
A
TL

-S
O

FT
-P

R
O

C
-2

02
3-

03
3

19
Se

pt
em

be
r

20
23

Copyright 2023 CERN for the benefit of the ATLAS Collaboration. CC-BY-4.0 license.

S3 Gateway

Andrew Hanushevsky
1
and Wei Yang

1

1SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park USA 94025

Abstract. The S3 Gateway is a server based application that provides a bridge between protocols and
security used in the HEP community to S3 protocols and its associated security model. This allows the use

of common copy tools based on the HEP security models to store or download data from S3 based storage.
This storage can reside in a public or private cloud. This paper details the motivation for implementing

such a service and how it can address certain problem when dealing with storage only accessible via S3

protocol

1 Introduction

S3 protocol based storage is the de facto storage model for cloud computing. S3 storage essentially adopts a data depot

where objects (i.e. files) are dumped into buckets to be later fully retrieved. As such, S3 is very compatible with HEP.

Work flows that use a copy-to-scratch data processing model (e.g. reconstruction). Using local S3 based storage (e.g.

Ceph
1
) can provide significant cost savings and it potentially allows experiments to uniformly access public cloud

resources where someone else manages the infrastructure.

However, S3 protocol along with its security model is not one that is common to HEP. Generalizing access to S3

storage would likely come at a high cost to implement an additional way to access storage across all work flows.

This dilemma was the motivation for the S3 Gateway – a mechanism to allow experiments to use existing

infrastructure (i.e. protocols and security model) to access S3 protocol based resources.

1.1 S3 Protocol

The S3 protocol was released by Amazon Web Services
2
 (AWS) in March 2006. It was launched as part of the Amazon

S3 (Simple Storage Service) offering, which provided developers with a scalable and reliab le cloud storage platform. At

the time AWS was the largest cloud service provider. When Amazon introduced S3, along with the Elastic Compute

Cloud (EC2), it quickly propelled it to be the dominant cloud provider. Consequently, S3 protocol became a de facto

standard.

Today, practically every cloud storage provider supports at least the basic S3 protocol elements which include full file

upload/download and byte range read capability. Additionally, certain object oriented file systems also support S3

protocol in addition to their native APIs (e.g. Ceph).

S3 being so ubiquitous makes for a strong case for providing a bridge from current widely used HEP storage

protocols (e.g. https and xroot) to providers offering an S3 interface.

1.1.1 S3 Security

S3 protocol authentication relies on Transport Layer Security (TLS) along with a unique user/key combination. While

various cloud providers call the user-key combination different names, they all resolve to effectively the same thing.

The general security model requires the presentation of an "Access Key” and a “Secret Key”. This model used by

Amazon, MinIO
3
 and Ceph, among others. Google cloud storage

4
 provides access via what it calls an HMAC key but it

is essentially a combination of an access and secret key. MinIO also calls its model username and password. For all

practical purposes it is identical the previous models for arb itrary usernames.

This particular security model is neither compatible with x509 nor JWT Tokens (i.e. SciTokens
5
 or W LCG

6
 Tokens)

which are widely used in the HEP community. Even for cloud providers that support x509, HEP x509 is not compatible

because of HEP specific extension (i.e. VOMS
7
) and the CA’s used by HEP are generally not recognized by

commercial cloud providers. Using S3 security on an experimental scale would require deploying a new security

management infrastructure which would be yet another cost element in computin g.

Finally, most Cloud Storage providers also support "Signed URL
8
” which simply uses the secret key to sign a URL

along with the access key and possible restrictions all specified in the CGI string suffix. The server needs to know the

access key, normally provided as a CGI token, to find the associated secret key and validate the signature. Signed

URL’s are meant to be issued by the owner of the data and not a central service.

1.2 S3 Gateway

The S3 Gateway is meant to provide a bridge between the HEP security model and the S3 security model. It is

similar to a proxy server where the front-end of the proxy provides a certain security model and a set of protocols that

are converted to another protocol and security model required to communicate with an origin serv er (e.g. an S3 data

server). This is a common commercial solution to allow an existing infrastructure to interoperate with other systems.

This is used to eliminate the cost of migrating to some other infrastructure, especially if the interoperation is not a

significant part of the operation. This is the model adopted by the S3 Gateway.

1.2.1 Implementation

The S3 Gateway is implemented using the XRootD
9
 framework. Th is framework allows building data services using a

plug-in mechanism. That is, by interconnecting pre-existing modules one can configure a basic service that only needs

one or two additional plug-ins to fully realize the desired service. In this case, the S3 Gateway implementation used a

pre-existing proxy service configuration that only required writ ing an additional plug-in to provide an S3 protocol

backend for the data flow.

The use of a proxy server as a template corresponded to the notion of protocol and security model transformat ion to

a backend server (i.e . the orig in server) that provides the desired resource; in this case data.

The proxy server communicates with the orig in server using the XRootD client. The XRootD client itself can use

any protocol to communicate with the requested server via a plug-in mechanis m. While the default is to use xroot

protocol the client is also capable of communicating using http protocol by loading a specialized p lug -in, xrdcl-http
10

.

This plug-in is widely used to provide caching proxy server (e.g. Xcache) a way to fetch data from http based origins.

Since S3 protocol is http based most of the work is done already completed.

