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ABSTRACT

Graph-based techniques and graph neural networks (GNNs) in particular are a
promising solution for particle track reconstruction at the HL-LHC. Simulations of
the HL-LHC environment produce noisy, heterogeneous and ambiguous data. We
present an upgrade to the ATLAS GNN4ITk pipeline that allows detector regions
to be handled heterogeneously. We perform direct comparisons of our results with

those of existing tracking algorithms on a range of physics metrics, including
reconstruction efficiency, track reconstruction performance in dense environments,
and track parameter resolutions. By integrating this solution within the offline

ATLAS Athena framework, we also explore different reconstruction chain
configurations, for example using the GNN4ITk pipeline together with traditional

techniques for track cleaning and fitting.
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1 Introduction

The reconstruction of charged particle tracks at the LHC experiments is a compute-intensive task. At the
high luminosity LHC (HL-LHC) we expect a hit density in the detector four times higher than now, and
upgraded detectors like the future ATLAS Inner Tracker (ITk) with extended pseudorapidity∗ coverage up to
|η| < 4 [1–3]. ATLAS Computing Model projections [4] show that we need to do aggressive computing R&D
in order to keep the resource consumption within our capacity at the HL-LHC. Track reconstruction is one of
the main items to be addressed. Graph Neural Networks (GNNs) running on hardware accelerators are a
promising solution for this computing challenge [5–7].

In this document, we will first describe a GNN tracking chain developed within the ATLAS Collaboration,
GNN4ITk, and next we will present the physics performance achieved with it, including tracking efficiency,
track hit content and the resolution of track parameters.

Three sets of plots showing performance of the GNN4ITk chain have been published by ATLAS: The
first results obtained with the realistic full simulation of the ATLAS ITk, presented at CTD 2022 [8, 9];
next, results showing improved performance, presented in May at the CHEP 2023 conference [10]; finally the
physics performance results [11] released for CTD 2023 and described in these proceedings.

2 Simulated event sample

MC event simulation samples are used for this study, specifically pp collisions at
√
s = 14 TeV, with a tt

pair in the final state and at least one top quark decaying leptonically, with an average 200 pp interaction
pileup per bunch crossing, as expected at the HL-LHC, and a full simulation of the ATLAS detector based
on Geant4. For the new plots showing physics performance, an updated ITk layout version 23-00-03 was
used in the detector simulation [12]. Among the changes with respect to the previous layout version, the new
one has a reduced radius of the innermost pixel layer, and a more detailed and accurate model of the passive
material.

For the training of the GNN4ITk chain, the target particles are required at truth level to have pT > 1GeV
and to leave at least 3 hits in ITk. Electrons are excluded from the target particles; the reconstruction of
electron tracks is a complicated case that will be addressed later on. Only primary particles are considered as
target particles, i.e. secondary particles resulting from interactions with the detector material are excluded.
Particles resulting from B hadron decays satisfying the pT and hit requirements are included within the
primary and target particles; their reconstruction is of major importance for b-jet tagging.

3 Description of the GNN4ITk tracking chain

A graph is a set of nodes and edges, with each edge connecting a node pair. In our case, the nodes represent
ITk detector measurements (hits) belonging to an event. An edge represents the hypothesis that the two
nodes associated to it correspond to two successive hits from the same particle.

The GNN4ITk consists of three steps:

1. In the first step the hits or nodes are connected together to build up a graph per event.

2. Next comes the core of the GNN4ITk, in which a graph neural network is used to classify the edges as
true or fake hit-pair connections. In this step, a score is assigned to each edge.

3. Finally the graph is segmented based on the edge scores, to build up the track candidates, i.e. collections
of hits likely coming from the same particle.

The following sections describe each of these three steps. This tracking chain is implemented in the ACORN
framework [13].

∗ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the
detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis
points upwards. Polar coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the z-axis. The
pseudorapidity is defined in terms of the polar angle θ as η = − ln tan(θ/2).
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3.1 Graph construction

Currently we have two alternative methods for the graph construction: Metric Learning and Module Map.
Both methods produce graphs with around 300 000 nodes and a few million edges per event.

In the Metric Learning method, a multilayer perceptron (MLP) is trained to embed the nodes into a
latent space, in which hits from the same particle are close to each other. Using a clustering algorithm, nodes
that are close to each other in that latent space are connected together introducing edges in the graph. In a
second step, another MLP is used to filter the edges, to reduce the size of the graphs.

