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It has become possible, with the advent of differentiable programming, to 
create models of experimental apparatus that include the stochastic data-
generation processes, the full modeling of the reconstruction and inference 
procedures, and a suitably defined objective function, along with the cost of 
any given detector configuration, geometry and materials. This enables the 
end-to-end optimization of the instruments, by using techniques developed 
within computer science that are currently vastly exploited in fields such as 
fluid dynamics. The MODE Collaboration has started to consider the problem in 
its generality, to provide software architectures that may be useful for the 
optimization of experimental design. These models may be useful in a "human 
in the middle" system as they provide information on the relative merit of 
different configurations as a continuous function of the design choices. In this 
short contribution we summarize the studies that have been done so far and 
their potential in the long term. 

 

Contact person: Tommaso Dorigo – tommaso.dorigo@gmail.com 

 

 

mailto:tommaso.dorigo@gmail.com


Exploiting Differentiable Programming for the End-to-end
Optimization of Detectors

Max Aehle4, Mateusz Bawaj5, Anastasios Belias26, Alexey Boldyrev1,6,
Pablo de Castro Manzano1,2, Christophe Delaere1,3, Denis Derkach1,6,

Julien Donini1,7, Tommaso Dorigo1,2, Auralee Edelen8,
Peter Elmer24, Federica Fanzago1,2, Nicolas R. Gauger4, Andrea Giammanco1,3,
Christian Glaser1,9, Atılım G. Baydin1,10, Lukas Heinrich1,11, Ralf Keidel12,

Jan Kieseler1,13, Claudius Krause1,14, Maxime Lagrange1,3, Max Lamparth1,11,
Lukas Layer1,2,15, Gernot Maier16, Federico Nardi1,2,17,7, Helge E. S. Pettersen18,
Alberto Ramos19, Fedor Ratnikov1,6, Dieter Röhrich20, Roberto Ruiz de Austri19,
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Abstract

The coming of age of differentiable programming makes possible today to create complete
computer models of experimental apparatus that include the stochastic data-generation pro-
cesses, the full modeling of the reconstruction and inference procedures, and a suitably defined
objective function, along with the cost of any given detector configuration, geometry and materi-
als. This enables the end-to-end optimization of the instruments, by using techniques developed
within computer science that are currently vastly exploited in fields such as fluid dynamics.

The MODE Collaboration has started to consider the problem in its generality, to provide
software architectures that may be useful for the optimization of experimental design. These
models may be useful in a ”human in the middle” system as they provide information on the
relative merit of different configurations as a continuous function of the design choices. In this
short contribution we summarize the plan of studies that has been laid out, and its potential in
the long term for the future of experimental studies in fundamental physics.
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Scientific context

The optimal choice of layout, characteristics, materials, and information-extraction procedures of a
measuring instrument constitutes a loosely constrained problem, featuring a very large number of free
parameters related by non-obvious correlations. Although typically quite complex, similar problems
may sometimes still be tractable by standard means, in the sense that a parameterized model of the
system allows the definition of a likelihood function L = p(x|θ), given simulated data x, and a solution
by minimization of − lnL with respect to the modelling parameters θ. If, however, the instrument
bases its functioning on quantum phenomena such as those governing the interaction of radiation
with matter, the optimization problem becomes intractable: the probability p(x|θ) of observing data
x given underlying parameters θ may not be written explicitly. In such circumstances, one has access
at best to the generating function of the observed data only through forward simulation, a setting
commonly referred to as likelihood-free or simulation-based inference [1].

Over the course of the past eighty years, the intractability of the design optimization problems
commonly encountered in fundamental physics has not prevented us from successfully conceiving,
commissioning, and operating detectors of huge complexity. The development of increasingly per-
forming instruments followed a robust strategy that, while systematically leveraging technological
advancements in electronics and material science, duly exploited well-tested paradigms proven to
work by previously acquired experience. For example, a long-standing paradigm for the detection
of particles in collider physics experiments has always been the need to measure the momentum of
all electrically charged particles by magnetic bending in gaseous or light materials, before exploiting
the electromagnetic and hadronic showers produced by both charged and neutral particles in dense
matter. Another paradigm common to endeavours in nuclear, particle, and astroparticle physics is
the requirement of significant redundancy in the detection systems, to enable cross-calibration of
the different components and offer robustness of the resulting inference. A further typical default
of such instruments is the choice of a symmetric layout of the detection components, such as the
equal spacing of scintillating and passive elements along the depth of a calorimeter, or the spacing of
photomultiplier tubes observing a water vessel. While the above mentioned paradigms have a strong
motivation in the past successes of particle detection, they are not meant to guarantee the optimality
of the devices. In fact, redundancy is the very opposite of optimality; and symmetry of layouts is
certainly not the most performant choice when one has to cope with the non-symmetrical nature of
energy-dependent processes such as the shower development in a medium. What we argue is that
the time is ripe to move away from some of those paradigms, armed with new powerful tools that
computer science may now provide.

