search, aiming to benchmark
the proposed methods. Specifically, we consider a BSM
triboson final-state process initiated by W ′ → Wϕ →
WWW , with mW ′ = 3 TeV, mϕ = 400GeV and all
W boson decaying hadronically. The physics model is
discussed in Refs. [63, 64] and is adopted by the early
model-agnostic study [8]. We simulate this physics pro-
cess with the same simulation workflow as above. Events
passing the trigger must contain at least two R = 0.8
jets with pT > 250GeV and |η| < 2.5. To search for
the resonance W ′ on the dijet invariant mass mJJ , we
define the SR as mJJ ∈ (2500, 3100)GeV and SB as
mJJ ∈ (2200, 2500) ∪ (3100, 3400)GeV. First, we at-
tempt to construct a discriminant with Sophon’s output
scores to select the expected signature of both jets. Ide-
ally, we expect one jet to be 2-prong while another jet to
be 4-prong; however, given that mϕ is large, it is prob-
able that the jet only reconstructs three quarks within
the cone. Therefore, we select signatures with either 2
prongs initiated by a W boson, or 3 and 4-prong sig-
natures initiated by WW , optimizing an event-selection
discriminant as the sum of two jet-tagging discriminates
in the form of

event discr. =
∑

jet=1,2

gA,jet

gA,jet +
∑27

l=1 gQCDl,jet

, (7)

where gA is defined as

gA ≡ 0.3 gW (2) + 0.1 gWW (4) + 0.6 gWW (3), (8)

and

gW (2) ≡ gX→cs + gX→qq,

gWW (4) ≡ gX→ccss + gX→qqcs + gX→qqqq,

gWW (3) ≡
∑

sig∈{ccs,ccq,ssc,
ssq,qqc,qqs,qqq}

gX→sig.
(9)

This can be treated as a model-specific tagging discrimi-
nant dedicated to the triboson phase space. The model-
agnostic search ability based on the weakly-supervised
approach is also studied and benchmarked with estab-
lished strategies. We experiment with the idealized case
where the classifier is trained to discriminate data in the
SR against the SR backgrounds. This assumes the SR
background is perfectly modeled and thus provides a sim-
ple benchmark to set a performance limit for all relevant
anomaly detection methods under the same input feature
space. The limit is denoted as the idealized anomaly de-
tection (IAD) limit [16]. We use the Sophon model’s la-
tent features as input to train the IAD classifier, compar-
ing it with using high-level jet inputs adopted by various
studies [8–12, 16, 17]. We evaluate the maximum signifi-
cance improvement, defined as max{Z|ϵB>10−4}

/
Z|ϵB=1

100 200 500 1000 2000 5000
Signal events (NS)

5
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>
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IAD: Sophon (transfer learning)
IAD: high-level input
5  limit
Discovery point for each method

0.2 0.5 1.0 2.0 5.0
Initial significance Z | B = 1

FIG. 5. Benchmark of the model-agnostic dijet anomaly
search capability in search of a triboson BSM signal
process from 40 fb−1 of simulated SM events. The
plot shows the maximum significance improvement defined
as max{Z|ϵB>10−4}

/
Z|ϵB=1 with varying signal injection,

within the mass window of the dijet invariant mass 2500 <
mJJ < 3100GeV. The idealized anomaly detection (IAD)
limit compares the best performance in different input sce-
narios, including performing transfer learning on the Sophon
model and using high-level jet inputs. The error bars corre-
spond to the standard deviation of the maximum significance
improvement over 20 trainings. The performance of the con-
structed Sophon discriminant is also compared. The 5σ-limit
curve is highlighted to compare the number of signal events
required for each method for establishing a first discovery.

when imposing a selection on the IAD classifier discrim-
inant, as a function of the injected signal yield, shown in
Fig. 5.
Our results show that Sophon’s transfer learning com-

bined with IAD enhances not only the maximum sig-
nificance improvement, but also its sensitivity to the
signal at a low injection—the initial significance that
the method starts to be aware of the existence of sig-
nal is around 0.6–1.0σ. It indicates that by leveraging
the learned knowledge of a pre-trained Sophon model,
we successfully solve the dilemma that exploring lower-
level input features for higher distinguishing capability
has to compromise the classifier’s sensitivity to low sig-
nal injection [65] 3. Furthermore, we emphasize that a
key criterion for evaluating the potential of a method
in resonance search is if it can reach the 5σ discovery
threshold—widely regarded as the gold standard for new

