
A
TL

-S
O

FT
-P

R
O

C
-2

02
3-

04
6

25
Se

pt
em

be
r

20
23

Recent Developments in the FullSimLight Simulation Tool
from ATLAS

Raees Khan1,∗, Marilena Bandieramonte1, Joseph Boudreau1, Riccardo Maria Bianchi1,
Andrea Dell’Acqua2, Denys Kleklots2, Vakhtang Tsulaia3 on behalf of the ATLAS Com-
puting Activity.

1University of Pittsburgh, Pittsburgh, PA 15260, USA
2CERN, EP Department, Meyrin, 1211, Switzerland
3Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA

Abstract. FullSimLight is a lightweight, Geant4-based command line simu-
lation utility intended for studies of simulation performance. It is part of the
GeoModel toolkit (geomodel.web.cern.ch) which has been stable for more than
one year. The FullSimLight component has recently undergone renewed devel-
opment aimed at extending its functionality. It has been endowed with a GUI
for fast, transparent, and foolproof configuration and with a plugin mechanism
allowing users and developers with diverse goals to extend and customize the
simulation. Geometry and event input can be easily specified on the fly, allow-
ing rapid evaluation of different geometry options and their effect on simulation
performance. User actions and sensitive detectors can also be loaded through
the new plugin mechanism, allowing for customization of Geant4 processing
and hit production. The geometry explorer (gmex), in a parallel development,
has been enhanced with the capability of visualizing FullSimLight track and hit
output. FullSimLight, brought to you by the ATLAS collaboration at the LHC,
is an experiment independent software tool.

1 Introduction

With access to a standalone ATLAS detector [1] geometry and extraction of the GeoModel
toolkit [2] from the Athena framework, lightweight full simulation through FullSimLight
became possible in ATLAS at the LHC. The basic working of FullSimLight is shown in
Figure 1. Originally created and used for geometry debugging and Geant4 optimization
studies [3], FullSimLight has recently gone through a period of development to allow
users and developers with diverse goals to extend and customize the simulation. The motiva-
tions behind these developments were

• Make simulation using FullSimLight more accessible and foolproof.

*e-mail: raees.ahmad.khan@cern.ch
Copyright 2023 CERN for the benefit of the ATLAS Collaboration. CC-BY-4.0 license.

https://cds.cern.ch/record/1129811/files/jinst8_08_s08003.pdf


• Extend the functionality of FullSimLight by allowing the user to add Geant4 User
Actions, Sensitive Detectors, Physics Lists, etc.

• Create built-in visualization for FullSimLight output in gmex (an interactive 3D ge-
ometry visualization tool which is part of GeoModel).

• Make FullSimLight experiment agnostic to extend its suitability beyond the ATLAS
collaboration.

Figure 1. Basic working of FullSimLight

2 The FSL graphical user interface

fsl is the GUI to FullSimLight introduced in release 4.3.0 of GeoModel. Figure 2
showcases the main tab of the interface. fsl lets one select the desired configuration through
its various tabs and ensures that the options selected are compatible with each other. Once
the selections have been made, the user can run the simulation as well as other GeoModel
tools such as gmclash for clash detection and gmex for geometry visualization right within
the fsl interface. Alternatively, the configuration can be saved into a file in the standard
JSON format which can be loaded back into fsl or run with FullSimLight on the com-
mand line through the -c flag. In this way, there is no longer any need to overcrowd the
command line with possibly conflicting configuration flags when running FullSimLight.
fsl also provides the user access to a limited amount of Geant4 user interface commands
for verbosity on its main tab. More experienced users who are familiar with the Geant4 user
interface can open the configuration file in an external editor for further customizations. In
this sense fsl can be viewed as a configuration editor, providing a FullSimLight con-
figuration file that can be used as a starting point for other customizations, or shipped to other
platforms.

2.1 Event Generation

FullSimLight provides the user with a couple different ways to configure an event gen-
erator which can all be found on the generator tab of fsl. These are,

• Particle Gun
2



Figure 2. FSL Main Tab

• Pythia

• HepMC3 File (New)

• Generator Plugin (New)

Previously FullSimLight only supported Geant4 Particle Gun and Pythia generators
that were set through macro files. These generators can now be configured through the
fsl interface. Files in the standard HepMC3 (as well as the deprecated HepMC2) format
can now also be used to specify events. Additionally FullSimLight now comes with an
abstract class that interfaces Geant4 to let the user write their own custom event generator
plugins which is explained in Section 3.

2.2 Geant4 Regions Configuration

As part of the bid to extend the functionality of FullSimLight and make it experiment
agnostic, hard coded ATLAS G4 regions were removed. The mechanism to configure G4
regions can now be found on the regions tab in fsl as shown in Figure 3. The user can
specify root logical volumes and cuts as required.

