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Abstract

In this paper we study the neutron breakup in the reaction Be(!!Be.!® Be)?Be + n at
E;,. = 41A.MeV. The neutron angular distribution is obtained from a general formalism
which can be applied to any hcavy-ion transfer to the continuum reaction at intermediate
energics. The characteristics of the asymptotic part of the neutron wave function in ! Be
arc discussed in detail. Our theoretical results for the angular distribution and for the
total breakup cross scction are compared to recent experimental data. We give also some

qualitative estimates of the 2n-breakup cross section in M Li-induced reactions.
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I. INTRODUCTION

A large number of heavy-ion reactions at intermediate and high energies have shown
that the breakup of light particles from the projectile is at the origin of a relevant part
of the cross section due to the peripheral collisions. According to the framework in which
these particles are found they have been called pre-equilibrium particles (cf.fragmentation
reactions), 3-body physical background (transfer to the continuum reactions), halo-neutron
breakup (reactions with exotics beams). This component of the cross section can be deter-
mined experimentally from exclusive mesurements of the light particle in coincidence with

the ejectile.

One of the aim of this paper and of a forthcoming one, which we will refer to as I and II

respectively, is to show that models developed in Refs. [1,2] to study breakup and transfer
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to the continuum in heavy-ion reactions, which are peripheral processes dominated by the
overlap of the tails of the neutron wave-functions in the initial and final state [1], are well

suited to study neutron breakup in several of the above mentioned cases.

Furthermore we will show that besides the energy spectra. we can also calculate the angu-
lar distribution of the breakup neutrons. This is of particular interest for the understanding
of the mechanism of halo-nucleus induced reactions as discussed in [3] but it is important
also for the analysis of exclusive experiments in one-neutron transfer to the continuum reac-
tions [4-6] where the breakup neutrons need to be distinguished from the neutrons coming

from the decay of the target resonance states populated by transfer.

In previous works we have shown that the transfer to the continuum cross section 1s
due to the sum of absorption on resonant and non resonant states of the target, and elastic
breakup. The relative importance of the two processes depends on the projectile-target
combination and on the incident energy. In Ref. [7] we argued that reactions initiated by a
nucleus having a weekly bound neutron should be dominated by the elastic breakup process.
The same happens when the target does not have narrow single particle resonance states in
the continuum which can be populated by transfer. Our model does not contain the effect

of the Coulomb breakup. Therefore it can be used only to calculate the nuclear breakup.

This paper is concerned in particular with direct reactions induced by halo nuclei like
11 B¢ This nucleus has a very loosely bound neutron whose single-particle 251/, wave func-
tion has a long tail. Peripheral reactions induced by a halo nucleus will have characteristics
similar to those of other heavyv-ions. but in a more extreme form because of the very weak
binding of the halo nucleons. For comparison we will show also some results of a '°Be

breakup reaction.

The paper is organized as it follows. Section II contains the formalism, and its physical
interpretation, for the neutron angular distribution obtained from the breakup amplitude
given in Ref. [2]. The formula has the form of a convolution integral typical of diffraction and

therefore contains all possible mechanisms for the production of free neutrons. The integral



can be calculated analytically by making simple approximations thus giving an explicit form

for the angular distribution.

In Section III we discuss the asymptotic normalization constant of the initial state wave
function and the corresponding momentum distribution. Section IV is devoted to the ana-
lysis of the reaction *Be( Bet’ Be)’Be +n at E,,, = 41A.MeV', which has been studied
experimentally [3]. In Section V we give some qualitative estimates of the 2n-breakup cross

section in ' Li-induced reactions. Section VI contains our conclusions.
In a forthcoming paper we will studyv the breakup part of the reaction
=) .

BCa(*Ne” Ne)¥Ca at E;,. = 484.Mel” [5.6].

