ATL-DAQ-PROC-2023-014

17 November 2023

©)

Proceedings of the CTD 2023
PROC-CTD2023-XX
November 17, 2023

Track reconstruction for the ATLAS Phase-II High-Level Trigger using
Graph Neural Networks on FPGA

SACHIN GUPTA

On behalf of the ATLAS TDAQ collaboration [1],
Physikalisches Institut
Heidelberg University, Germany

ABSTRACT

The High-Luminosity LHC (HL-LHC) will provide an order of magnitude
increase in integrated luminosity and the amount of data produced per event.
Foreseeing this data pile-up requires upgrades in the ATLAS detector and
trigger. The Phase-II trigger will consist of two levels, a hardware-based Level-0
trigger and an Event Filter (EF) with tracking capabilities. Within EF tracking,
a heterogeneous computing farm consisting of CPUs and potentially GPUs and
FPGAs is under study together with modern machine learning algorithms.
Graph Neural Networks (GNN) are well suited for particle tracking and can
provide fast inference on FPGAs. Optimizing the GNN-based pipeline specifically
for FPGAs aims to reduce resources while retaining high track reconstruction
efficiency and low fake rates required for the ATLAS Phase-II EF tracking
system. Resources required for the machine learning step can be reduced using
model compression techniques such as Qauntization Aware Training (QAT) and
Pruning. These methods are applied in the first stage of the GNN-based pipeline
and the first results are obtained for the TrackML dataset.

PRESENTED AT

Connecting the Dots Workshop (CTD 2023)
October 10-13, 2023

Copyright 2023 CERN for the benefit of the ATLAS Collaboration. CC-BY-4.0 license

Connecting the Dots. October 10-13, 2023

1 Introduction

The Large Hadron Collider (LHC) is set to reach unprecedented luminosity for the High-Luminosity LHC [2]
phase. The average number of proton-proton collisions per bunch crossing will be increased by a factor of ten
(Pileup {u) = 200). Properly accounting for and mitigating the effects of pileup is crucial for distinguishing
genuine signals of new physics from background events. Thus, the experiments at the LHC need to adapt
to these new conditions, which come at much higher data rates. When it comes to the ATLAS experiment
[3], upgrades will involve changing the detectors and the Trigger and Data Acquisition system (TDAQ). The
Inner Detector will be replaced by a new all silicon detector, the Inner Tracker (ITk) [4]. The Phase II
TDAQ system [5] will have a hardware-based Level-0 trigger and an Event Filter (EF) capable of performing
online track reconstruction for the region of interest (pixel and strip detectors of ITk [4]) at 1 MHz and for
full tracking at 150kHz request rate. For the EF system, a heterogeneous computing farm consisting of
CPUs and potentially GPUs and/or FPGAs is under study.

Tracking for the Inner Tracker (ITk) becomes challenging when particle density is high. Recently, graph
neural networks have emerged as potential algorithms for particle tracking [7]. The detector hit information
naturally represents the data structure of a graph, with hits corresponding to graph nodes and the connec-
tions between two hits corresponding to graph edges. The algorithm can be accelerated with parallelizable
computing architectures such as GPUs and FPGAs. Keeping resource constraints in mind it becomes im-
perative to reduce the model size while keeping the model performance intact. The report summarises the
effect of two model compression techniques: Quantization Aware Training (QAT) and Model Pruning on the
first stage of the GNN-based pipeline [7].

2 Track Reconstruction using Graph Neural Networks

Particle tracking is a crucial and intricate task in any particle physics experiment. The complexity and
computational cost are both expected to increase for HL-LHC. Graph neural networks are a non-conventional
way of constructing particle tracks by modeling the dependencies among the particle hits. The application of
a GNN for particle tracking was first introduced in Ref. [8]. Following this, the GNN-based pipeline has been
applied for the TrackML dataset [6] and ATLAS ITk [9]. The algorithm has shown high track reconstruction
efficiency and a low fake rate. The pipeline generates track candidates in three stages as shown in Figure

Metric

o Graph Neural . et] -
Learning o\ ? Network m-"f . ™ . Components e ﬁ
<1 . Y aeiowe g . S 4
or - \ /. S or ’;u? '7.7*4”’;'
e X ek E k) | & » SN CF =
Module A g N Yl ﬁﬁ“ ‘\3.’ Connected A X
&y ok ” LF A

Components

Map + Walkthrough
Hits Graph Edge Scores Track Candidates
Graph Edge Graph
Construction Labeling Segmentation

Figure 1: Schematic diagram of GNN based pipeline [9].