For the Module Map method, a lookup table is built containing all the possible triple-module directional
connections. It has about one million possible combinations. This module map has been prepared using
90 000 simulation events. For the graph construction, in a first step, edges are introduced in the graph based
on the module map. Next, the edges are filtered using geometric cuts.

The physics performance results shown in Section 4 were obtained using the Module Map method for the
graph construction.

The per-edge efficiency for both methods is close to 100%, with inefficiencies reaching just a few percent
in specific regions as a function of the truth particle pseudorapidity η or transverse momentum pT [8]. We
believe that these inefficiencies can be reduced using better simulation samples, either of larger size or with a
modified pT spectrum to better populate the low statistics tail.

3.2 Edge classification

A graph neural network (GNN) is trained to identify the true edges, i.e. those really connecting two successive
hits from the same particle. It is done based on geometric node and edge features, including among others
the hit coordinates r and ϕ as node features, and variables like ∆η and ∆ϕ as edge features. Cutting on the
GNN edge score, we can reduce the number of edges by two orders of magnitude, to the order of 104 edges
per event.

Within our GNN model, in a first step the node and edge features are encoded into a latent space of 128
dimensions. It is done using two independent MLPs, one to encode node features and another for the edge
features. Next, within the core of the GNN architecture, composed of Interaction Network Layers [14], the
node and edge latent features are combined and projected into new latent spaces using two MLP blocks, and
the information is propagated through the graph to neighboring nodes and edges. The propagation of the
information is done through eight message-passing iterations. Finally, the edge features in the latent space
resulting from the last iteration are decoded with an MLP into a classification edge score. Each MLP within
this model consists of three layers.

Compared to the GNN presented at CTD 2022, the new version uses a non-recurrent interaction network,
which means that the sets of parameters of the MLP blocks used in each of the eight iterations are different
from each other; before, a common set of weight and bias parameters were optimized for the eight iterations.
In addition, Batch Normalization [15] layers have been added after each linear layer of encode and Interaction
Network MLPs. The most important change is that now the input data has an heterogeneous format matching
the pixel and strip technology heterogeneity of the detector; more details about this heterogeneous data
format are given below.

The new GNN has a significantly better performance than the CTD 2022 version. For score cuts optimized
to have an inclusive 98% edge efficiency, the purity in the central η region improved from 70% to 90%
(Figure 1). The source of the low purity for the previous GNN was identified to be poor spacial resolution on
the barrel-strip hits.

Instead of a 3D measurement like in a pixel layer, when a particle traverses a strip module we get two 2D
measurements, which we need to combine to get the 3D one. As shown in Figure 2(a), in a strip module, we
have two strip sensor planes with a small stereo angle between the direction of the strips. In this example,
when traversing a barrel-strip module, a particle fires the two strips (or two strip clusters) highlighted in
brown, one at the radially inner sensor plane and one at the outer plane. The question is, where along the
brown-strip length did the particle hit the inner sensor plane?†

†In ATLAS, we reconstruct the strip hit as the point where the particle traverses the inner plane of the module.

2



Connecting the Dots. October 10-13, 2023

4− 3− 2− 1− 0 1 2 3 4

η

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

G
N

N
 p

er
-e

dg
e 

pu
rit

y

ATLAS Simulation Preliminary

using Module Map

 > 1 GeV
T

 and soft interactions) pt = 200, primaries (t〉µ〈, t = 14 TeV, ts

(a) Old CTD 2022 edge purity [8].
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Figure 1: Graph Neural Network per-edge purity (fraction of edges corresponding to true edges) versus η, for
edges passing a threshold on the edge classification score that provides 98% per-edge efficiency.
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Figure 2: In this example, when traversing a barrel-strip module, a particle flying out of the page in Figure (a)
has fired the two strips (or two strip clusters) highlighted in brown, one at the inner sensor plane and one at
the outer plane. The question is, where along the brown-strip length did the particle hit the inner sensor
plane? As illustrated in this figure, we cannot estimate the hit position along the strip length precisely
without knowing the direction of the particle traversing the module.
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To answer this question, the first thing that comes to our mind when looking at this figure is: The particle
should have passed through the intersection of the two strips in this ϕz view, as pointed out by the green
circle 1. However the two sensor planes are not directly one on top of each other, but there is a gap of
6.42 mm in between, as shown in Figure 2(b). Therefore that hypothesis is only valid if the particle traversed
the module in a direction perpendicular to the module plane as in Figure 2(b). A particle traversing the
module in a different direction leaning right or left as in Figures 2(c) or 2(d) could hit the inner plane at a
different place, for instance the positions indicated by the green circles 2 or 3, still firing the same brown
strip pair. It means that actually we cannot precisely estimate the hit position along the strip length without
knowing the direction of the particle when traversing the module.

