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The theoretical interest in the reaction vy — 7°7° dates back to the seventies
when predictions for the electromagnetic polarizabilities of the charged as well as
the neutral pion were obtained in the framework of current-algebra techniques [1]
and chiral quantum field theory [2]. These polarizabilities are a signature of the
underlying structure of particles, similar to the electromagnetic root-mean-square
radius, and a large number of different predictions for these parameters has been
obtained in various models (for an overview see, e.g., Refs. [3]). The possibility of
investigating the 77 — 7°7° amplitude via the e*e”-annihilation process as well as
the photoproduction in the Coulomb field of a nucleus was addressed in Refs. [4].

In the meantime, vy -~ 7°7% cross section data from threshold up to the p-
resonance region were provided by the Crystal Ball Collaboration [5]. On the theo-
retical side the framework of Chiral Perturbation Theory (ChPT) [6, 7] provides an
ideal tool to systematically study low-energy amplitudes involving Goldstone bosons
and their interactions with external fields, such as the electromagnetic field. In Refs.
(8] the amplitude for vy — #°7° was calculated to O(p*) in ChPT, and the result
was found to be given entirely in terms of one-loop diagrams involving vertices of
O(p?). In other words, there are no tree-level diagrams at O(p*) and O(p*) and
thus the one-loop diagrams are finite. However, the one-loop calculation in ChPT
disagrees with the data even near threshold. The inclusion of a Born contribution at
O(p®), obtained either from quark loops or from vector-meson dominance, results in
too small a contribution to vield agreement with experiment [9]. On the other hand,
the application of dispersive methods leads to a considerable improvement since they
take account of important unitarity corrections corresponding to rescattering effects
of higher order {10]. A full two-loop calculation at O(p®) within SU/(2)x SU(2) ChPT
was carried out in Ref. [11}. The O(p®) counterterm contributions were estimated
with resonance saturation and the total result was found to be in good agreement
up to an invariant mass /s of 700 MeV. Finally, v - 707% was also considered in
the context of Generalized ChPT up to one-loop order corresponding to O(p®) in
this counting scheme {12].

In the framework of chiral SU(3) x SU(3) symmetry the decay process n — 70y

is closely related to vy — 7°7% At O(p*) in ChPT the prediction for the decay

width [13] was found 1o be two orders of magnitude smaller than the measured value
[14]. The pion loops are small due to approximate (-parity invariance whereas the
kaon loops are suppressed by the large kaon mass in the propagator. A consider-
able enhancement was obtained with resonance saturation for some counterterms of

higher orders in the momentum expansion. In Ref. {13] symmetry-breaking terms



proportional to the quark masses were not considered at O(p®). Such counterterms
were, however, included in Refs. [15, 16]. In Ref. [15] they were estimated in the
framework of an extended NJL model [17] whereas in Ref. [16] the experimental
decay width was used to fit one of the corresponding coefficients. Finally, a comple-
mentary approach was used in Ref. [18] where the n — 7%y5 decay was calculated in
a phenomenological quark model using the quark-box diagram. A good agreement
with the experimental value for the decay width was obtained with a constituent
quark mass of 300 MeV.

It is the purpose of this work to present the results of a consistent calculation of
the processes vy — 7°7% and 5 — 7%~y at O(p®) in the momentum expansion. Ac-
cording to Weinberg's power counting scheme [6] the calculation involves tree-level.
one— and two-loop diagrams. The effective action up to O(p”) in terms of collective
meson degrees of freedom is obtained by bosonization [19] of the NJL model {20].
This effective action, in addition to the pseudoscalar mesons, still contains scalar.
vector and axial vector degrees of freedom. In order to (l()Lf’x'xxiixl("Lll(‘ structure co-
efficients of the effective chiral lagrangian at O(p*) [7] and O(p®) [21] one has to
integrate out the meson resonances. The method of superpropagator regularization
[22] was used in order to fix the UV divergences which for the first time show up at
O(p°).