Graph Construction: This is the first step that generates the initial combinatorics also called graphs. This
can be done in two ways: metric learning and module map. Metric learning is a machine learning-based
method that implements a Multi Layer Perceptron (MLP) to generate an initial graph. Hits are mapped to
some latent space with the MLP. In the latent space, for every hit, a circle of radius 7 is drawn and the edges
are constructed among all the hits lying within the circle. The network learns to put all the hits belonging
to the same particle within the circle as shown in Figure 2] The goal of this step is to keep as many true
edges as possible without producing too many fake edges. Module map constructs the graph by connecting

Connecting the Dots. October 10-13, 2023

hits from the different modules of the detector and then applying the geometric cut values. The modules
are linked with the help of simulated data.

Figure 2: Toy example of the latent space. Red-colored hits belong to the same particle.

Edge Labeling: Once the graph is generated, the GNN assigns an edge score to each edge. The value of the
edge score is between 0 and 1. The GNN is trained such that an edge belonging to the actual particle track
is assigned a score value closer to 1. Physics-motivated Interaction Network (IN) GNN [10] is trained for the
classification of edges.

Graph segmentation: After edge labeling, a cut value on the edge score is applied and final edges are selected.
Graph segmentation is a task-specific post processing [I1]. For track formation, it gives “track candidates”
that specifically denote a discrete and simply connected line within the graph. These track candidates can
be further supplied to a track fitting algorithm.

3 Performance Metrics for Graph Construction

We applied the aforementioned model compression techniques to the first stage of the pipeline i.e. graph
construction with metric learning. Before discussing their effect on the performance of MLP it is important
to give the performance metric for this stage. As mentioned in Section [2] the goal of the graph construction
is to keep as many true edges without producing too many fake edges. The performance is quantified by two
metrics: FEfficiency and Purity

Efficiency — True edges in the graph

(1)

Total true edges

True edges in the graph

purity = (2)

The graph’s efficiency assesses its ability to encompass all genuine edges through the initial combinatorial
process. In contrast, purity gauges the proportion of generated edges that are indeed true, with purity being
directly correlated to the graph’s size. Constructing the graph by including all conceivable edges results in
100 percent efficiency, but purity tends to approach zero in such cases. Consequently, as purity decreases,
the graph size tends to increase. Thus our aim is to keep the model as pure as possible while fixing its
efficiency at 98 %.

Total edges in the graph

Connecting the Dots. October 10-13, 2023

4 Resource Estimation

The effectiveness of GNN based tracking has been well-established in previous studies [7, [@, [T1I]. For EF
tracking, its implementation on FPGAs is explored. FPGAs can simultaneously provide parallelization with
low energy consumption [I2]. For FPGA deployment, the algorithm must be converted to a Hardware
Description Language (HDL) [13]. However, technologies like High Level Synthesis (HLS) can also be
used which generates code similar to C languages. Integrated Development Environments (IDEs) like Intel
Quartus [14], showcase resource estimates generated by the underlying High-Level Synthesis (HLS) compiler.
The machine learning parts (graph construction and edge labelling) are converted to HLS with the open-
source Python library HLS4AML (“High-Level Synthesis for Machine Learning”) [I5]. Non-machine learning
parts i.e. graph segmentation, can be implemented with HLS, or directly in an HDL. The report only
discusses the machine learning-based part as they are expected to predominantly occupy FPGA resources.