3 On this aspect, a recent work [66] in parallel with our study
has proposed a similar solution using a pre-trained model for
anomaly detection. Our solution differs from this work by
proposing the pre-training dedicated to a multitude of jet sig-
natures and utilizing a more lightweight transfer learning to
train the weakly-supervised classifier instead of a full model fine-
tuning.
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discoveries—in the quickest way. In this regard, Fig. 5
also highlights the 5σ-limit curve and the discovery point
for each method, showing that Sophon’s IAD method can
achieve discovery with 2.4 times fewer required signals
compared to the traditional methods using high-level in-
puts, thanks to both improved classifier performance and
enhanced sensitivity at lower signal yields. On the other
hand, Sophon’s signal-targeted discriminant enables a
much quicker 5σ discovery, as it requires a further 3.5
times fewer signal events than the much-improved IAD
method via Sophon’s transfer learning.

This finding implies that if we aim to search for res-
onance signatures composed of fragments initiated from
SM particles, the most efficient strategy is simply to con-
struct discriminants in a multitude of forms and then
search for a potential resonant peak in each case. It
allows us to push the sensitivity of various resonant
searches towards its frontier. On the other hand, for
detecting anomalous signals that are totally unlike the
known signatures induced by SM particles, the model-
agnostic strategy will be advantageous. As physical
priors of signals are recognized as important in model-
agnostic searches [13, 67], our approach can conceptually
enhance transfer capabilities due to the comprehensive
jet phase spaces the Sophon model learns from. Overall,
by exploring both methods in the broad resonance search
program at the LHC, we can expect significant potential
to improve search sensitivity and, hopefully, accelerate
the next possible discovery.

V. CONCLUSION AND OUTLOOK

We propose the Sophon methodology for signature-
oriented pre-training over a large-scale dataset and pre-
set JetClass-II, which covers comprehensive boosted
jet signatures. Pre-trained on JetClass-II as a large-
scale classifier, the Sophon model can distinguish over a
hundred different jet signatures, showing superior perfor-
mance in constructed tagging discriminant and transfer
learning, outperforming current best results achievable
from the LHC experiment. The resonance search stud-
ies suggest that it can push a broad range of resonance
searches to the sensitivity frontier and also greatly im-
prove model-agnostic searches. It opens a promising di-
rection in conducting future boosted-jet searches at the
LHC.

Driven by rapid advancements in deep learning for de-
veloping large models, recent LHC phenomenology works
have focused on jet model pre-training and fine-tuning
applications [66, 68–71]. Compared with established
studies, our work demonstrates the importance of build-

ing large-scale datasets to train an expressive model and
highlights its significance for broadly accelerating the res-
onance search. Additionally, this methodology can be
naturally integrated into the existing LHC analysis work-
flow. One can store the latent features in the central
dataset to facilitate the use of its output scores or the
highly efficient transfer learning without the need to re-
visit the full model. The inference of the Sophon model is
also affordable, as it shares a similar computational cost
with the default ParT or ParticleNet architecture [36].
As this work explores a simple classification approach

under the pre-training methodology, further studies may
extend the use of jet signatures and combine them into
novel training targets to improve the model’s expressive-
ness. Additionally, exploring novel applications of the
Sophon model within LHC data analyses, other than
generic resonance searches, can be an interesting task.
Addressing challenges such as calibration can pave the
way for its broader application.
The JetClass-II dataset (with the delphes configu-

ration) and the Sophon model will be publicly available.
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V. Lemâıtre, A. Mertens, and M. Selvaggi (DELPHES
3), DELPHES 3, A modular framework for fast simu-
lation of a generic collider experiment, JHEP 02, 057,
arXiv:1307.6346 [hep-ex].

[50] M. Cacciari, G. P. Salam, and G. Soyez, The anti-kt
jet clustering algorithm, JHEP 04, 063, arXiv:0802.1189
[hep-ph].

[51] M. Dasgupta, A. Fregoso, S. Marzani, and G. P. Salam,
Towards an understanding of jet substructure, JHEP 09,
029, arXiv:1307.0007 [hep-ph].

[52] A. J. Larkoski, S. Marzani, G. Soyez, and J. Thaler, Soft
Drop, JHEP 05, 146, arXiv:1402.2657 [hep-ph].

[53] L. Bradshaw, R. K. Mishra, A. Mitridate, and B. Ostdiek,
Mass Agnostic Jet Taggers, SciPost Phys. 8, 011 (2020),
arXiv:1908.08959 [hep-ph].