We start from the generating functional
Z= /ch DO DV DA expliS(e, &1V A)]. (1)

corresponding to the following action for scalar (5. pseudoscalar (P), vector {V,)

and axial vector (4,) collective meson fields.
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This action is obtained by first bosonizing the effective action of the NJL model
and then integrating over the quark degrees of freedom. i . (2) Gy and G are
parameters whiclh are fitted to empirical input (see Eqs. {(11) and (13) helow for
details), ® = ~ + [’ and D refers to the Dirac operator

iD= P+ Ap)— (D) P+ @+ A - (D NI[))T][)L. (3)
where g 15 the current quark mass matrix, Pryp = %( I 4+5) are chiral projectors and

/ 7 o P . .
Aff’ L =¥, + A, Theelectromagnetic interaction can be included by the replacement



V, = Vi, + 17 A4,Q. where 0 1s the quark charge matrix, @ = diag(2/3

-1/3).

We express @ using a nonlinear realization of chiral svmmetry.

¢ =02,
where .
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represents the pseudoscalar degrees of freedom.  Fy is the bare 7 decay constant.
The 3 x 3 matrix ¥(r) contains the scalar fields and is expanded around its vacuum
expectation value g,

Nir) = p+olr). (9)

The constituent quark mass g is the solution of the gap equation.

For the processes under constderation, up to and including O(p®), only the even
intrinsic: parity sector of the chiral tagrangian is recuiired [13]. This sector is obtained
from the modulus of the logarithm of the quark determinant and can be calculated us-
ing the heat-kernel technique with proper time regularization [23. 24]. This method
has been used in Ref. [25] to obtain a prediction for the structure coefficients of the
general effective lagrangian of O{p*) and O{p"). respectively [T, 21]. The result of
Ref. {25] explicitlv contains. apart from the psendoscalar Goldstone bosons, scalar.
vector and axial vector resonances as dynamical degrees of freedom. However, in or-
der to avoid double counting when caloulating processes involving Goldstone bosons
and photons, one has (o integrate out ireduce) these resonances in the generating
functional of Eq. (17 and thus one effectively takes resonance exchange contribu-

tions into account. As a consequence of this procednure the structire coefficients of

1

pseudoscalar low encrgy imteractions will be strongly modified [17. 26, 271

In order to perform the integration over the scalar, vector and axial vector fields
in Eq. (1) we made ase of the fact that the modulus of the quark determinant 1
Fq. (2) is invanant under local chiral transformations of the fields 27, 23] This
allows us, with a specitic choice for the chiral transformation (nmtary gauge). to
eliminate the psendoscalar fields from the Dirac operator, Fq. (3). At the same
time, introducing ¢ = & — gy and renaming ¢ — & generates the mass term

for the pscudoscalars from the Gaussian part of Eq. (2). Furthermore, interactions



between the pseudoscalar degrees of freedom and the transformed vector and axial-
vector fields are generated in the Gaussian part. The masses of the scalar, vector and
axial-vector mesons are sufficiently large in comparison with the Goldstone boson
masses, and thus it is possible to integrate out the meson resonances using their
respective equations of motion in the static limit. These equations result from a
variation of the effective action of Eq. (2) by neglecting terms of O(p*) and higher
in the logarithm of the quark determinant. The remaining part of the action then is
quadratic in the resonances. in particular, there are no terms containing field strength
tensors.

The invariant amplitude M = te{€;T),, of the process v(q1)7(q2) — a(pi)b(p2)

can be expressed in terms of two functions A and B as

v —ra ]
Yuu b= Als, ”) (Sgw - qZuq1v>
+H(S.I/)[25A‘,A‘, - (1/2 —(mj — 7772]2)_(/,“/
+2<('1/ + mf — mZ)qg“_\u — (v + mf — mﬁ)_’l“qlu)]. (6)

where s = (q; + ¢2)°. v = 2p; (g2 — q), and A, = (p; — p2),. The amplitude
for the process a{p;) — b(p2)7(¢1)7(g2) can be obtained from Lq. (6} using crossing
symmetry, namely, by performing the replacement ¢; — —¢, and py — —p;. However,
for the decay chanmnel (k) — 7% p}y(g1)v(q), it turns out to be more convenient to

use the parameterization
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where x; = (k- q,)/m}.

