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Abstract. Detailed detector simulation is the major consumer of CPU re-
sources at LHCb, having used more than 90% of the total computing budget
during Run 2 of the Large Hadron Collider at CERN. As data is collected by
the upgraded LHCb detector during Run 3 of the LHC, larger requests for sim-
ulated data samples are necessary, and will far exceed the pledged resources
of the experiment, even with existing fast simulation options. An evolution of
technologies and techniques to produce simulated samples is mandatory to meet
the upcoming needs of analysis to interpret signal versus background and mea-
sure efficiencies. In this context, we propose Lamarr, a Gaudi-based framework
designed to offer the fastest solution for the simulation of the LHCb detector.
Lamarr consists of a pipeline of modules parameterizing both the detector re-
sponse and the reconstruction algorithms of the LHCb experiment. Most of the
parameterizations are made of Deep Generative Models and Gradient Boosted
Decision Trees trained on simulated samples or alternatively, where possible, on
real data. Embedding Lamarr in the general LHCb Gauss Simulation frame-
work allows combining its execution with any of the available generators in
a seamless way. Lamarr has been validated by comparing key reconstructed
quantities with Detailed Simulation. Good agreement of the simulated distribu-
tions is obtained with two-order-of-magnitude speed-up of the simulation phase.

1 Introduction

The LHCb experiment [1] has been originally designed to study rare decays of particles con-
taining b and c quarks produced at the Large Hadron Collider (LHC). The LHCb detector
is a single-arm forward spectrometer covering the pseudorapidity range of 2 < η < 5, that
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includes a Tracking system and a Particle Identification (PID) system [2]. The Tracking sys-
tem provides high-precision measurements of the momentum p of charged particles and the
position of primary vertices. Different types of charged hadrons are separated using the re-
sponse of two ring-imaging Cherenkov (RICH) detectors. Photons, electrons and hadrons are
identified by the calorimeter system relying on an electromagnetic calorimeter (ECAL) and
a hadron calorimeter (HCAL). Finally, a dedicated system named MUON identifies muons
alternating layers of iron and multi-wire proportional chambers. The RICH, calorimeters and
MUON detectors are part of the PID system.

Interpreting signal, rejecting background contributions and performing efficiency studies
requires to have a full understanding of its data sample, from the high-energy collisions to the
set of physics processes responsible for the detector high-level response. This kind of studies
greatly benefits from the use of simulated samples. At LHCb, the simulation production
mainly relies on the Gauss framework [3] that implements the generation and simulation
phases, and is based on the Gaudi processing framework [4]. The high-energy collisions
and all the physics processes that produce the set of particles (e.g., muons, pions, kaons or
protons) able to traverse the LHCb spectrometer are simulated during the generation phase
using software like Pythia8 [5] and EvtGen [6]. The radiation-matter interactions between
the detector materials and the traversing particles are reproduced during the simulation phase
that aims to compute the energy deposited in the active volumes and relies on the Geant4
toolkit [7]. Then, a separate application converts the energy deposits into raw data compatible
with the real one collected by LHCb.

The simulation of all the physics events occurring within the detector is the major con-
sumer of CPU resources at LHCb, having used more than 90% of the total computing budget
during LHC Run 2. The upgraded version of the experiment is designed to collect one-order-
of-magnitude larger data samples during Run 3. Meeting the upcoming and future requests
for simulated samples is not sustainable relying only on the traditional detailed simulation.
For this reason, the LHCb Collaboration is spending great efforts in modernizing the simula-
tion software stack through the novel experiment-independent framework Gaussino1 [8, 9] on
which a newer version of Gauss will be built on, and in developing faster simulation options,
some of which also powered by machine learning algorithms [10–13].