[54] D. Krohn, J. Thaler, and L.-T. Wang, Jet Trimming,
JHEP 02, 084, arXiv:0912.1342 [hep-ph].

[55] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni,
O. Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli, and
M. Zaro, The automated computation of tree-level and
next-to-leading order differential cross sections, and their
matching to parton shower simulations, JHEP 07, 079,
arXiv:1405.0301 [hep-ph].

[56] K. Cranmer, J. Pavez, and G. Louppe, Approximating
Likelihood Ratios with Calibrated Discriminative Classi-
fiers, arXiv:1506.02169 [stat.AP] (2015).

[57] J. Brehmer, K. Cranmer, G. Louppe, and J. Pavez,
Constraining Effective Field Theories with Machine
Learning, Phys. Rev. Lett. 121, 111801 (2018),
arXiv:1805.00013 [hep-ph].

[58] A. Andreassen and B. Nachman, Neural Networks for
Full Phase-space Reweighting and Parameter Tuning,
Phys. Rev. D 101, 091901 (2020), arXiv:1907.08209 [hep-
ph].

[59] J. Neyman and E. S. Pearson, IX. On the problem of the
most efficient tests of statistical hypotheses, Philosophi-
cal Transactions of the Royal Society of London. Series A,
Containing Papers of a Mathematical or Physical Char-
acter 231, 289 (1933).

[60] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, Asymp-
totic formulae for likelihood-based tests of new physics,
Eur. Phys. J. C 71, 1554 (2011), [Erratum: Eur.Phys.J.C
73, 2501 (2013)], arXiv:1007.1727 [physics.data-an].

[61] H. Qu and L. Gouskos, ParticleNet: Jet Tagging via
Particle Clouds, Phys. Rev. D 101, 056019 (2020),
arXiv:1902.08570 [hep-ph].

[62] A. M. Sirunyan et al. (CMS), Search for a massive scalar
resonance decaying to a light scalar and a Higgs boson
in the four b quarks final state with boosted topology,
Phys. Lett. B 19, 10.1016/j.physletb.2022.137392 (2022),
arXiv:2204.12413 [hep-ex].

[63] K. Agashe, P. Du, S. Hong, and R. Sundrum, Flavor
Universal Resonances and Warped Gravity, JHEP 01,
016, arXiv:1608.00526 [hep-ph].

[64] K. Agashe, J. H. Collins, P. Du, S. Hong, D. Kim, and
R. K. Mishra, Dedicated Strategies for Triboson Signals
from Cascade Decays of Vector Resonances, Phys. Rev.
D 99, 075016 (2019), arXiv:1711.09920 [hep-ph].

[65] E. Buhmann, C. Ewen, G. Kasieczka, V. Mikuni,
B. Nachman, and D. Shih, Full phase space resonant
anomaly detection, Phys. Rev. D 109, 055015 (2024),
arXiv:2310.06897 [hep-ph].

[66] V. Mikuni and B. Nachman, OmniLearn: A Method
to Simultaneously Facilitate All Jet Physics Tasks,
arXiv:2404.16091 [hep-ph] (2024).

[67] C. L. Cheng, G. Singh, and B. Nachman, Incorporating
Physical Priors into Weakly-Supervised Anomaly Detec-
tion, arXiv:2405.08889 [hep-ph] (2024).

[68] B. M. Dillon, G. Kasieczka, H. Olischlager, T. Plehn,
P. Sorrenson, and L. Vogel, Symmetries, safety,
and self-supervision, SciPost Phys. 12, 188 (2022),
arXiv:2108.04253 [hep-ph].

[69] M. Vigl, N. Hartman, and L. Heinrich, Finetuning
Foundation Models for Joint Analysis Optimization,