The prediction for the amplitudes of Eqgs. (6) and {7) will involve the structure
coefficients L, of the Gasser Lentwyler lagraugian in one Joop diagrams at O(p”) as
well as new coefficients o, frem Born diagrams at O(p®). It is straightforward to
obtain the effective lagrangian at O(p”) contributing to the processes under consid-
eration from the most general representation of Ref. [21]. 1
Lo = 7% [ Fuo Bt (710013 QF) + do o, Freve (0,060 U4Q?)

Fedy FL Frir ( Vil ('J)QZ} + dg Fou Frae( Q4 )tr (\{(,fg + UJ))
rds Fon PP (QF) 1 (9700030 + doF Fvr (@) e (2 Uod*Ug)

INote that there are different conventions for the definition of the coefficients d;.



+d: Fua P (07 UelQ) tr (510U3Q)
+ds F oo F4r (U015 Q) tr (9°UoUSQ) | ®)

In Eq. (8), Fu, = 9, A, — LA, is the ordinary electromagnetic field strength tensor,

\/_9/0

0

{'y = exp(1

@O:diag< - A : 770-“10“+‘n°8'+_1“770 _\/5778+ 770)»
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and x = diag(xZ, x}, x}) = —2mo <gg> Fy* is the mass matrix, where <§g> is the
quark condensate. Previous calculations considered the counterterms of Eq. (8) with
various degrees of approximation. In Ref. [13] only single-trace terms in the chiral
limit were taken into account. In Refs. [11. 15] the chiral symmetry breaking term
proportional to dy was included and Ref. [16] also took dy into account. The double—
trace terms proportional to dy - ds typically do not appear in effective lagrangians
derived from the bosonization of NJL type quark models.

In the NJL model only the structure constants d, dy, d3 contribute to the Born

amplitudes of the processes 34 —» 7°7% and 7 — 7Y%y~ at O(p®), respectively,
6 61F‘ )} 5
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In Eqgs. (10) (s = cosf - /2sind, where # = —19° is the n—1' mixing angle,

N =rcosf+y'sind. g = —ysind + ' cos b,



and furthermore we have introduced

(cosf — /2sinf)? . (sinf + 2cos0)?

2 _ 2 2 2
m} —m2 mee =g

(')1 =

Note that the  decay amplitudes of Egs. (10) also include contributions of the pole
diagrams with 7°—# and 7°-»’ transitions.

. We now turn to the determination of the structure coefficients within the frame-
work of the NJL model. It is a well-known fact that the elimination of the resonance
degrees of freedom gives rise to a substantial modification of the structure constants.
At O(p?) such a reduction leads to a redefinition of the decay constant Fy and the
mass matrix x. To be specific, the identification of the decay constant before and

after reduction is given by

RN i
respectively, and similarly 2 for y

. A? 2N moft .

x:~2m0u<1ﬁme ! ) — \:GIF(?A (12)

where y = I'(0, £*/A?), 4 is the average constituent quark mass, A is the intrinsic

cutoff parameter, and

O N2 N 2 O\ 2
Z/Z2zl+<g‘)‘cllﬂ~ (ﬂ) i (13)

ml /) dr? @) TG,

The incomplete gamma function is defined as [(n,z) = [ dt "1 In Eq. (13)
we have introduced

)\'C -1/2
g = | V)

ANC(ge’)Z
48T '

)2
4872

(miy? = m'f)(l +4). =

The parameter Z% of Eq. (13) corresponds to the 7 — A, mixing factor and has the

phenomenological value

2 N
. my 1+ A .
3= S (.62,
my b =13
where we used the following empirical input, 1, = 770 MeV, m 4, = 1260 MeV, and

gv = Gorr = 6.3. On the other hand, with the special choice /i = 1/2, Egs. (13)

and (11) reproduce the well-known Kawarabayashi- Suzuki relation, m? = 292 F2.