2 Fast simulation VS. ultra-fast simulation

Simulating all the physics processes of interest for LHCb is extremely expensive in terms
of computing resources, especially the Geant4-based step that is the major CPU-consumer.
Speeding up the computation of the energy deposits or, more generally, the detector response
is mandatory to satisfy the demand for simulations expected for Run 3 and those that will
follow. Actually, this is a shared problem across the High Energy Physics (HEP) community
that is collectively facing it, including by exploiting the latest achievements in Computer
Science and adapting deep generative models to parameterize the low-level response of the
various experiments [14–16]. The literature refers to this kind of strategies with the term fast
simulation. Fast simulations share their data processing scheme and the reconstruction step
with the detailed simulation (as depicted in Figure 1), and are proven capable of reducing the
computation cost of a simulated sample up to a factor of 20.

To meet the upcoming and future requests for simulated samples, the LHCb Collabora-
tion is also considering a more radical approach based on the so-called ultra-fast simulation
paradigm. In this case, the aim is to directly reproduce the high-level response of the de-
tector relying on a set of parameterizations developed to transform generator-level particles

1Visit https://gaussino.docs.cern.ch for additional details.

https://gaussino.docs.cern.ch


Simulation
Geant4

Generator
e.g. Pythia8 Event Reco Decay Reco

Gauss

Detailed Simulation

Data processing

Simulation
Geant4 / params

Generator
e.g. Pythia8 Event Reco Decay Reco

Gauss

Fast Simulation

Data processing

Generator
e.g. Pythia8 Decay Reco

Gauss Data processing

Ultra-Fast Simulation

Simulation + Event Reco
Geant4 / params

Figure 1. Schematic representation of the data pro-
cessing flow in the detailed (top), fast (center) and
ultra-fast (bottom) simulation paradigms.

information into reconstructed physics objects as schematically represented in Figure 1 (bot-
tom). Such parameterizations can still be built using generative models, like Generative
Adversarial Networks (GAN), proven to succeed in reproducing the high-level response of
the LHCb detector [17] and offering reliable synthetic simulated samples [18]. Following
pioneering studies on the ultra-fast simulation of the electromagnetic calorimeter based on
GANs [19], the CMS Collaboration has recently started developing a full-scope ultra-fast
simulation based on Normalizing Flow, named FlashSim [20].

3 Lamarr: the LHCb ultra-fast simulation framework

Lamarr [12, 13] is the official ultra-fast simulation framework for LHCb, able to offer the
fastest options for simulation. Originating from the attempt of an LHCb customized version
of Delphes [21, 22], Lamarr is an independent project retaining only the inspiration of its
modular layout from Delphes. In particular, the Lamarr framework consists of a pipeline of
modular parameterizations, most of which based on machine learning algorithms, designed
to take as input the particles generated by the physics generators and provide as output the
high-level response of the various LHCb sub-detectors.

The Lamarr pipeline can be logically split in two separated chains according to the charge
of the generated particles. We expect that charged particles leave a mark in the Tracking sys-
tem that Lamarr characterizes in terms of acceptance, efficiency and resolution as described
in Section 3.1. The reconstructed tracking variables are then used to compute the response
of the PID system for a set of traversing charged particles (muons, pions, kaons or protons)
as detailed in Section 3.2. In case of neutral particles (e.g., photons), the calorimeters play a
key role and, since multiple photons can concur to the energy of a single calorimetric clus-
ter, parameterizing particle-to-particle correlation effects is of major relevance. The solutions
under investigation are reported in Section 3.3. The Lamarr pipelines described above are
shown in Figure 2.

3.1 Tracking system

One of the aims of the LHCb Tracking system is to measure the momentum p of charged
particles (i.e., electrons, muons, pions, kaons and protons), exploiting the deflection of their
trajectories due to the dipole magnet located in between the tracking detectors. Hence, the
first step of the charged chain reported in Figure 2 is the propagation through the magnetic
field of the particles provided by the physics generators. Lamarr parameterizes the particle
trajectories as two rectilinear segments with a single deflection point (inversely proportional
to the transverse momentum pT ), implementing the so-called single pT kick approximation.