However, S3 protocol is an extension of http and the xrdcl-http plug-in required a relatively simple modification to

enable S3 protocol. This was possible because xddcl-http plug-in relies on the CERN developed and supported Davix
11

lib rary. Th is library provides http-based data services including basic S3 support.

1.2.2 Performance

Ingress and egress performance was measured against Google Cloud Storage and Amazon Simple Storage Service

instances. The gateway node was a 12 core Intel based COU with 24 GB of RAM, a mirrored SSD drive, with a 100gb

interface. The local data source and sink for the tests was provided by a Erasure Encoded file system capable of

reaching I/O speeds of at least 16 GB/sec.

The ingress test (i.e. the gateway sends data to the S3 instance) was an FTS managed transfer consisting of 3,129

files of various sizes equalling 1.36 TB of data. The transfers consisted from 50 to 230 concurrent streams over a 35

minute period, All transfers succeeded. The average transfer rate was approximately 312 MB/sec with peaks

approaching 2 GB/sec. This output speeds closely matched the input speed of the source file system indicating that the

gateway was not a bottleneck. The performance was essentially the same for Google and Amazon.

The egress test (i.e. the gateway reads data from the S3 instance) differed only in the amount of data read in order to

minimize egress costs. In this case the FTS managed transfer using 312 files totalling 136 GB. Files were transferred

using from 50 to 230 concurrent streams. All transfers succeeded. The average transfer rate was approximately 90

MB/sec with peaks approaching 390 MB/sec. We could not account for the performance discrepancy bet ween the

Ingress and egress tests. It could have been that the ingress test did not checksum the data while the egress test did. It

could also be the case that some artificial rate limit ing was in effect for the egress test. More study is needed to resolve

this.

Even with the uneven ingress and egress tests, we concluded that the S3 Gateway would not be a bottleneck for

typical workloads.

1.2.3 Check summing

Most cloud providers automatically allow you to test the integrity of the copy using CRC or MD5, somet ime both.

Neither checksum is used by many experiments; instead opting for Adler32. In order to provide equivalent

functionality, the data sent to an S3 instance would need to be read back and the Adler32 checksum computed. This

would not only impact performance but also be costly as egress charges would be incurred.

Our solution to this problem was to implement a cloud function (e.g. Google Cloud Function
12

 or AWS Lambda
13

)

that computes the checksum in the cloud itself when a checksum is requested. The checksum is recorded with the S3

object and never needs to be recomputed. Since the execution is in the cloud all data transfer occurs in the cloud as well.

The only charge is the CPU cost which is relat ively trivial.

1.3 Future work

While Davix supports HTTP and S3 data transfers, it does not support PUT streaming. That is, streaming file

uploads must first create a local file which is then transferred to the S3 end-point. This not only requires additional

resources but also makes gateway management more complex. It also makes deploying the gateway in the public cloud

more problemat ic since a local disk storage charge would apply. This can be costly when the gateway is heavily used.

We are in the process of enhancing Davix to use multi-part uploads to support direct streaming. This would

eliminate a local staging disk requirement.

2 Conclusion

 The S3 Gateway is an enabling technology that broadens storage resource access without incurring admin ist rative

overhead to manage the secure access to those resources .

For instance, it becomes much easier for an arbitrary group of researchers to pool their resources to leverage a cost-

effective contract from a public storage service provider and allow secure access to the storage pool with a minimum

amount of admin istrative overhead.

Since data access is compliant to existing access models, client overhead is equally min imized. Furthermore,

because the S3-Gateway provides compatib le access the storage resources can be easily integrated into HEP federated

storage systems.

References

1
 https://docs.ceph.com/

2
https://docs.aws.amazon.com/AmazonS3/latest/API/A

PI_Operat ions.html
3
 https://docs.min.io/

4
 https://cloud.google.com/storage/docs

5
https://github.com/scitokens/scitokens/blob/main/spec

ification/SciTokens.md
6
 https://twiki.cern.ch/twiki/bin/view/LCG/AAI

7
 https://www.italiangrid.it/voms

8
https://docs.aws.amazon.com/AmazonS3/latest/usergu

ide/ShareObjectPreSignedURL.html and

https://cloud.google.com/storage/docs/access -

control/signed-urls
9
 http://xrootd.org/

10
 https://github.com/xrootd/xrdcl-http

11
 https://dmc.web.cern.ch/projects/davix/home

12
 https://cloud.google.com/functions/docs

13
 https://aws.amazon.com/lambda/

https://docs.ceph.com/
https://docs.aws.amazon.com/AmazonS3/latest/API/API_Operations.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_Operations.html
https://docs.min.io/
https://cloud.google.com/storage/docs
https://github.com/scitokens/scitokens/blob/main/specification/SciTokens.md
https://github.com/scitokens/scitokens/blob/main/specification/SciTokens.md
https://twiki.cern.ch/twiki/bin/view/LCG/AAI
https://www.italiangrid.it/voms
https://docs.aws.amazon.com/AmazonS3/latest/userguide/ShareObjectPreSignedURL.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/ShareObjectPreSignedURL.html
https://cloud.google.com/storage/docs/access-control/signed-urls
https://cloud.google.com/storage/docs/access-control/signed-urls
http://xrootd.org/
https://github.com/xrootd/xrdcl-http
https://dmc.web.cern.ch/projects/davix/home
https://cloud.google.com/functions/docs
https://aws.amazon.com/lambda/