2Using the gap equation it can be shawn that both expressions for \ in Fgs. (12) are equivalent
for 2 /A? < 1



A full calculation of the 7 and A decay constants at O(p') allows to fix the
parameters y and r = —p by /(2 <Gq>) for given values of 72 and . by identifying the
decay constants with their empirical values. In the following we will use Z2 = 0.62
and g = 265 MeV. from which we obtain y = 2.4 and » = 0.10. These values
correspond to Fy = 90 MeV and <gg>'?= ~220 Me\',

At O(p*) the reduction of the resonances [27] leads to the following modification
of the structure coeflicients of the lagrangian introduced by Gasser and Leutwyvler

[(] “:ﬁ[)

|
b= h= o [z“u 71)( ~1)72_1)]:1.0811;
=20, = J;M;
1 red 1 1723 YRS L] l 4 74
-z B "é[l“‘ 32y 1)(11,(24 T zA)} = 1540y
; :

=0, =0

: U,
ls=r(y—1). I =iy-— 1)72“; = 0.601;:
L=0. =0

1 1

12
l \ l red Yy 74 - .
lsg = (iwf)u aEYE L= EZ{ =1.07k:
1 1 I ;
b=y 7= Ti(zj CaZy ) = 2
11):“l l”’:—1<7’71/(7“f1>):l361 (1)
( () N 10 6 -4 ! <4 - 10 -

In order to obtain the expressions for the reduced coetlicients of Eq. (1), the static
cquations of motion of the scalar, vector and axial vector resonances have been
applied. In such an approach scatar resonances can only modily l5 and ls. Note that
the above results ave in agreement with those obtained in Ref. [[7] except for 57 and
{5e? (see Sect 5.5 of Ref. {17]). The disagreement originates in a different procedure
of integrating out the scalar resonances. We will come back to this point below when
discussing higher order corrections to the static equations of motion.

We will now discuss those structure constants o, at O(p®) which do not vanish in

the NJL model. Before reduction we obtain

NoOFS . Voo .
dy = — =220 g3 0T, = e = AT 107
Lo 2 2 [6me i AR
NP .
dy = — Y =183 = 1077 (13

1672 2 12

The first two constants coincide with the results of Ref. [9]. The reduction of mneson



resonances in the framework of applyving the static equations of motion generates the

following modifications

N, F}? N, FR
dred — < o Z4 - —35 -5 . red — ¢ _ -5
1 T6r7 2 2104 3.51 x 10 d; T ;12 48/ =1.76 x 10
N, F}
aet = e o Loy 100 ;
3 16772 uz 96 A % 10 (16)

In this context we note that the modification of the first two structure coefficients
results from the application of the equation of motion to vector and axial- vector
resonances. This change amounts to a multiplication of the original coefficients d;
and d, of Eq. (15) by a factor Z4. The situation for dj is qualitatively different. In
this case the application of the equation of motion to the scalar resonances modifies
this coefficient. Let us compare our results for d[* with those of Ref. [15]. We
agree for the coefficients d{* and dyet but differ with respect to Ay, In order
to understand this discrepancy we note that two different techniques were used to
eliminate the resonances In the treatment of scalar resonances the method of Ref.
[15] involves operators with derivatives which are bevond the scope of our treatment
using the static equation of motion. A comparison with Fgs. (23). (32) and {38) of
Ref. [15] shows that such operators are the origin for the difference in d*?. However,
there is another interesting ohservation. Fven though our final expression for dift is
the same as Fq. (101 of Ref. [15] our result originates enfirely from the reduction of
scalar resonances whereas in Ref. [15] it is the sum of a scalar resonance contribution
(see Eeq. (39); and a guark loop contribution (sce Eq. (23)) for which we have no
analogue.