https://doi.org/10.1103/PhysRevD.102.012010
https://doi.org/10.1103/PhysRevD.102.012010
https://arxiv.org/abs/1909.12285
https://proceedings.mlr.press/v162/qu22b.html
https://proceedings.mlr.press/v162/qu22b.html
https://arxiv.org/abs/2202.03772
https://doi.org/10.1088/1748-0221/15/06/P06005
https://arxiv.org/abs/2004.08262
https://doi.org/10.1088/1748-0221/13/05/P05011
https://arxiv.org/abs/1712.07158
https://arxiv.org/abs/1712.07158
https://doi.org/10.1140/epjc/s10052-019-7335-x
https://arxiv.org/abs/1906.11005
https://cds.cern.ch/record/2776782
https://cds.cern.ch/record/2776782
https://cds.cern.ch/record/2776782
https://cds.cern.ch/record/2777009
https://cds.cern.ch/record/2777009
https://doi.org/10.5506/APhysPolB.50.837
https://doi.org/10.5506/APhysPolB.50.837
https://arxiv.org/abs/1610.09392
https://arxiv.org/abs/1610.09392
https://doi.org/10.1007/JHEP04(2020)030
https://arxiv.org/abs/1907.06659
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.5281/zenodo.6619768
https://doi.org/10.5281/zenodo.6619768
https://doi.org/10.1007/JHEP10(2014)059
https://arxiv.org/abs/1407.6013
https://arxiv.org/abs/1407.6013
https://doi.org/10.1088/1748-0221/15/09/P09018
https://arxiv.org/abs/2003.00503
https://arxiv.org/abs/2003.00503
https://doi.org/10.1007/JHEP02(2014)057
https://arxiv.org/abs/1307.6346
https://doi.org/10.1088/1126-6708/2008/04/063
https://arxiv.org/abs/0802.1189
https://arxiv.org/abs/0802.1189
https://arxiv.org/abs/1307.0007
https://arxiv.org/abs/1402.2657
https://doi.org/10.21468/SciPostPhys.8.1.011
https://arxiv.org/abs/1908.08959
https://doi.org/10.1007/JHEP02(2010)084
https://arxiv.org/abs/0912.1342
https://doi.org/10.1007/JHEP07(2014)079
https://arxiv.org/abs/1405.0301
https://arxiv.org/abs/1506.02169
https://doi.org/10.1103/PhysRevLett.121.111801
https://arxiv.org/abs/1805.00013
https://doi.org/10.1103/PhysRevD.101.091901
https://arxiv.org/abs/1907.08209
https://arxiv.org/abs/1907.08209
https://doi.org/10.1140/epjc/s10052-011-1554-0
https://arxiv.org/abs/1007.1727
https://doi.org/10.1103/PhysRevD.101.056019
https://arxiv.org/abs/1902.08570
https://doi.org/10.1016/j.physletb.2022.137392
https://arxiv.org/abs/2204.12413
https://doi.org/10.1007/JHEP01(2017)016
https://doi.org/10.1007/JHEP01(2017)016
https://arxiv.org/abs/1608.00526
https://doi.org/10.1103/PhysRevD.99.075016
https://doi.org/10.1103/PhysRevD.99.075016
https://arxiv.org/abs/1711.09920
https://doi.org/10.1103/PhysRevD.109.055015
https://arxiv.org/abs/2310.06897
https://arxiv.org/abs/2404.16091
https://arxiv.org/abs/2405.08889
https://doi.org/10.21468/SciPostPhys.12.6.188
https://arxiv.org/abs/2108.04253


10

arXiv:2401.13536 [hep-ex] (2024).
[70] L. Heinrich, T. Golling, M. Kagan, S. Klein, M. Leigh,

M. Osadchy, and J. A. Raine, Masked Particle Modeling
on Sets: Towards Self-Supervised High Energy Physics
Foundation Models, arXiv:2401.13537 [hep-ph] (2024).

[71] J. Birk, A. Hallin, and G. Kasieczka, OmniJet-α: The
first cross-task foundation model for particle physics,
arXiv:2403.05618 [hep-ph] (2024).
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Appendix A: Supplementary details on JetClass-II

Simulation.— The JetClass-II dataset includes a va-
riety of resonant jets and QCD jets. The resonant jets are
initiated from (1) X → 2 prong signatures with neutral
resonance X, (2) X → 2 prong signatures with charged
resonance X, and (3) X → Y (∗)Y (∗) → 4 prong signa-
tures, with an introduction below.

The case (1) is generated by the p p → HH process
using the MadGraph5 amc@nlo (MG) 2.9.18 [55] gen-
erator at the leading order (LO) with the heft model,
with 16M events in total. To control the resonant jet’s pT
and mass, the minimum pT of H at the hard-scattering
level is sampled in 50 points from (100, 2500)GeV in the
logarithm spacing and the H mass is uniformly sampled
from (15, 500)GeV with a step of 5GeV. The decay of
the H resonance and parton showering is simulated by
pythia 8.3 [72]. The decay modes (branching ratio) are
bb ( 18 ), cc ( 18 ), ss ( 18 ), dd ( 1

16 ), uu ( 1
16 ), gg ( 18 ), ee ( 1

16 ),

µµ ( 1
16 ), ττ ( 14 ). The subsequent τ decay follows the SM

configuration.

