Author(s)
|
Adeva, B. (Santiago de Compostela U.) ; Afanasyev, L. (Dubna, JINR) ; Anania, A. (INFN, Messina) ; Aogaki, S. (Bucharest, IFIN-HH) ; Benelli, A. (Prague, Tech. U.) ; Brekhovskikh, V. (Serpukhov, IHEP) ; Cechak, T. (Prague, Tech. U.) ; Chiba, M. (Tokyo Metropolitan U.) ; Chliapnikov, P. (Serpukhov, IHEP) ; Drijard, D. (Prague, Tech. U. ; CERN) ; Dudarev, A. (Dubna, JINR) ; Dumitriu, D. (Bucharest, IFIN-HH) ; Federicova, P. (Prague, Tech. U.) ; Gorin, A. (Serpukhov, IHEP) ; Gritsay, K. (Dubna, JINR) ; Guaraldo, C. (Frascati) ; Gugiu, M. (Bucharest, IFIN-HH) ; Hansroul, M. (CERN) ; Hons, Z. (Rez, Nucl. Phys. Inst.) ; Horikawa, S. (U. Zurich (main)) ; Iwashita, Y. (Kyoto U.) ; Kluson, J. (Prague, Tech. U.) ; Kobayashi, M. (KEK, Tsukuba) ; Kruglova, L. (Dubna, JINR) ; Kulikov, A. (Dubna, JINR) ; Kulish, E. (Dubna, JINR) ; Lamberto, A. (INFN, Messina) ; Lanaro, A. (Wisconsin U., Madison) ; Lednicky, R. (Prague, Inst. Phys.) ; Marinas, C. (Santiago de Compostela U.) ; Martincik, J. (Prague, Tech. U.) ; Nemenov, L. (Dubna, JINR) ; Nikitin, M. (Dubna, JINR) ; Okada, K. (Kyoto Sangyo U.) ; Olchevskii, V. (Dubna, JINR) ; Pentia, M. (Bucharest, IFIN-HH) ; Penzo, A. (INFN, Trieste) ; Plo, M. (Santiago de Compostela U.) ; Prusa, P. (Prague, Tech. U.) ; Rappazzo, G. (INFN, Messina) ; Romero Vidal, A. (Santiago de Compostela U.) ; Ryazantsev, A. (Serpukhov, IHEP) ; Rykalin, V. (Serpukhov, IHEP) ; Saborido, J. (Santiago de Compostela U.) ; Schacher, J. (U. Bern, AEC) ; Sidorov, A. (Serpukhov, IHEP) ; Smolik, J. (Prague, Tech. U.) ; Takeutchi, F. (Kyoto Sangyo U.) ; Trojek, T. (Prague, Tech. U.) ; Trusov, S. (SINP, Moscow) ; Urban, T. (Prague, Tech. U.) ; Vrba, T. (Prague, Tech. U.) ; Yazkov, V. (SINP, Moscow) ; Yoshimura, Y. (KEK, Tsukuba) ; Zrelov, P. (Dubna, JINR) Mostrar todos los 55 autores |
Abstract
| In this work the Coulomb effects (Coulomb correlations) were studied using experimental π+π− pair distributions in Q, the relative momentum in the pair center of mass system (c.m.s), and its projections QL (longitudinal component) and Qt (transverse component) relative to the pair direction in the laboratory system (l.s.). The major part of the pion pairs is produced by decay of ρ,ω and Δ and other short-lived sources (Coulomb pairs). In these pairs the significant Coulomb interaction at small Q occurs. The minor part of the pairs is produced if one or both pions arose from long-lived sources like η,η′ or in different interactions (non-Coulomb pairs). In this case the Coulomb interaction in the final state is practically absent. The Q, QL and Qt distributions of Coulomb pairs in the c.m.s. were simulated assuming that they are described by the phase space modified by the known Coulomb correlation function AC(Q). The same spectra of non-Coulomb pairs were simulated without AC(Q). In all Qt intervals, the experimental QL spectrum shows a peak around QL=0 caused by the Coulomb final state interaction. The full width at half maximum increases with Qt from 3 MeV/c for 0<Qt<0.25 MeV/c to 11 MeV/c for 4.0<Qt<5.0 MeV/c. The experimental QL distributions were fitted with two free parameters: the fraction of Coulomb pairs and the normalization constant. The precision of the description of these distributions is better than 2% in Qt intervals 2-3, 3-4 and 4-5 MeV/c, and better than 0.5% in the total Qt interval 0-5 MeV/c. It was shown that the number of Coulomb pairs in all Qt intervals, including the small Qt (small openning angles θ in the l.s.) is calculated with the theoretical precision better than 2\%. The comparison of the simulated and experimental number of Coulomb pairs at small Qt allows to check and to correct the detection efficiency for the pairs with small θ (0.06 mrad and smaller) in the laboratory system. It was shown that Coulomb pairs can be used as a new physical tool to check and to correct the simulated events quality. The special property of the Coulomb pairs is the possibility to check and to correct the detection efficiency, especially for the pairs with small opening angles. |