The next step requires to select the subset of tracks that fall within the LHCb geometrical
acceptance and that have any chance to be reconstructed. To this end, Lamarr uses Gradient
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Figure 2. Scheme of the Lamarr mod-
ular pipeline. According to the charge of
the particle provided by the physics gen-
erator, two sets of parameterizations are
defined: the charged particles are passed
through the Tracking and PID models,
while the neutral ones follow a differ-
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Boosted Decision Trees (GBDT) trained to learn the fraction of candidates that are in the
acceptance as a function of the kinematic information provided by the physics generators.
Given a generated track in acceptance, we ask whether the latter will be reconstructed and, in
case of positive answer, which tracking detectors are involved in the reconstruction procedure.
Lamarr statistically infers such information, namely the tracking efficiency, relying on neural
networks trained to perform a multi-class classification according to the track kinematics. A
major effort is ongoing to improve the performance of the efficiency model on the basis of
the type of tracks and particle species (i.e., electrons, muons or hadrons).

At this point, Lamarr disposes of the subset of the generated particles that can be con-
sidered as reconstructed tracks, but their kinematics and geometry are still identical to those
provided by the physics generators. The smearing of these features, mimicking the effect of
the reconstruction, is achieved using GANs. Driven by a binary cross-entropy loss function
and powered by skip connections, GANs succeed in describing the resolution effects due to,
for example, multiple scattering phenomena, only relying on track kinematic information at
generator-level as input conditions. A similar GAN-based architecture is used to provide the
correlation matrix obtained from the Kalman filter adopted in the reconstruction algorithm to
define the position, slope and curvature of each track.

Stacking the parameterizations described above, Lamarr is able to provide the high-level
response of the LHCb Tracking system. The resulting reconstructed quantities can be further
processed using the LHCb analysis software to combine the parameterized tracks into decay
candidates as depicted by the green slot in Figure 1 (bottom).

3.2 Particle identification system

To accomplish the LHCb physics program, disposing of a high-performance PID system is
crucial since it allows for discriminating the various particle species that traverse the detec-
tor. Lamarr provides parameterizations for the majority of the charged particles for which
the PID detectors are relevant (i.e., muons, pions, kaons or protons). Specialized parame-
terizations for the electrons, encoding the multiple scattering and Bremsstrahlung emission
contributions in the interaction with the detector materials, is planned as future development.

Identifying these subset particles involves mainly the RICH and MUON detectors, while
the role played by the calorimeters is minor. In general, we expect that the response of the
PID system depends only on the specie of the traversing particle, its kinematics, and the de-
tector occupancy. According to these dependencies, Lamarr provides the high-level response
for both the detectors using GAN-based models properly conditioned [11, 18]. Given the par-
ticle specie from the physics generators, its kinematic information results from the Lamarr
Tracking modules, while the detector occupancy is described by the total number of tracks
traversing the detector.



In real data, the combination of the responses from RICH detectors, calorimeters, MUON
system and a binary muon-identification criterion implemented via FPGA and named isMuon
allows to compute the higher-level response of the PID system, referred to as GlobalPID
variables. The parameterization of the GlobalPID variables still relies on conditioned GANs,
adding as input what results from the RichGAN and MuonGAN models. The binary output of
a neural-network-based implementation of isMuon is used as additional input feature, while
no explicit calorimeters contribution is defined leaving the missing information problem to
the generator latent space.

GAN-based models, driven by a Wasserstein distance loss function and trained using a
Lipschitz-constrained discriminator [23], succeed in describing the high-level response of
the RICH and MUON systems. Chaining together different GANs, Lamarr is also able to
provide the higher-level response of the LHCb PID system, injecting an implicit contribution
from the calorimeters.