The case (2) is generated by p p → H+ H− process us-
ing MG at LO with the 2HDM model, with 12M events
in total. The same configuration on the H± minimum
pT and its mass is used. The decay of the H± resonance
and parton showering is simulated by pythia 8.3. The
decay modes (branching ratio) are du ( 16 ), su ( 16 ), bu ( 16 ),

cd ( 16 ), cs ( 16 ), bc ( 16 ).

The case (3) is generated by the p p → hh process us-
ing MG at LO with the 2HDM model, with 120M events
in total. The same configuration on the h minimum pT
and its mass is used. The decay processes are simulated
by pythia 8.3, with the resonance h decaying to HH
and H+H−, each with 1

2 branching ratio. Here, the h,
H, and H± are the two CP-even Higgs and the charged
Higgs bosons in the 2HDM model. The mass of H and
H± are configured as λmh, where λ is sampled uniformly
within (0.2, 0.8) in MG. H decay is the same with the
case (1), while the H± decay is similar to the case (2) but
with special inclusion of decay nodes including a neutrino
final state. The H± decay modes (branching ratio) are
then du ( 5

48 ), su ( 5
48 ), bu ( 5

48 ), cd ( 5
48 ), cs ( 5

48 ), bc ( 5
48 ),

eν ( 1
16 ), µν ( 1

16 ), τν ( 14 ). The subsequent τ decay follows
the SM configuration.

To initiate QCD jets, a 2 → 2 QCD multijet process
with the pythia 8.3 generator is simulated with 20M
events. The minimum pT of the hard-scattering process is
sampled within (100, 5000)GeV in the logarithm spacing
to ensure a wider jet pT and mass coverage.

The simulated events from all the above processes are
proceeded with delphes 3 [49] for fast simulation of
the detector response and object reconstruction. The
delphes simulation card is adapted from the CMS de-
tector configuration but modifies the impact parameter
of charged particles to match with the CMS tracker reso-
lution, similar to the JetClass simulation [36] In addi-
tion, the pileup (PU) effect with an average of 50 PU in-

teractions are included, adapted from the CMS detector
configuration with PU [49]. The PU per particle iden-
tification (PUPPI) algorithm [47] is also applied for PU
removal, adapted from the CMS detector configuration
in Phase-II [49] with additional parameter modifications
based on the Phase-I CMS detector condition and taking
the CMS experimental configuration as a reference [48].
The PUPPI algorithm assigns a value between 0 and 1 to
each E-flow object that signifies the probability the ob-
ject originates from the genuine interaction. It scales the
object’s four-momentum with the value. The processed
E-flow objects are used to cluster large-R jets using the
anti-kT algorithm [50] with R0 = 0.8. Selected jets must
satisfy 200 < pT < 2500GeV, 20 < mSD < 500GeV, and
|η| < 2.5.

Jet labeling.— A large-R jet produced by the dires-
onant production process is assigned a resonant-jet la-
bel if it matches any of the 161 resonant-jet classes or
is discarded if it does not match any resonant-jet label.
We count the first-generation decay products of the reso-
nanceX or Y (∗)Y (∗). The u and d quarks are merged with
and use q to represent them. The tau lepton is further
exclusively divided into three subclasses, τe, τµ, and τh, if
it sequentially decays into an electron, muon, or hadrons.
This results in the following truth particle types that may
appear in the final state: b/c/s/q/g/e/µ/τe/τµ/τh (neu-
trinos should be excluded). The matching of the jet with
a truth label requires the matching rule of all truth parti-
cles presented in the label to be satisfied. The matching
rule is ∆R(particle, jet) < R0 for particle types expect
for τe or τµ; for the latter, a matching requires their de-
cayed e or µ daughter satisfies ∆R < R0 with respect to
the jet axis.

A large-R jet produced by the QCD multijet process is
exclusively assigned a QCD label according to the num-
ber of b, c, s quarks, read from the pythia parton list
before their hadronization, satisfying pT > 10GeV, and
matched with the jet axis by ∆R < R0. For each num-
ber, it is categorized into three cases: 0, 1, ≥ 2. This
gives rise to 27 QCD classes in total.

The labels and their indices provided in the JetClass-
II dataset are summarised in Table I.