By default, the strip hits are reconstructed assuming that the particle follows a straight trajectory from
the interaction point, which is a good assumption for high pT particles. However it is not the right assumption
for most of the particles we are tracking starting at 1 GeV, as they are bent in the transverse plane by the
magnetic field, and therefore we obtain poor resolution hits. In the barrel, the resolution for the default strip
hits is of the order of centimeters in the z direction, at the level of the length of the strips.

This issue has been addressed by passing to the GNN as input node features the coordinates of the
two individual strip clusters, in addition to the coordinates of the hit reconstructed by default. That is
done for strip-barrel hits, while for the rest of the hits we use only the reconstructed hit, which results in a
heterogeneous format for the list of node features. This extra strip-cluster information fed to the GNN is the
main source of the 20% purity improvement shown in Figure 1. Other alternatives currently under study
include hand-engineered strip-edge features, based on an estimation of the particle direction when traversing
the strip module, and the usage of a heterogeneous GNN model.

3.3 Graph segmentation

The graph segmentation is done in two steps:

• First a loose cut on the edge score is applied and the resulting graphs are processed with a connected
component algorithm [9]. After this first stage, the set of hits with an unambiguous connection sequence
is already considered a track candidate, and no further filtering is applied to it.

• On the other hand, sets of hits with ambiguous connection sequences, i.e. including multiple alternative
paths, are processed with a walk-through algorithm [9] using a tighter edge score cut, to get the final
track candidates.

The better the GNN edge classification performance, the more track candidates are produced by the connected
component stage and the faster the reconstruction process.

3.4 Technical performance of the entire GNN4ITk chain

Based on the target particles defined in Section 2, a technical tracking efficiency is computed for two track-to-
particle matching criteria, “standard” and “strict” matching. In the standard matching, a track candidate is
required to have at least 50% of its hits originating from the target particle matched to it, in other words,
50% hit purity. In strict matching, we require 100% hit purity and, in addition, 100% of the target particle‘s
hits to be present in the track candidate, in other words, 100% hit efficiency. The resulting tracking efficiency
is around 93% for the strict matching, with variations between 90% and 95% as a function of η. In the case
of the standard matching, the efficiency is around 99% and more uniform over η [10].

Fake tracks are defined as track candidates not matched to any particle; the rate of these is of the order
of one per mil for the standard matching.

We had a first look at the technical performance of the GNN4ITk chain on single particle events using
a dedicated GNN trained with a simplified dataset. Only particles leaving at least 7 (9) hits for |η| < 2
(|η| > 2) were considered. The resulting efficiency is shown in Figure 3 as a function of η, for muons and
electrons with pT = 10GeV.
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Figure 3: Track reconstruction technical efficiency as a function of the true pseudorapidity η for single particle
events, for pT = 10 GeV muons and electrons, without pile-up [11]. Particles are required to leave at least 7
(9) space points for |η| < 2 (|η| > 2). Track candidates are required to contain at least 5 (7) space points for
|η| < 2 (|η| > 2).

4 Physics performance

Now with the results presented in this document, we reach another stage in the development and validation
of this novel tracking algorithm: instead of monitoring only technical efficiencies, we are starting to study a
more realistic efficiency, applying the requirements used in ATLAS to select tracks for the physics analysis,
as well as efficiency for tracking within jets and impact parameter resolutions.

We are using the standard ATLAS software (Athena) to execute the χ2 fit of the collections of hits
resulting from the GNN4ITk. This fit takes into account the expected multiple scattering effects, as well
as a detailed map of the magnetic field in ITk. From this fit, we obtain measurements of the five physics
parameters characteristic of ATLAS track candidates, pT, θ, ϕ, and the transverse and longitudinal impact
parameters d0 and z0.

In addition, we have performed a direct comparison against the ATLAS implementation of the combinatorial
Kalman filter (CKF). We have processed the same simulation sample with both tracking chains, the GNN4ITk
and the CKF.

The tracks have been selected using the requirements listed in Table 3 in [12]. For the GNN4ITk tracks,
three cuts are slightly looser than those in the table:

• Number of pixel plus strip hits ≥ 8,

• |d0| < 20 mm,

• |z0| < 25 cm.