3.3 Electromagnetic calorimeter

Providing a parameterization for the electrons requires describing the response to
Bremsstrahlung photons by the LHCb ECAL detector. Since interested by a multitude of
secondary particles, the detailed simulation of the calorimeter system is the most computa-
tionally expensive step in the simulation pipeline. The latter is a shared problem across the
HEP community, that is investing great efforts in tuning deep generative models to properly
parameterize the energy deposited in the calorimeter cells [10, 14–16]. Such studies belong
to the fast-simulation paradigm that aims to reduce the Geant4 use, providing models for the
low-level response of the various experiments.

The current version of Lamarr provides a simplified parameterization for the LHCb
calorimeter, designed for detector studies and based on a fast-simulation approach. Dis-
posing information at the calorimeter cell level requires running reconstruction algorithms to
obtain analysis-level quantities that may become rather CPU-expensive for high-multiplicity
events. In addition, since non-physical strategies are used to simulate the energy deposits
(as is the case for GANs), there is no certainty that the reconstruction software stack can
correctly reproduce the expected distributions for the high-level variables [24]. Hence, the
Lamarr project is actively working to provide an ultra-fast solution for the ECAL detector.

Reproducing the calorimeter high-level response is a non-trivial task since traditional
generative models rely on the hypothesis that an unambiguous relation between the gener-
ated particle and the reconstructed object exists2. Instead, the presence of merged π0 and
Bremsstrahlung photons may lead to having n generated particles responsible for m recon-
structed objects (in general with n , m). A strategy to face this particle-to-particle correla-
tion problem can be built using techniques designed in the context of Language Modeling,
describing the calorimeter simulation as a translation problem. To this end, Graph Neural
Network (GNN) [25] and Transformer [26] models are currently under investigation.

Both the models are designed to process a sequence of n generated photons and infer the
kinematics of a sequence of m reconstructed clusters. The non-trivial correlations between
any particles of the source sequence (photons) and the target one (clusters) rely on the at-
tention mechanism [26, 27]. To improve the quality of the resulting parameterizations, the
training of both GNN and Transformer-based models is driven by an adversarial procedure
(similarly to what occurs for GANs). The discriminator is currently implemented through a
Deep Sets model [28], while further studies are ongoing to replace it with a second Trans-
former [29]. Considering the complexity of the problem, the preliminary results are promis-
ing as depicted in Figure 3, where the joint action of Transformer and Deep Sets succeeds

2To a first approximation, the response of the Tracking and PID systems satisfy this condition.



in deriving the energy distribution on the ECAL face. The center of the calorimeter has not
active material since is used to host the LHC beam pipe. It should be pointed out that no
constraints are applied to the model output to reproduce such conditions, and that the empty
space shown in Figure 3 (right) is the result of the adversarial training procedure.

Figure 3. Distribution of the (x, y)-position of the reconstructed clusters on the LHCb ECAL face for
a 2000 × 1500 mm2 frame placed around the center. The geometrical information is combined with the
energy signature properly weighting each bin entry. What obtained from detailed simulation is reported
on the left, while the predictions of an adversarial trained Transformer model is shown on the right. The
corresponding LHCB-FIGURE is in preparation.

4 Validation campaign and timing performance

The ultra-fast philosophy at the base of the Lamarr framework is being validated by com-
paring the distributions obtained from machine-learnt models trained on detailed simulation
and the ones resulting from standard simulation strategies. In particular, we will briefly
discuss the validation studies performed for the charged particles pipeline using simulated
Λ0

b → Λ
+
c µ
−ν̄µ decays with Λ+c → pK−π+. The semileptonic nature of the Λ0

b decay requires
an interface with dedicated generators, in this case EvtGen. Deeply studied by LHCb, this
decay channel includes in its final state the four charged particle species parameterized in the
current version of Lamarr, namely muons, pions, kaons and protons.

The validation of the Lamarr Tracking modules is depicted in Figure 4 (left) where the
agreement between the Λ+c invariant mass distribution resulting from the ultra-fast paradigm
and the one obtained from detailed simulation proves that the decay dynamics is well repro-
duced and the resolution effects correctly parameterized. To show the good performance of
the Lamarr PID models, a comparison between the selection efficiencies for a tight require-
ment on a multivariate proton classifier is shown in Figure 4 (right).