Finally, we have also investigated in our approach those results of Ref. [15] which
correspond to the inclusion of operators containing derivatives when integrating out
the scalar resonance. To this end, after a unitary gauge transformation of the modu-
lus of the quark determinant. one has to keep also higher order terims in the effective
action of Eq. (2} which are linear in the scalar field #{r) and which contain the
coupling to vector. axial vector ficlds and field strength tensors. Such higher-order
terms lead to & modification of the static equation of motion for the scalar resonances

. , oo - "
and thus give an additional contribution to the structure coefficients 7% and 3.

oy - 7
et (- b 7% = 018, (17)

1y

red{h.. .} "\v‘ [‘2 ! 74 . -5 J
d. Aw————-z,\ = 1.02 <1077, (18}
1672 p?2 48 4



Table 1. Modification of the coefficients a;, az and b of Eq. (19) due to the reduction
of meson resonances. N = N.(47 Fo/p)? = 54.6, Z3 = 0.62

r Without l Reduction of resonances
Coeff. reduction V.- and A, -fields og—field Sum
in static approx. Static approx. Higher—order correct.

@ B3z - YN =121 | ~BZ4N = 156 | FZLN =125 ~2825(1- )N = 90 | 121

2 A =15 5 74 — 10 1 —
a2 SN =152 SN =58 0 Lza(1-L)V =45 10.3
b g N =253 e ZAN =097 0 0 0.97

which agree with Eq. (135) of Ref. [17] and Eq. (38) of Ref. [15], respectively. The
total result for the coefficients 17°¢ and di? after reduction of the vector, axial-vector
and scalar degrees of freedom then are the sum of the contributions of Egs. (14) and
(17) and (16) and (18), respectively. It is worth noting that the considered higher-
order terms also modify the static equation of motion of axial-vector resonances.
However, this modification does not lead to any new contributions for either the
structure coeflicients L, or d,.

For the purpose of comparing our numerical results for vy — 797% with those of
Refs. (11, 15]. it is convenient to introduce the following parameterization [11] of the

Born contribution at O(p"! for the amplitudes 4 and B of Eq. {6),

2 )
aym; + as o
Ag = —T——. Be= =753 (19
ST 16T F)? © T (1672F2)? (19)
The coefficients «,. az and b are related to dy, dy and dy by

10 10 10
! L)(dg — ”.2) . Uy = (47(]“(;‘2((% -+ Sdzk . b= _(4”)43(11 .

a; = (47) o

Our results for a, and & are summarized in Table 1. Clearly, the reduction of the
resonances leads to a large modification of the coefficients However, one has to keep
in mind that the effective artion after the reduction describes the interaction of only
pseudoscalars and photous. Thus the modified coeflicients should not be treated
as additional corrections to the nonreduced coefficients of Bq. (13). A summation
of quark- loop contributions and resonance -exchange contributions to the structure
coefficients as in Table 1 of Ref. [15], in our opinion, leads to double counting.
Before comparing our values of the O(p®) structure coefficients with those of Ref.
[11] we provide a prescription for relating results in different renormalization schemes.
In our approach UV divergences, resulting from meson loops al O(p®), were separated
using the superpropagator regularization method [22] which 1s particularly well-

suited for the treatment of loups in nonlinear chiral theories. The result is equivalent



to the dimensional regularization technique used in Ref. [11], the difference being
that the scale parameter y is no longer arbitrary but fixed by the inherent scale of
the chiral theory, namely, i = 47 F;. In order to compare the two methods the UV
divergences have to be replaced by a finite term using the substitution

d
dz

1
(C-1/e) —> CSP:'ZC—+—1+;[ (logF_2(2z+2))} + 431 = -14+4C+ 57,

z=0

\

where C = 0.577 is Euler’s constant, ¢ = (4 — D)/2, and /3 is an arbitrary constant
resulting from the Sommerfeld-Watson integral representation of the superpropaga-
tor. The splitting of the decay constants F, and Fy is used at O(p*) to fix Csp = 3.0.
For our numerical comparison with the two-loop calculation of Ref. [11] we made
use of the parameters L; and d; corresponding to Tables 1 and 2 of Ref. [11]. In

particular, from the numerical values of the parameters ay, a; and b of Table 2 of

Ref. [11]

a9 = 390, «F7 =125, PO =30

one obtains
dPOS = 108 x 107, dP9Y =420« 1077, dFY =010 x 1077, (20)