Out of these three changes, the main difference is in the requirement for the total number of hits. The reason
for applying this looser cut is the difference in the treatment of strip hits between the GNN4ITk and the
CKF; more details are discussed below. In addition, all tracks are required to have pT > 1GeV, and we
continue excluding electrons, which were not considered for the training of the GNN4ITk. The simulated
particles matched to reconstructed tracks are required to satisfy pT > 2GeV to avoid turn-on effects.

The resulting efficiency is shown as a function of η and pT in Figures 4(a) and 4(b). The blue points and
yellow triangles correspond to the CKF and GNN4ITk respectively. As one can see, the efficiency reached by
the GNN4ITk is roughly at the same level as the CKF one, with the GNN4ITk efficiency just a few percent
below the CKF one. Given that it is the first time we have looked at this efficiency, and that the GNN4ITk
has not been trained taking it into account, we are very satisfied with this result.
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Figure 4: Track reconstruction efficiency as a function of the true pseudorapidity η (a) and pT (b), and for
tracks inside jets as a function of the angular separation ∆R between each track and the jet axis (c) and the
jet pT (d) [11].

Figures 4(c) and 4(d) show efficiency for tracking inside jets. Inside a jet, we have an environment dense
in particles and hits in which track reconstruction is more challenging. Figure 4(c) shows the efficiency as a
function of the angular separation ∆R between each track and the jet axis. The density of particles and hits
in the core of a jet at small ∆R values is higher than in the external part of the jets. However the efficiency
obtained is rather flat versus ∆R, without showing any sign of degradation at small ∆R. Figure 4(d) shows
the efficiency as a function of the jet pT. The higher is the jet pT, the more dense is the core of the jet. Still
the GNN4ITk provides a uniform efficiency as a function of jet pT without degradation at high pT values.

Figure 5 shows the pixel hit content, considering all pixel layers in Figure 5(a) and only the innermost
pixel layer in Figure 5(b). The innermost pixel layer is of particular importance for the measurement of the
track impact parameters, and therefore relevant for jet b-tagging. We observe that the pixel hit content for
the GNN4ITK is compatible with that of the CKF, and both of them are compatible with what is expected
for the ITk detector. Given this result for the pixel hit content, we expect good resolution for the impact
parameters d0 and z0, and this is the case as shown in Figure 6, which presents the d0 and z0 resolution as a
function of pT.

Figure 7(a) shows the strip hit content, specifically counts of strip clusters. In the case of the GNN4ITk,
we only consider full strip hits, each hit consisting of two strip clusters, with one cluster in each strip sensor
plane of the hit module. It means that for the GNN4ITk we are only counting strip cluster pairs. If there
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Figure 5: Average number of pixel hits (a) and of pixel hits on the radially innermost layer (b) per track as a
function of the true pseudorapidity η [11]. In the end-caps, the radially innermost modules at various disks
are counted within this innermost layer.
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Figure 6: Track parameter resolution in d0 (a) and z0 (b) as a function of the true pT for primary particles [11].
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Figure 7: (a): Average number of strip hits on a track as a function of the true pseudorapidity η [11].
(b): Relative track pT resolution as a function of the true η for hard scattering primary particles [10].
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is a particle passing through the border between two strip modules, firing strip singlets in each of the two
neighboring modules, these singlets are not considered by the GNN4ITk, while they are taken into account by
the CKF. That is why we observe lower strip cluster counts for the GNN4ITk compared to the CKF, and is
why in the track selection we have applied a looser cut on the total number of hits for the GNN4ITk. Despite
this difference, we obtain a competitive track pT resolution as shown in Figure 7(b).

5 Conclusion and prospects

We have presented a first look at the physics performance of the ATLAS GNN4ITk tracking chain, for
the HL-LHC, together with an apples-to-apples comparison against the Combinatorial Kalman Filter. The
GNN4ITk provides competitive tracking efficiency, even in challenging dense environment inside jets, and
good track parameter resolution. In addition, it has already been proven that the track reconstruction using
a GNN with GPUs provides a promising computing speed [16].

There are still several work items to be completed before the GNN4ITk can be validated for production.
They include:

• Further optimization and acceleration of the full chain, including acceleration of graph construction
with GPU, the exploration of advanced machine learning architectures for pattern recognition, including
heterogeneous and hierarchical GNNs.

• Further study of corrections to the strip-space-point positions, and investigations of the impact of the
missing strip-cluster singlets.

• Continue the physics performance studies, including tracking of B-hadron decays and the reconstruction
of electron tracks.

• Study robustness against detector effects, like dead modules, mis-alignment of the detector and beam-
spot variations.

• Integration of the GNN4ITk software into ACTS [17] and the ATLAS Athena framework.
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