Resource DSP blocks | ALMs | M20Ks
Availability 5,760 933,120 11,721

Table 1: Resource specifications of the Intel Stratix 10 GX 2800 FPGA [I8]

The machine learning part of the algorithm was trained using the Python library PyTorch [I6]. The
PyTorch model was first converted to ONNX [I7] before HLS4AML generated the HLS code which was
then compiled using Intel Quartus, and resources were estimated for an Intel Stratix 10 GX 2800 [I8].
The resources available on the target device are specified in Table 1. Digital Signal Processing blocks
(DSP blocks) perform operations such as matrix multiplications. Adaptive Logic Modules (ALMs) are logic
elements typically consisting of Look-Up Tables (LUTSs) and Flip Flops (FFs), which are used to implement
and store logic operations. Random Access Memory (RAM) is used for storage and retrieval of larger amounts
of data. On Intel FPGAs, this is referred to as “M20K” [19].

MLP resource estimates Simplified GNN (1 mps)

254
17-57" —e— DSP blocks —*— DSP blocks
e ALMs e ALMS
15.0 204
-+- RAM -+- RAM
el
E 12.5 1 9
wn
=] 3 15 4
¢ 100)
¥ bt
v
3 3
o 75 3 10
u i}
o bt
® 50 X
5
2.51
0.0 07
62 136 356 1084 73 209 673 2369
Parameters (log scale) Parameters (log scale)

(a) (b)

Figure 3: Resource usage of the metric learning (a) and Simplified GNN (single message passing step) (b)
for different number of parameters [19].

Resources were computed by varying the number of hidden dimensions for the MLPs in stages one and
two [19]. A simplified GNN model was considered because some of the functions used in the PyTorch model,
i.e. the aggregation at nodes and the index matrix, were not yet supported by HLS4ML. For simplified
GNN resource estimation is shown for one message passing step (Figure b). In both cases, Digital Signal
Processing (DSP) blocks are predominantly used due to the presence of matrix multiplications in neural
networks.

Connecting the Dots. October 10-13, 2023

5 Model Compression Techniques

As seen above, an FPGA implementation of the offline-like GNN-based pipeline would be predominantly
occupying the FPGAs DSP blocks. For the ITk, the number of parameters is expected to be in the order of a
few hundred thousand. The challenge is to decrease resource usage while maintaining performance (efficiency
and purity). Several compression techniques for machine learning models have been developed [20]. Below,
we outline the techniques that we have applied to the pipeline.

5.1 Quantization Aware Training

QAT [22] allows the training of a neural network for representation different from Floating-Point32 [21] while
keeping the performance intact. The bit width of the neural network parameters: weights, activation, and
bias, are defined first and the training of the network is done afterwards. Hence, not only does the network
learn the value of the parameters, but also learns their representation for different bit representations. QAT
implementation can be achieved by the Python library: Brevitas [23] which can be integrated with PyTorch
as shown in Figure [4]

NN with PyTorch NN with Brevitas + PyTorch

Input layer Quantldentity

nn.Linear + Bias Qnn.Linear+Bias

nn.RelLU Qnn.RelLU
nn.RelLU Qnn.RelLU

Output layer Output layer

1
|

Figure 4: Schematic diagram of Neural network with Pytorch and Pytorch+Brevitas. Linear layers
(nn.Linear) are replaced by Quant Linear (QNN.Linear) and usual ReLU activation (nn.ReLU) is replaced
by Qnn.ReLU. Input data can also be quantized by QuantIdentity.

5.2 Model Pruning

The second method we investigated for resource reduction is model pruning, founded on the principle that
sparse matrices can significantly enhance computational speed compared to regular matrices. It is the
technique of discarding the weights that do not contribute to the model’s performance. The magnitude of
weights is penalized by L1-Loss, and the smallest weights are removed after certain epochs.

6 Results

QAT and model pruning were applied to the MLP in the graph construction stage that was trained and tested
with the TrackML dataset [6]. A heterogeneous structure of bit widths was used for weights and activations
as shown in Figure No biases were involved after the linear layers. For FPGA-specific requirements,
Batchnorm was used. Model pruning was done with the frequency of 180 epochs with 10 % weight pruning.