The total number of the labeled jets in the JetClass-
II dataset is around 139M. This includes 22M resonant
jets with 2 prongs, 99M resonant jets with 3 or 4 prongs,
and 18M QCD jets.

Jet variables.—The jet constituent features are used as
the input for neural network training. These features are
carried on E-flow objects and include kinematic features,
particle identification variables, and impact parameters
features, closely following the JetClass dataset. The
jet kinematic variables are also provided in the dataset
used to construct the neural work input.

Additional variables include the jet N -subjettiness
variables [73] up to N = 4 as a representative of the high-
level jet observables, and several generator-level variables
indicating the jet signatures. These include the jet label,
assigned by counting for the matched truth particles in-
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TABLE I. Summary of the 188 jet labels in the JetClass-II dataset.

Major types Index range Label names

Resonant jets:
X → 2 prong

0–14 bb, cc, ss, qq, bc, cs, bq, cq, sq, gg, ee, µµ, τhτe, τhτµ, τhτh

Resonant jets:
X → 3 or 4 prong

15–160 bbbb, bbcc, bbss, bbqq, bbgg, bbee, bbµµ, bbτhτe, bbτhτµ, bbτhτh, bbb, bbc, bbs, bbq, bbg, bbe, bbµ, cccc,
ccss, ccqq, ccgg, ccee, ccµµ, ccτhτe, ccτhτµ, ccτhτh, ccb, ccc, ccs, ccq, ccg, cce, ccµ, ssss, ssqq, ssgg,
ssee, ssµµ, ssτhτe, ssτhτµ, ssτhτh, ssb, ssc, sss, ssq, ssg, sse, ssµ, qqqq, qqgg, qqee, qqµµ, qqτhτe,
qqτhτµ, qqτhτh, qqb, qqc, qqs, qqq, qqg, qqe, qqµ, gggg, ggee, ggµµ, ggτhτe, ggτhτµ, ggτhτh, ggb,
ggc, ggs, ggq, ggg, gge, ggµ, bee, cee, see, qee, gee, bµµ, cµµ, sµµ, qµµ, gµµ, bτhτe, cτhτe, sτhτe,
qτhτe, gτhτe, bτhτµ, cτhτµ, sτhτµ, qτhτµ, gτhτµ, bτhτh, cτhτh, sτhτh, qτhτh, gτhτh, qqqb, qqqc, qqqs,
bbcq, ccbs, ccbq, ccsq, sscq, qqbc, qqbs, qqcs, bcsq, bcs, bcq, bsq, csq, bceν, cseν, bqeν, cqeν, sqeν,
qqeν, bcµν, csµν, bqµν, cqµν, sqµν, qqµν, bcτeν, csτeν, bqτeν, cqτeν, sqτeν, qqτeν, bcτµν, csτµν,
bqτµν, cqτµν, sqτµν, qqτµν, bcτhν, csτhν, bqτhν, cqτhν, sqτhν, qqτhν

QCD jets 161–187 bbccss, bbccs, bbcc, bbcss, bbcs, bbc, bbss, bbs, bb, bccss, bccs, bcc, bcss, bcs, bc, bss, bs, b, ccss, ccs,
cc, css, cs, c, ss, s, others

troduced above, and a list of the matched particles with
their type and kinematic features included.

Appendix B: Supplementary details on trained
models

1. Sophon model

The Sophon model adopts the Particle Transformer ar-
chitecture following Ref. [36] with the fully connected
multilayer perception (MLP) extended to a two layers
with dimensions of (512, 188). The main body of the
Sophon model includes 6 particle attention blocks and
2 class attention blocks, with an embedding dimension
of 128, and the number of heads equals 8. The ini-
tial particle features are embedded with a 3-layer MLP
with (128, 512, 128) nodes, and the pairwise particle fea-
tures are embedded with a 4-layer elementwise MLP with
(64, 64, 64, 8) nodes. The GELU nonlinearity is used
throughout the model. The Sophon model includes 2.3M
parameters in total.

