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Measuring tau g-2 using ATLAS Pb+Pb collisions
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At the Large Hadron Collider (LHC), relativistic heavy-ion beams generate a large flux of equiv-
alent photons, which can lead to photon-induced reactions. By measuring the production of
tau lepton pairs through photon-induced processes, it becomes possible to set constraints on the
anomalous magnetic dipole moment (𝑔 − 2) of the tau lepton. A recent study conducted by the
ATLAS experiment involved observing the muonic decays of tau leptons in conjunction with
electrons and particle tracks. This study has yielded one of the most stringent constraints on the
𝑔 − 2 of the tau lepton to date.
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1. Introduction

Precise measurements of anomalous magnetic moments of leptons 𝑎ℓ = 1
2 (𝑔ℓ − 2) (where 𝑔ℓ is

the 𝑔-factor) provide a powerful tool to test the validity of the Standard Model (SM) and investigate
beyond the SM (BSM) scenarios, such as lepton compositeness [1] or supersymmetry [2].

In the case of electrons and muons, their anomalous magnetic moments are among the most
precisely measured observables in nature [3–6] and are powerful probes for BSM phenomena.
The 𝜏-lepton can be even more sensitive to some BSM processes, however the measurement of
𝜏-lepton renders experimental challenges, due to its short lifetime. The most stringent limits on 𝑎𝜏

(−0.052 < 𝑎𝜏 < 0.013) were set by the DELPHI experiment [7] at LEP and the central value was
reported to be compatible with the prediction, however with an error one order of magnitude larger
than the predicted value (𝑎exp

𝜏 = −0.018(17) compared to 𝑎
pred
𝜏,SM = 0.00117721(5)) [8].

In this study, 𝑎𝜏 is probed using the Pb+Pb→Pb(𝛾𝛾 → 𝜏𝜏)Pb process, illustrated in Figure 1,
in which the presence of 𝛾𝜏𝜏 vertices gives sensitivity to electromagnetic couplings [9–11]. This
reaction arises in so-called ultra-peripheral heavy-ion collisions (UPC) in the ATLAS detector [12],
when the distance between two incoming nuclei is larger than twice the ion radius. The nuclei are
surrounded by strong electromagnetic fields which can be viewed as a coherent flux of photons [13,
14]. Thus, UPC can lead to photon-photon interactions. Utilizing UPC has several advantages
compared to photon-photon interactions in proton-proton collisions, such as a substantial cross-
section enhancement, which scales as 𝑍4 (with 𝑍 representing the atomic number, which is 82 for
Pb). Furthermore, the low level of pile-up provides a clean environment enabling low transverse
momentum (𝑝T) thresholds in the trigger and offline reconstruction [15].

Feynman diagrams
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Some Feynman diagrams made using feynmp for use.

I. INTRODUCTION

Precision measurements of electromagnetic couplings are fundamental tests of quantum electrodynamics (QED)
and powerful probes of new physics beyond the Standard Model (BSM). The electron anomalous magnetic moment
ae = 1

2 (ge � 2) is among the most precisely measured observables in nature [1, 2]. The muon counterpart aµ is

measured to 1 part in 107 [3] and reports a longstanding 3 � 4� deviation from the SM prediction, which may be a
harbinger of new physics.
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FIG. 1. 1 muon 1 electron
Figure 1: Schematic diagram showing photon-induced 𝜏-lepton pair production in ultra-peripheral lead-lead
interactions, Pb+Pb→Pb(𝛾𝛾 → 𝜏𝜏)Pb, with the 𝜏-leptons decaying into an illustrative signature targeted by
the event selection: one muon 𝜇 and one charged pion 𝜋±.

2. Experimental method

The analysis utilizes 1.44 nb−1 of √𝑠NN = 5.02 TeV Pb+Pb data recorded by ATLAS. The
signal samples were generated using the Starlight 2.0 Monte Carlo (MC) generator [16]. For
the decay of 𝜏-leptons, the simulation was interfaced with Tauola [17], and for modeling of the
final-state radiation, Pythia 8.245 and Photos++ 3.61 [18, 19] were employed. The photon-flux
distribution was re-weighted to Superchic 3.05 [20].

Signal candidates must contain exactly one muon, targeting a muonic decay of one of the
𝜏−leptons. The decays of the other 𝜏−lepton categorize events into three distinct signal regions
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(SRs) depending on whether they include electrons or low-𝑝T tracks. The SRs are named 𝜇1T-SR
(muon + 1 track), 𝜇3T-SR (muon + 3 tracks), and 𝜇𝑒-SR (muon + electron). To enhance the
precision of the analysis and minimize systematic uncertainties, a control region (CR), referred to
as the di-muon control region (2𝜇-CR), was introduced [9, 10].