Each parameter’s bit width is characterized by three variables i.e. for weights we have by 245 =
[Br, Bu, Bo| and for activation, we have bgp 9-34 = [Ar, A, Ao]. Various configurations are used to
evaluate the model performance i.e. purity at 98 % efficiency with respect to model size. The efficiency is

Connecting the Dots. October 10-13, 2023

Figure 5: MLP with input dimension 3 and output dimension 12. Each hidden layer has 512 nodes. MLP
has five regions with different bit widths for parameters shown by three different colors. [By, By, B,] and
[Ar, Ap, A, are the bit width variables for weights and activations respectively.

fixed by varying the clustering radius in the graph construction stage as mentioned in Section [2] The model
size is quantified by calculating Bit Operations (BOPs) [24] using the QONNX [25] package. The Floating-
Point32 model is used as a reference model. The effect of iterative pruning is clearly seen in the reduction
of BOPs and purity. The performance is retained by order of three reductions in BOPs by applying QAT
and pruning together. More details of this study can be found in Ref. [26].

0.5
pruned QAT MLP, by, (1,2 4,5 = [5, 3, 41 bit, ba,(1,2_3,4) = [7, 5, 6] bit

——
—4— pruned QAT MLP, by, (1,2 4,5 = [4, 4, 41 bit, b, (1,2 3,41 = [8, 8, 8] bit

0.44 pruned QAT MLP, by, 1,2-4,5) = [4, 2, 4] bit, bs (1,2-3,4) = [8, 8, 8] bit
-o-
——

& PyTorch reference
S PyTorch MLP pruned
o
£ 0.3
()
N fp = 94.7 fp=902%
[N Sy S U - - ————
L E|
‘;0'2 fp=92.8% fp=192.8%
£
=
=}
o
0.14
0.0 T T T
10° 10 107 108 10°

BOPs / cluster

Figure 6: Purity at fixed 98 % efficiency for various models vs BOPs per hit cluster [26]. QAT models are
pruned iteratively with L1 loss and retain performance for pruning factors f, above 92 %. The PyTorch
reference model is also pruned and retains performance at f, =90 % but with larger BOPs compared to any
QAT+pruned model.

7 Conclusion

Track reconstruction using GNN on FPGA is under investigation for the ATLAS Event Filter system at
the HL-LHC. FPGA resources are mostly occupied by machine learning parts of the pipeline and thus
resource reduction is a must. Model compression techniques, like quantization and pruning, were studied in
the initial phase, yielding promising resource consumption reduction while maintaining performance. The
results presented here were obtained with the TrackML dataset and will be followed up by using realistic

Connecting the Dots. October 10-13, 2023

ATLAS ITk simulation samples. Future work will require an estimation of resource consumption for QAT
and the pruned model as well. The effect of model compression is yet to be investigated for GNN. Exploring
various frameworks for translating models to FPGAs, such as FINN [27], in conjunction with AMD FPGAs
[28], is another avenue worth investigating.

ACKNOWLEDGEMENTS

Sachin Gupta acknowledges support by the Federal Ministry of Research and Education (BMBF).

References

[1] ATLAS TDAQ Collaboration, The ATLAS Trigger/DAQ Authorlist, version 14, ATL-COM-DAQ-2022-
127, CERN, Geneva, 2022, https://cds.cern.ch/record /2842310

[2] 1. Zurbano Fernandez et al., High-Luminosity Large Hadron Collider (HL-LHC): Technical design report,
https://cds.cern.ch/record /2749422

[3] ATLAS collaboration, Journal Journal of Instrumentation, s08003(2008)
[4] ATLAS Inner Tracker , https://atlas.cern/Discover/Detector/Inner-Detector

[6] ATLAS collaboration, Technical Design Report for the Phase-II Upgrade of the ATLAS TDAQ System,
https://cds.cern.ch/record /2285584