The model takes input from all jet constituents, includ-
ing the kinematic features, particle identification, and
impact parameter features. It adopted the scaled kine-
matics inputs, where features related to the constituent
or jet four-momentum are all scaled by a parameter such
that the jet pT after scaling is 500GeV.
The procedure of sampling-based reweighting from the

training dataset to decorrelate the tagger score with
jet pT and mSD is introduced as follows. The train-
ing samples are selected into the training pool with a
predefined probability during the on-the-fly data load-
ing process. These probabilities serve as reweighting fac-
tors that reweight the two-dimensional histograms bin
by bin, constructed by jet pT and mSD within the range
of 200 < pT < 2500GeV and 20 < mSD < 500GeV.
The target is to yield the same normalized distributions
for several specific reweighting classes. The reweighting
classes are formed by merging 188 finely classified cat-
egories to some extent: classes with only quark flavor

differences have been merged, and all 27 QCD jet classes
have been merged into one. This results in 30 reweight-
ing classes. In addition, the relative weights of the 30
reweighting classes are properly chosen to weigh the num-
ber of samples in the training pool for each classes.
The model is trained with a batch size of 512 with an

initial learning rate (LR) of 5×10−4. The full JetClass-
II dataset is split into 80/20% for each file to serve as the
training/validation set. It is trained over 80 epochs, with
each epoch iterating over 10M samples. The optimizer
and the LR scheduler are the same as the ParT train-
ing [36]. We use the Lookahead optimizer [74] with
k = 6 and α = 0.5 and the inner optimizer is RAdam [75]
with β1 = 0.95, β2 = 0.999, and ϵ = 10−5. The LR re-
mains constant for the first 70% of the iterations, and
then decays exponentially, changing at the beginning of
every following epoch, down to 1% of the initial value at
the end of the training. A model checkpoint is saved in
every epoch, and the checkpoint with the highest accu-
racy on the validation set is chosen.

2. Sophon model* (42-class)

This model adopted the same Sophon model config-
uration except that the classification node dimension is
modified to 42. It is trained to classify a subset of jet
signatures, which covers all the final states from 2-prong
resonant jets and the QCD jets. The training dataset
then corresponds to the 2-prong resonant and QCD jets,
summed up to 40M jets.
Compared to the Sophon model training, it is trained

over 80 epochs, with each epoch iterating 2.5M samples.
The other training configurations are the same as the
Sophon model case.

3. ParT model for X → bb (bs) vs. QCD

This binary classifier with the ParT architecture [36] is
used to benchmark the current state-of-the-art discrimi-
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nation capability between the resonant X → bb (bs) jets
and QCD jets. It adopts the same ParT model configura-
tion of Ref. [36] with two classification nodes. The input
features use the original ParT training input, i.e., no scal-
ing of the jet and constituent four-momenta is applied.
This is found to have a negligible difference compared
to the scaling case when evaluating the X → bb (bs) vs.
QCD tasks.

The training is performed on the labeled X → bb (bs)
jets and the QCD jets. To prevent too few signal X → bb
(bs) jets in the JetClass-II dataset which might limit
the model’s capabilities, we produce an extended size of
the X → bb (bs) jets with the same configuration to
enlarge this dedicated category, amounting to 16M jets
each, reaching a similar size with the QCD jets. Also, a
similar sampling-based reweighting is performed to reach
the same 2D histogram on jet pT and mSD for the two
classes, with their relative class weights set as 1 : 1.

Compared to the Sophon model training, it is trained
over 50 epochs, with each epoch iterating 2.5M samples.
A weight decay of 0.01 is adopted to achieve better per-
formance. The other training configurations are the same
as above.

4. ParticleNet model for X → bb (bs) vs. QCD

The binary classifier with the ParticleNet architec-
ture [61] is used to represent the tagging capability
achievable in several present CMS analyses. The Par-
ticleNet model adopts the same configuration as in
Ref. [61]. It comprises three edge convolution blocks with
increased dimensions of (64, 128, 256) with the number
of nearest neighbors for edge computing set as 16. The
input to ParticleNet is similar to the experiment on Jet-
Class shown in Ref. [36]. The training is performed on
the same extended signal X → bb (bs) jets, and the QCD
jets in JetClass-II. The same sampling-based reweight-
ing on the two classes is adopted as introduced above.

The ParticleNet classifier is trained over 50 epochs,
with each epoch iterating 2.5M samples. A batch size of
512 and initial LR of 5×10−3 is adopted. No weight decay
is applied in the ParticleNet training. The optimizer and
the LR scheduler are the same as above.

5. Transfered Sophon model for X → bs vs. QCD

To transfer the knowledge of the Sophon model to per-
form X → bs vs. QCD jet tagging task, latent space fea-
tures with a dimension of 128 are used as input to train a
2-layer MLP with (512, 2) nodes with ReLU nonlinear-
ity. Parameters of the first layer Linear(188, 512) are
preloaded from the corresponding layer in the original
Sophon model. The training is performed on the same
extended X → bs resonant jet dataset, and the QCD jet
from JetClass-II. The same sampling-based reweight-
ing on the two classes is used.