Comparing the CPU time spent per event by Geant4-based production of Λ0
b → Λ

+
c µ
−ν̄µ

samples and the one needed by Lamarr, we estimate a CPU reduction of two-order-of-
magnitude only for the simulation phase. Interestingly, since the generation of b-baryons
is exceptionally expensive, Pythia8 becomes the major consumer of CPU resources in the
ultra-fast paradigm. A further speed-up can be reached reducing the cost for generation,
for example using a Particle Gun that simulates directly the signal particles without going
through the high-energy collisions, not needed since Lamarr parameterizes the detector oc-
cupancy. Even in these physics-simplified settings, the ultra-fast philosophy succeeds in
reproducing thee distributions obtained from detailed simulation [12].
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Figure 4. Validation plots for Λ0
b → Λ

+
c µ
−ν̄µ decays with Λ+c → pK−π+ simulated with Pythia8,

EvtGen and Lamarr (orange markers) and compared with detailed simulation samples relying on
Pythia8, EvtGen and Geant4 (cyan shaded histogram). Reproduced from LHCB-FIGURE-2022-014.

5 Integration with the LHCb simulation framework

To be integrated within the LHCb software stack, the parameterizations provided by Lamarr
need to be queried from a C++ application, running in the Gaudi framework. Traditional
deployment strategies were found to lead to unacceptably large overheads due to the pres-
ence of different multi-threading schedulers and context switching issues. Hence, a custom
deployment strategy was preferred: models trained with scikit-learn and Keras are con-
verted into compatible C code using the scikinC toolkit [30], and then distributed through
the LHCb Computing Grid via the CERN VM file-system (cvmfs) [31].

The modular layout of Lamarr enables a variety of studies and developments on the sin-
gle parameterizations, providing a unique and shared infrastructure for validation and perfor-
mance measurements. While crucial for applications within LHCb, the integration with Gaudi
and Gauss makes the adoptions of Lamarr unappealing for researchers outside of the LHCb
community. The SQLamarr package3 aims to mitigate this problem, providing a stand-alone
ultra-fast simulation framework with minimal dependencies. Based on SQLite3, SQLamarr
provides a set of classes and functions for loading data from physics generators and defining
pipelines from compiled models. An integration between SQLamarr and Gaussino is cur-
rently under investigation with the aim of providing ultra-fast parameterizations following
the experiment-independent philosophy of the newest LHCb simulation framework, named
Gauss-on-Gaussino4 [8, 9].

6 Conclusion

An evolution of the LHCb software stack and the simulation techniques are mandatory to
meet the upcoming and future demand for simulated samples expected for Run 3 and those
that will follow. Ultra-fast-based solutions will play a key role in reducing the pressure on
pledged CPU resources, without compromising unreasonably the description of the uncer-
tainties introduced in the detection and reconstruction phases. Such techniques, powered
by deep generative models, are provided to LHCb via the novel Lamarr framework. Well
integrated with the physics generators within the Gauss framework, Lamarr delivers two

3Visit https://lamarrsim.github.io/SQLamarr for additional details.
4Visit https://lhcb-gauss.docs.cern.ch/Futurev5 for additional details.

https://cds.cern.ch/record/2814081
https://lamarrsim.github.io/SQLamarr
https://lhcb-gauss.docs.cern.ch/Futurev5


pipelines according to the charge of the generated particle. The statistical models for the
Tracking and the charged PID systems have been deployed and validated with satisfactory
results on Λ0

b → Λ
+
c µ
−ν̄µ decays. Several models are currently under investigation for the

neutral pipeline, where the translation problem approach offers a viable solution to face
the particle-to-particle correlation problem. Further development of the integration between
Lamarr and the LHCb simulation framework is one of the major ongoing activities to put the
former in production and make its parameterizations available to the HEP community.
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