[6] https://www.kaggle.com/c/trackml-particle-identification

[7] Xingyang Ju et al., Graph Neural Networks for Particle Reconstruction in High Energy Physics detec-
tors, 2003.11603(2020)

[8] Steven Farrell et al., Novel deep learning methods for track reconstruction, arXiv 1810.06111 2018

[9] Sylvain Caillou et al., ATLAS ITk Track Reconstruction with a GNN-based pipeline (2022),
https://cds.cern.ch/record /2815578,

[10] Gage DeZoort et al., Charged Particle Tracking via Edge-Classifying Interaction Networks,
https://arxiv.org/pdf/2103.16701

[11] Xingyang Ju et al., Performance of a geometric deep learning pipeline for HL-LHC particle tracking,
Eur. Phys. J. C (2021) 81: 876, https://doi.org/10.1140/epjc/s10052-021-09675-8,2021

[12] Elabd A, Razavimaleki V et al., Graph Neural Networks for Charged Particle Tracking on FPGAs.
Front. Big Data 5:828666. doi: 10.3389/fdata.2022.828666

[13] Chinedu et al., Hardware description language (HDL): An efficient approach to device independent
designs for VLSI market segments, 10.1109/ICASTech.2011.6145181, 2011

[14] Mahesh A. Iyer, Junaid Khan et al., Advanced Physical Synthesis in the Intel® Quartus® Prime Pro
Edition Software,

[15] Javier Duarte et al., Fast inference of deep neural networks in FPGAs for particle physics, JINST 13
P07027, 2018

[16] Paszke, Adam Gross et al., PyTorch: An open source deep learning platform, https://pytorch.org/
[17] Open Neural Network Exchange, https://github.com/onnx/onnx
[18] Intel®) Stratix®) 10 FPGA and SoC FPGA, https://www.intel.com/content/www /us/en/products/details/fpga/stratix,

Connecting the Dots. October 10-13, 2023

[19] Sara Schjgdt Kjeer, Implementation and optimisation of a Graph Neural Network-based track reconstruc-
tion pipeline on Intel FPGAs for the ATLAS TDAQ system for HL-LHC, M. Sc. Thesis, Copenhagen,
2023, https://nbi.ku.dk/english/theses/masters-theses/sara-schjoedt-kjaer/

[20] James O’ Neill An Overview of Neural Network Compression, arXiv 2006.03669, 2002.

[21] IEEE Standard for Floating-Point Arithmetic, in IEEE Std 754-2019 (Revision of IEEE 754-2008), vol.
no. pp.1-84, 22 July 2019, doi: 10.1109/IEEESTD.2019.8766229.

[22] Markus Nagel and Marios Fournarakis et al., A White Paper on Neural Network Quantization, arXiV
2106.08295, 2021.

[23] Alessandro Pappalardo, Xilinx/brevitas, 10.5281/zenodo.3333552, https://doi.org/10.5281 /zenodo.3333552,
2023.

[24] C. Baskin et al., ACM Trans. Comput. Syst. 37 (2021)

[25] Alessandro Pappalardo, Yaman Umuroglu et al., QONNX: Representing Arbitrary-Precision Quantized
Neural Networks, arXiv 2206.07527 (2022)

[26] Sebastian Dittmeier et al. “Track reconstruction for the ATLAS Phase-II Event Filter using GNNs
on FPGASs”, Proceedings of the CHEP 2023 conference (to be published), ATL-DAQ-PROC-2023-006,
https://cds.cern.ch/record /2870183

[27] FINN documentation, https://finn-hlslib.readthedocs.io/en/latest/

[28] AMD Vitis Software Platform 2023.2 Release: Accelerate Development of High-Performance Designs,
https://community.amd.com/t5/adaptive-computing/amd-vitis-software-platform-2023-2-release-
accelerate /ba-p/639533

	Introduction
	Track Reconstruction using Graph Neural Networks
	Performance Metrics for Graph Construction
	Resource Estimation
	Model Compression Techniques
	Quantization Aware Training
	Model Pruning

	Results
	Conclusion