3 Plugins
Plugins which come in the form of shared libraries (.dylib or .so) containing custom
code were the mechanism chosen to extend FullSimLight. The basic idea can be seen in
Figure 4. The user develops the plugin according to the functionality they need which can
then be plugged into FullSimLight to produce the desired output. The benefit of this
approach is that it gives the user the ability to develop what they need without needing the
core team’s intervention. Plugins also provide a nice structure to make FullSimLight
experiment agnostic since ATLAS specific functionality can live in a set of ATLAS specific
plugins [4].

3



Figure 3. FSL Regions Tab

Figure 4. Customized FullSimLight

3.1 Plugin Architecture

Plugins can be used to interface the Geant4 functionality (G4 objects) of

• User Actions

• Sensitive Detectors

• Magnetic Field

• Physics Lists

• Event Generators

Once the plugin has been built into a shared library, fsl provides a simple interface to
add the plugin to the simulation through menus on its various tabs. For example, the User
Action Plugin menu found on the User Actions tab can be seen in Figure 5. FullSimLight
comes already included with a number of custom plugins to do various things such as record
hits, generate the ATLAS magnetic field, etc as well as dummy plugins for example [5].

4



Figure 5. FSL Menu to add User Action Plugins

3.2 Writing Plugins

With the introduction of the Plugin Architecture in FullSimLight the relevant question
is, How does one actually write a plugin? The basic idea is that FullSimLight pro-
vides abstract classes that can be overridden to allow the user to interface with Geant4
functionality. As a concrete example consider, we want to write a simple “Hits” plugin
which produces a record of Geant4 stepping points. To do this we need access to a
G4UserSteppingAction to get the stepping points and a G4UserEventAction to
get the corresponding event ID. Listing out the steps to writing this plugin we have

• Define implementation classes GenerateHitsStep and GenerateHitsEvent
which inherit from the Geant4 classes G4UserSteppingAction and
G4UserEventAction respectively, giving access to the required functions to get
the stepping points and event ID.

• Define the plugin class, GenerateHitsPlugin which inherits from the abstract class
FSLUserActionPlugin provided by FullSimLight.

• Override the virtual methods getSteppingAction and getEventAction contained
in the abstract class since they correspond to the user actions we have used in the plugin.

• Have the overridden methods return an instance of the their corresponding implementation
class.

A sample code snippet of the above described GenerateHitsPlugin class is shown
in Figure 6. A more in-depth explanation of writing plugins, going over all technicalities as
well as abstract classes available to the user can be found in Refs. [6] [7].

5



Figure 6. GenerateHitsPlugin class code

4 Visualization

FullSimLight now comes included with a more sophisticated version of the Hits plugin
described briefly in the previous section which produced a record of Geant4 stepping points
as well as a Tracks plugin which produces a record of tracks when plugged into the simula-
tion. The record is stored in the standard HDF5 file format and is a part of the output of the
simulation. Figure 7 depicts this process.

Figure 7. FullSimLight with Hits or Tracks Plugin

In parallel to the development of these plugins, gmex (the geometry visualization tool
of GeoModel) was modified to provide a display for the simulation output. The HDF5 file
generated by the Hits or Tracks Plugin can be loaded into gmex to be co-displayed with the
geometry. Examples of this can be seen in Figures 8, 9.

6



Figure 8. Steps Display in ATLAS detector Figure 9. Tracks Display in ATLAS detector

5 Conclusion

FullSimLight offers a powerful and versatile tool for simulation studies. Since its ini-
tial introduction as a basic tool a few years back, it has proven very useful in ATLAS for
debugging and optimizations. Now with enhanced accessibility through fsl, increased
extensibility through the plugin architecture, and newly built-in visualization capabilities,
FullSimLight has grown considerably, with its lightweight nature and experiment inde-
pendence making it suitable for a wide range of applications within and beyond the ATLAS
collaboration at the LHC. Future work will be geared towards ensuring a stable and compat-
ible product.

References

[1] ATLAS Collaboration, JINST 3 S08003 (2008)
[2] J. Boudreau, V. Tsulaia, The GeoModel toolkit for detector description, in Computing

in high energy physics and nuclear physics. Proceedings, Conference, CHEP’04, Inter-
laken, Switzerland, September 27-October 1, 2004 (2005), pp. 353–356, https://cds.cern.
ch/record/865601

[3] M. Bandieramonte, R. M. Bianchi, J. Boudreau, EPJ Web of Conf. 245, 02029 (2020)
[4] https://gitlab.cern.ch/atlas/geomodelatlas/ATLASExtensions
[5] https://gitlab.cern.ch/GeoModelDev/GeoModel/-/tree/master/FullSimLight/Plugins
[6] https://geomodel.web.cern.ch/home/fullsimlight/plugins/
[7] https://geomodel.web.cern.ch/home/fullsimlight/plugin-support/

7

https://cds.cern.ch/record/865601
https://cds.cern.ch/record/865601
https://gitlab.cern.ch/atlas/geomodelatlas/ATLASExtensions
https://gitlab.cern.ch/GeoModelDev/GeoModel/-/tree/master/FullSimLight/Plugins
https://geomodel.web.cern.ch/home/fullsimlight/plugins/
https://geomodel.web.cern.ch/home/fullsimlight/plugin-support/