Our predictions at O(p*) and O(p®) for the vy — 77° cross section near threshold
are shown in Fig. I. The calculation at O(p°) contains Born, one-loop and two
loop diagrams. In our two-loop calculation only diagrams which are factorizable
and which can be calculated analytically were taken into account. Two-loop box
diagrams and acnode graphs cannot be calculated analytically but the numerical
estimates of Ref. [11] indicate that their contributions are small. As was already
discussed in Ref. [15], the predictions of the NJL model for the coefficients d;e
and dj*? are about a factor one half sinaller in comparison with the vector-meson
dominance model (VMD) (see, Refs. [9, 15]). The coefficients d, and da in the VMD

model can be obtained {from Fq. (16) by the replacement

iy 6 /16mhy 2 )
7 s = (—Ji> — (.82, (21)
’ ’ N my
with my = m,, and where the coupling constant by = 3.7 x 1072 is extracted from

the decays V — 7~. This has to be compared with the prediction of the NJL model,
AYIL = 2.5 x 1072 for Z3 = 0.62. We have taken account of this uncertainty by
showing the results for both Z§ = 0.62 and Z% = 0.91. The results of our calculations

with the parameters of Ref. [11] are also shown in Fig. 1. Numerically they are in

10
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Fig. 1. Cross section for v3 -- #'x" as a function of the tuvariant mass W = 0.0 for

W < 0.7 GeV and jcos#*, < 0.8 where 87 is the angle between the beam axis and one

of the 7!

it the 374 center of mass svstem (c.mes). The data are from the Crystal Ball
experiment [5]. The dotted line represents the one loop calenlation at O(p*). The dashed
line corresponds to the calculation at O(p") without reduction of the resonance degrees
of freedom. The dash-dotted lines corresponding to two different values of the parameter
Z% are a measure for the uncertainty in the reduction of the meson resonances. This
uncertainty is due to the difference hetween the NJL prediction and the empirical value
{or the coupling constant hy-. The solid line corresponds to the values of the coefficients

L; and d; used in Ref. [11].
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Table 2. Contribution of various diagrams to the 3 — 7947 decay width.

I o, = (081 £0.18) eV
T
Amplitudes Without | With reduction (eV)
| reduction (eV) Z: =062 | z; =091
1-loop | wm-loops 1.3-107° 1.3-10°% | 1.3-107°
O(p*) | KK-loops 6.2-107° 6.2.107% | 6.2.107°
Born O(p%) 0.22 0.11 0.45
1-loop | wm-loops 1.9-107* 6.9-107° | 8.6-10"*
O{p®) 1 KK -loops 4.1-107% 191070 | 2T 1072
2-loop | 7 r-loops | 32107 3.2 1():‘——T4‘2ﬁ-710_4
Op®) | mK-loops | 301077 31107 | 311077
| KK -loops [ 10-" 1.4-107° | 14 mF*-—:
[ 1
L Total _._,f,‘;_,,_ »lH4 ,L 7(2 1__1_—(:35_—

a good agreement with Refl. 1} 11; even for m., as large as 700 MeV the difference is
only about 7%.

For the decay width of 7 — 7"y~ we obtain after the reduction 0.11 eV and
0.35 eV corresponding to Z3% = (.62 and 7% = 0.91. respectively. On the other
hand, using the parameters of kq. (20) one finds 0 1% eV. These results have to be
compared with the experimental value (0.81 £ 0.18) eV [11]. The contributions of
different diagrams to the decay width are shown in Table 2. These results clearly show
the dominance of the Born contribution. It is a well -known fact that calculations
of the decay width at O(p°} tend to come out too amall in comparison with the
experimental value [13. 15, 16]. This failure indicates that either higher- order terms
are required or higher order resonances have to be included or both.