The training is performed in 1 epoch, which iterates
only 2.5M samples to reach a convergence. A batch size
of 1024 and a constant LR of 5× 10−4 is adopted.

6. SALAD classifiers for single-jet resonance search

In the generic search of resonances on the leading jet
mSD spectrum, the Simulation Assisted Likelihood-free
Anomaly Detection (SALAD) method [10] is used, in-
volving training two classifiers. The classifier is combined
with the Sophon’s transfer learning concept; hence, the
input of the classifier is the dimensional 128 latent fea-
tures of the leading jet provided by the Sophon model.
The first classifier is trained to distinguish the QCD

background and all events (including QCD jets and other
SM processes), in the mass sidebands (SBs) mSD ∈
(m0 − 25, m0 − 15)∪ (m0 + 15, m0 + 25)GeV at a given
m0. The sampling rate from the two classes is controlled
by the data loader to yield the same number of events.
The classifier network is a 3-layer MLP with (512, 64, 2)
nodes and ReLU nonlinearity, where a preloading of pa-
rameters of the first layer is also done. The training is
performed in 1 epoch to iterate 5M samples. It takes a
batch size of 50 000 and a constant LR of 1× 10−3. The
score corresponding to the all-event class w(x) predicted
by the network is used in the next step. Notably, An en-
semble of 100 networks is trained, and the averaged score
w̄(x) is used.
The second classifier is trained to distinguish the QCD

background and all events in the signal regions (SRs)
mSD ∈ (m0 − 15, m0 + 15)GeV. The training uses the
same MLP configuration and the preloading of parame-
ters. It also iterate 5M samples and takes a batch size
of 50 000 and a constant LR of 1 × 10−3. As proposed
in the SALAD method, the per-sample loss function is
multiplied by w̄(x)/(1 − w̄(x)) if it belongs to the QCD
class. Similarly, an ensemble of 100 networks is trained,
and an average of scores that corresponding to the all-
event node is used as the final discriminant to suppress
the backgrounds.

7. IAD classifiers for dijet resonance search

In the dijet resonance search experiment, we use
40 fb−1 SM data to train the classifier and 40 fb−1 data
for test. This amounts to around 330 k SM events in SR
mJJ ∈ (2500, 3100)GeV. The former is further split to
80/20% for training/validation.
We train two kinds of classifiers under the idealized

anomaly detection (IAD) [16] scheme that can represent
the sensitivity boundary of the weakly-supervised meth-
ods to detect anomalous resonance. The classifiers differ
by their input features. In the IAD scheme, the clas-
sifier is trained to distinguish the backgrounds and the
data events in SR, where the backgrounds correspond
to all SM processes, and the data additionally includes
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the injected signal events. The experiment evaluates the
classifier performance as a function of the injected signal
Ns in SR. Practically, for each Ns, we divide the 330 k
SM events into two parts and inject Ns/2 signal events
in one part. The classifier is trained to distinguish the
two parts. For each Ns, the experiments are repeated 100
times with different Ns signals chosen for the study. This
allows us to calculate the mean and standard deviation
of the classifier performance under each Ns.
The first classifier is an application of Sophon’s transfer

learning. We use a 3-layer MLP with (512, 64, 2) nodes
and ReLU nonlinearity. Here, the input is the two latent
feature vectors with dimension 128 from the two jets. To
proceed with the input with two vectors to the network,
the vectors are first passed through the first and second
layers of the MLP, respectively. The resulting outputs
are then summed and passed through the third layer.

An ensemble of 100 networks is trained, and their aver-
aged score corresponding to the data node is used as the
discriminant.
The second classifier applies to the high-level input

from the dijet system following Ref. [8]. For each jet, we
consider the jet mSD, the number of constituent Nconst.,
the N -subjettiness variable [73] τ1, τ2, τ3, and τ4, tak-
ing the logarithm of each variable and standardize it
within the range between −2 and 2. The input takes
two dimension-6 vectors for both jets. We use a 4-layer
MLP with (512, 128, 128, 2) nodes and ReLU nonlinear-
ity. Similarly, the vectors are first passed through the
first and second layers of the MLP, respectively, and
then the outputs are summed and passed through the
third and fourth layers. An ensemble of 100 networks is
trained, and their averaged score corresponding to the
data node is used as the discriminant.
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