After applying the event selection criteria, the two primary sources of background are photon-
induced di-muon events and photonuclear events. To estimate the former, Starlight 2.0 and
Pythia 8.245 MC generators (or MadGraph5_aMC@NLO [21] in the case of radiative di-muon
background) are employed, with the photon-flux distribution re-weighted to Superchic 3.05. For
the estimation of the latter, a data-driven approach is adopted. This method involves constructing
supplementary CRs, which are similar to the SRs but with modifications such as requiring an
additional low-𝑝T track and the removal of the ZDC requirement. These CRs are used to estimate
the contribution of photonuclear events to the background.

The analysis strategy hinges on two key dependencies: the cross-section dependence of 𝛾𝛾 →
𝜏𝜏 and the shape dependence of muon transverse momentum (𝑝𝜇

T) on the parameter 𝑎𝜏 . To extract
the value of 𝑎𝜏 , a fit is carried out to the 𝑝

𝜇

T distribution in both the SRs and 2𝜇-CR.

3. Observation of the 𝜸𝜸 → 𝝉𝝉 in Pb+Pb

The 𝛾𝛾 → 𝜏𝜏 process in Pb+Pb collisions is observed with a significance much exceeding 5
standard deviations. Notably, the highest significance is achieved in the 𝜇1T-SR, while the 𝜇𝑒-SR
exhibits the highest signal-to-background ratio among the signal regions.

The signal strength (𝜇𝜏𝜏) is defined as a ratio of the observed signal yield to the SM prediction,
assuming the SM value of 𝑎𝜏 . It is determined with a profile-likelihood fit with 𝜇𝜏𝜏 being the only
parameter of interest. The measured value is 𝜇𝜏𝜏 = 1.03+0.06

−0.05(tot) = 1.03+0.05
−0.05(stat.)+0.03

−0.03(syst.),
which is consistent with unity.

To measure 𝑎𝜏 , a profile-likelihood fit is conducted in three SRs and 2𝜇-CR in which 𝑎𝜏 is
the only free parameter. The choice of using the 𝑝

𝜇

T distribution is motivated by its high sensitivity
to 𝑎𝜏 . The analysis makes use of templates with various 𝑎𝜏 values and in the nominal signal
sample, 𝑎𝜏 is set to the SM value. Samples representing different 𝑎𝜏 hypotheses are generated
by reweighting the nominal sample in three dimensions: 𝜏𝜏 invariant mass, rapidity, and the
difference in pseudorapidity between the two 𝜏-leptons [10]. This parametrization aligns with the
one employed in prior LEP measurements [7, 22, 23]. In total, 14 samples encompassing a range
of 𝑎𝜏 values are utilized in the analysis.

Pre-fit and post-fit distributions of 𝑝𝜇

T in the 𝜇1T-SR are shown in Figure 2. The fit to the data
is seen to provide a good description, and it is evident that the uncertainties decrease noticeably in
the post-fit distribution. It is worth noting that the difference between the SM and BSM values of
𝑎𝜏 depend on 𝑝

𝜇

T .
The best-fit 𝑎𝜏 value is determined to be 𝑎𝜏 = −0.041, with corresponding 68% and 95%

confidence levels (CL) of (−0.050,−0.029) and (−0.057, 0.024), respectively. The highly asym-
metric 95% CL interval is a result of the observed yields being higher than expected, and the almost
quadratic dependence of the cross-section on 𝑎𝜏 , which arises due to the interference between SM
and BSM amplitudes [9, 10]. Figure 3 presents a comparison of the 𝑎𝜏 measurements with the
previous results obtained by LEP [7, 22, 23]. The expected 95% CL limits from the combined
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fit are −0.039 < 𝑎𝜏 < 0.020. The precision of the measurement is competitive with previous
studies at electron colliders, however, the statistical uncertainties are significant in comparison to
the systematic uncertainties.
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Figure 2: Pre-fit (left) and post-fit (right) muon transverse momentum distributions in the 𝜇1T signal region.
Black markers denote data and stacked histograms indicate different components contributing to the signal
region. Hatched bands indicate ±1𝜎 systematic uncertainties of the prediction. Post-fit distributions are
shown with the signal contribution corresponding to the best-fit 𝑎𝜏 value (𝑎𝜏 = −0.041). Figure from [15].
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Figure 3: Results of 𝑎𝜏 measurement from fits to individual signal regions (and the di-muon control region),
and from the combined fit, compared with existing measurements performed at LEP [7, 22, 23]. A point
denotes the best-fit 𝑎𝜏 value for each measurement if available, while thick black (thin magenta) lines show
68% (95%) confidence level intervals. Figure from [15].

4. Conclusions

The process of 𝜏-lepton production in ultra-peripheral Pb+Pb collisions in the ATLAS detector
has been observed with a significance much exceeding 5 standard deviations, using 1.44 nb−1 of
data at a center-of-mass energy of √𝑠NN = 5.02 TeV. This result indicates the potential of UPCs
as a tool for investigating rare SM processes and exploring BSM phenomena. It also introduces
the possibility of conducting studies at hadron colliders to probe the electromagnetic properties
of 𝜏-leptons. The constraints obtained on 𝑎𝜏 are competitive with earlier results from electron
colliders.
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