Finally, we have also tried to fit the cocflicients dy. dy and ds. However, due 1o
a strong correlation hetween the coeflicients dy and dy it was impossible to find a
stable minimum from a fit te the y7 — 2070 cross section and the i — w%yy decay

width. The strong correlation is related to the fact that the m,. dependence of the

12
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Fig. 2. Normalized differential decay probability for n — =%y as a function of
Z =m? [m}. The dotted line represents the phase space distribution. The dashed line cor-
responds to the calculation at O(p®) without reduction of the resonances. The dash—dotted
lines display the uncertainty in the reduction of meson resonances for different values of
the parameter Z2. The solid line corresponds to the values of the coefficients L; and d;

used in Ref. [11].
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vy — 770 cross section results from the interference between the Born amplitude

on the one hand and one- and two-loop amplitudes on the other hand. Thus the ex-
perimental data are not sensitive enough to the various Born contributions described
by di. On the other hand, the Born contribution is dominating in the n — w0y
decay. In Fig. 2 we show the normalized differential decay probability as a function
of mfw/m%. In this case the differential distribution is very sensitive to the input
parameters d;. Thus data of the differential distribution would be of great value for
constraining these parameters.

In conclusion, a self-consistent, quantitative description of vy — 7% and n —
7%y data at O(p%) is still problematic. A good description of the vy — 7%1° cross
section has been achieved whereas a satisfactory, quantitative prediction of the decay
width seems to be beyond the reach of an ordinary calculation at O(p®).
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benbkos A A lanes A K | liepep i [2-95-266

Uit Yops [
Mpouecent vy — 71wy -« 'y s p - nopwake 8 Monesns HHJ

J_U 0 6
OGcyxRuansest 1ipolleccl Yy —» T W i) = Yy B P -HOPAAKE HMITYILCHOIO
Pa3NoKeHHs. Bolunc/ieHHs BKII0YAIOT IPpeBECHbIE, OHO- H IBYXIIETIEBLIE AHATPAMMUbI
KHPAIbHOTO 3(EKTHBHOIO JIArPAHXHAHE, [10]YYEHHOTO W3 BGO30HM3ALMM MOJETH

HWJL. Tlokasana BAXHOCTE ydeTa HHTETPHPOBAHHA (PEAYKUMHM) ME30OHHBIX PE3OHAH-

0
coB. OKOHUYATENbHBIE PesybTaThi 10 CEYCHHIO YY — T HAXOAATCH B XopolueM
COINACHK C IKCNEPUMEHTAILHBIMK JaHHBIMH Kosnabopauun Crystal Ball. Ing win-

{
PHHBI pacnaga 1 — n)yy nonyyesa ouenka (0,11 3B. 8 To Bpems Kak 3KcClepuUMeHT
naer (0,84 £ 0,18) vB. Hcnonb3obanHe 3MIIMPHYECKMX NapaMETPOB MOMETH BEKTOP-
HOW [IOMHHAHTHOCTH UpHBOAMT K BesmuunHe 0,35 3B. Tlonyuensl npeackasaHus

o 2
st ancbpepeHUMANRHON REPOATHOCTH pacnala Kak QYHKLUHH m%/mn.

Pabora Bhitontena B JlaGoparopumn cBepxBrICOKMX aHepruii OUSH.

[TpentpuHT OGBeARHCHHOTO HHCTHTYTA SIEPHBIX HecaetoBanKi. [TyBua, 1995

Bel’kov A.A.. Lanyov A.V_, Scherer S. E2-95-266
Processes vy — n'n® and n — 7%y at O (p° ) in the NJL Model

. { .
We discuss the processes vy — 7" and n-— now at O ( p6 ) in the momentum

expansion. The calculation involves tree-level, one-loop and two-loop diagrams
of a chiral effective lagrangian which is obtained by a bosonization of the NJL
model. The mmportance of integrating out meson resonances (reduction) is pointed

out. Our final results for the total cross section of yy — 7 are good agreement
with the experimental data of the Crystal Ball Coliaboration. For the width
of them — n“w decay we obtain the value 0.11 eV which has to be compared
with the experimental value of (0.84 £ 0.18) eV. Alternatively, taking empirical
parameters {rom a vector-meson-dominance model the prediction for the decay
width is 0.35 eV. We present a prediction for the differential decay probability
as a function of m%/m%,

The investigation has been pertormed at the 1.aboratory of Particle Physics,
JINR.
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