Objectives and Methodologies

The fast progress of computer science in the past twenty years, together with the development of
deep neural networks and optimization software based on differentiable programming, offers us an
unprecedented opportunity to rethink the foundations of our design strategies, and to identify and
investigate novel, possibly revolutionary solutions we have been unable to figure out by ourselves. The
typical design problems we face involve the choice of hundreds, if not thousands of parameters defining
the placement and geometry of materials and detection units, their specifications and performance,
and their monetary cost. The full exploration of this high-dimensional space of design solutions is a
wholly super-human task, and the discrete sampling of the space with full-fledged simulation tools has
become completely impractical. To move forward, we must turn to the differentiable programming
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Figure 1: Block diagram for the optimization of a generic detector. Data from a simulator (left, cans
labeled “Particle-level truth” and “Detector response”) are used to train and validate a differentiable
model (“Differentiable simulator surrogate”) of the relevant physical processes. Models of pattern
recognition, inference extraction, cost of components, and a loss function may then become a function
of detector geometry and construction layout parameters. A back-propagation loop of loss derivatives
through the functional elements of the system allows their optimization. The figure is adapted from
Ref. [2].

tools that make this exploration possible.

It must be noted that the breadth of the space of design solutions has also been increasing with
our technological advancements. Nowadays we can 3D print scintillation detectors [3], as well as
design more complex detection elements with thin layers of AC-coupled resistive silicon sensors [4].
These advancements can best be exploited if we endow ourselves with the capability of performing
continuous scans of the geometry space of the devices we wish to construct: this is something we
achieve by developing differentiable programming pipelines.

Another reason for revisiting our detector design paradigms while accounting for the availabil-
ity and development of new computer science tools is the evolution of the pattern recognition and
inference procedures we have been adopting in the extraction of information from raw detector read-
outs. The demands posed to our instruments are continuously increasing, as we move, e.g., toward
the high-luminosity (HL) phase of the Large Hadron Collider (LHC), or toward larger and larger
detection volumes in cosmic ray and neutrino physics. At the HL-LHC, in a few years the ATLAS
and CMS experiments will be reconstructing high-energy particle collisions within O(200) pileup in-
teractions taking place during the same bunch crossing; the performance of standard reconstruction
algorithms for charged tracks will be strongly reduced in the presence of an exponential increase of
the combinatorial background. If deep learning methods will be employed for those pattern recogni-
tion tasks, the question arises of whether the detectors have been conceived to be optimal for those
tools. Such a potential misalignment between design and exploitation is even more evident if we look
further into the future, when new larger experiments are being planned in all fields of fundamental
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physics. Given that we are currently sitting on a rapidly growing curve of performance of artificial-
intelligence-powered methods [5], in order for our future detectors to be most effective we need to
consider their design as an optimization problem that includes a model of the pattern recognition
and inference extraction procedures available at operation time, however hard it may be to envision
their power today.

The above considerations motivated a group of particle physicists, nuclear physicists, and astro-
physicists to join forces with computer scientists interested in our scientific use cases and create the
MODE Collaboration 1. The aim of MODE is to pursue a wide-ranging plan of investigations that
has the primary purpose of educating ourselves and our communities on how to best integrate all the
elements of a detector design problem—from the modeling of the stochastic quantum phenomena to
the description of detector layout, geometry, and performance; from the pattern recognition to the
inference extraction procedures; and from the interplay of geometry and systematic uncertainties to
the physical and economic constraints—into a single optimization problem, as schematized in Fig. 1.
We believe that the capability to compute derivatives of the objective function with respect to any
one of the parameters of the system, provided by implementing the whole pipeline using differentiable
programming, will be key to enable the successful exploration of the large space of design choices,
and the discovery of innovative solutions.

At the core of any optimization procedure lays a carefully defined objective function, which
should encode as closely as possible the explicit goals of the instrument we are designing. For
a large scientific endeavor, specifying this function may at first sight appear an impossible task,
given the multi-purpose nature of the detectors, the breadth of physics studies they enable, and
the arbitrariness of the relative value of different scientific objectives of the experiment. However,
we argue that the exercise of appraising those goals and proposing an evaluation metric can be
beneficially carried out, and an objective function—or a family of objective functions that address
different points of view—can proficuously be specified. Indeed, such an exercise is not altogether
different from the one of defining a trigger menu for a collider physics experiment, which produces a
list of triggers with relative selection strategies, bandwidths, and prescaling factors: however painful
the allocation of bandwidths to different physics datasets may be, this choice is strictly necessary
and is routinely operated by the experiments, based on an appraisal of the different goals that those
datasets enable.

One recent example of a goal-informed optimization of a detector layout is the one studied by
MODE members who participate in the LHCb experiment at the CERN LHC. The upgrade of
the electromagnetic calorimeter of LHCb involves the arrangement of photomultiplier modules with
three different granularities in a two-dimensional grid (see Fig.2). A differentiable pipeline including
a generative adversarial network modeling electromagnetic showers in the detector was developed to
optimize the layout, given number of detection units, for the significance of the extractable signal of
a B hadron decay involving photons. This allowed the identification of optimized configurations for
given detector cost.

Readiness and Challenges

What we are facing is an extremely tall order if we consider a detector of the scale of collider
experiments such as ATLAS or CMS, neutrino facilities such as JUNO, nuclear physics experiments
such as ALICE, or similar large facilities for astroparticle physics studies. In fact, it is doubtful
that we have today the resources, expertise, and skills required to attack problems of that scale of

1https://mode-collaboration.github.io
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Figure 2: Signal significance (in arbitrary units) of the extractable Bs → J/ψπ0 signal as a function
of the number of channels in the electromagnetic calorimeter for the LHCb upgrade. The left inset
shows an arrangement of different granularity of photomultipliers; the right picture shows the current
front face of the calorimeter.

complexity. But that does not mean that we should give up this challenge; rather, we must proceed
in steps, by considering at first less ambitious and more achievable goals. We have therefore laid out a
plan [6] for a series of design optimization tasks that are interesting for the field in their own right, and
whose solution via the above plan may enable us to build a framework of methods and software tools
that together may constitute the building blocks for solving harder problems. While the specificity
of a detector leaves little room for reuse of the differentiable surrogate models of particle interaction
with active and passive components that may have been developed to study them, there is instead
significant device independence in recently developed reconstruction algorithms empowered by deep
learning [7], and a clear possibility of reusing the models developed for the monetary cost of the
components, for the interaction between geometry- and detector-related systematic uncertainties,
and for inference extraction.

In terms of readiness, the discussed technology is in a development stage; we expect that the
demonstration of its performance will be produced on a significant number of medium-size tasks in
the next three to five years. Existing challenges include computing availability and cost, complexity
of the software architecture and its use for a global optimization task, and precision of the generative
models employed as surrogates for the full simulation of the physical processes. None of them appears
to be a show-stopper, as the example shown in Fig. 2 above exemplifies.

Outlook

The optimization study which may result from the development of the full model of an experiment,
along with the specification of desirable experimental goals, cannot be expected to produce a final
answer for the absolute “best” configuration –something which is hardly well-defined or practical,
given the existence of external constraints and details that do not belong to a computer model.
Rather, such a study may indicate advantageous combinations of design choices and “sweet spots”
in the space of design parameters which provide invaluable information to guide our hand toward
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robust yet effective decisions. The focus, in other words, is to empower the human in the middle
–the detector builder– with tools that while very complex to develop have a great potential of
revolutionizing the performance of our instruments.

In summary, the paradigm shift that we envision is constituted by moving away from the discrete
sampling of a necessarily very limited number of possible detector configurations, and into the fully
continuous mapping of the utility function in the very high-dimensional space of design choices
which is enabled by complete differentiable models. In a world increasingly plagued with global
challenges (pandemics, overpopulation, famine, climate change) and the consequent higher demand
for applied-science solutions and lower appeal of investments on fundamental science, we believe
that the NuPECC community should welcome the efforts we have described in this short document,
recognize their potential in increasing the performance-per-euro that future detector designs may
produce, and support this long-term plan which is meant at benefiting nuclear, neutrino, particle,
and astroparticle physics experiments across the board.
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