II. NEUTRON ANGULAR DISTRIBUTION

In equation (3.1) of Ref. [2] we gave the expression for the transition amplitude corre-
sponding to the break-up of a neutron from the projectile in a heavy-ion reaction. It was
calculated by time dependent perturbation theory taking as initial state the single particle
wave function of the neutron bound in the projectile and as final state a plane wave of
definite momentum |k;| = 2me;/h* where ¢; is the neutron free-particle energy after the
breakup. We worked in a reference frame which has the origin at the center of the target,
the x-axis along the distance of closest approach between the two nuclei and the z-axis along
the direction of relative motion. Then the initial state wave function in the moving potential
is obtained by a Galilean transformation of the wave function calculated in the projectile
rest frame [8]. The core of the halo nucleus is assumed to move on a straight line trajectory

with impact parameter d which is in the direction of the x-axis.

The breakup transition amplitude can be written as
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= i /dxdy/dzull((;r —d|,y, A;l)(fikzz(f_ikf'rl/g(r) (2.1)

where &k, and k, are given by
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To calculate analytically the angular distribution we proceed in the following way. First
we calculate the integral over 2 and 2’ and obtain the Fourier transform with respect to the

7 dependence of V5 and v,

1 N N
Aoy (ke) = ey dbexp(—ik. - b)Va(b. k. — ko)th1(d — b, ky). (2.3)

tun .

where b is the projection of the neutron position vector r on the (x,y) plane, ke is the
momentum of the emitted neutron, k. is the z-component of k¢, k; is the component of kg

parallel to the (x,y)-plane.

Eq. (2.3) is very interesting because it has the form of a Fourier transform integral
characteristic of diffraction phenomena [9]. In particular it represents the convolution of
the potential of the target with the wave function of the initial state. Therefore we expect
Eq.(2.3) to give rise to a diffractive-like angular distribution. The initial state wave function
can be interpreted as an amplitude function and the potential as a transmission function.
The region in which these two functions have an overlap different from zero is very small,
in fact it has the dimensions of the overlap region between the two nuclei at the instant
of transfer, therefore the resulting diffraction pattern will have a large spread around the

mcident direction.

Equation (2.3) can be simplified by using approximate forms for the functions V and W,

From the appendix to Ref. [10] we have

tIp—
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¥ is the Fourier transform of the asymptotic part of the initial state wave function which is

discussed in detail in the next section. In Eq.(2.4) p = |(d — b)| and



0= ki — kf. =kl + ] (2.5)

where v; = v/—2me;/h and ¢; is the initial bound state energy. We use a surface approxi-

mation to Va(r) given by

Vo(r) = Vz(b)e_ﬁ (2.6)

where

N gL . Vi
b= (r"+y)* and Vo(b) = —% (2.7)

l+e =
The Fourier transform of (2.6) is given by

Va(bo ke — ky) = Va(b)e <7520 % (27qp) s (2.8)

Using Eq.(2.4) and Eq.(2.8) in Eq.(2.3) we obtain

Aor(ke) [P = F(kp)H (kp)? (2.9)
Where
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Equation (2.9) was obtained by approximating the slowly varying factors in the integral
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where X, = 1+ 2k?42. The integrand in Eq. (2.11) is peaked near b = R, therefore p can

be approximated as

S —b)] — 1+ 2 ~d-x)+ 2.14
p=(d—b) i SOt g ey (1)
then
{jgr,!pi ~ 6~r/(le'r/.r0—’]§}';{;]. (215)
Finally
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sin((n — tk,)am)

The justification for the above approximation is that the integrand is different from zero
only in a limited region of space given by the overlap of the two nuclei at the instant of
transfer. This region is larger in y-dimension than in x-dimension. The x-integration has
been extended from zero to oo because the integrand is large only on the surface region of

the target. From equation (2.16) we get

2302 R Ry 2 ,—27(d—R2)
L)~ TRty

2.17
n cosh(2k,ar) — cos(2nar) (2.17)

In the above equations k¢ is the momentum of the emitted neutron whose components are

k, = kgsinfcos ¢ (2.18)
k, = kysin@sin ¢ (2.19)
k.= kgcosf (2.20)

One obtains then for the square of the transition amplitude
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(%A(kf cos B—k2)2aR;

Ao (ke = Ce?l_}k}) e cosh(2k sam sin bl cos ¢) — cos(2nam) (2.21)

Where
C = hCI S 27t Ry Vi P“f} ) - (2.22)
In equation (2.21) ¢ is the angle between k| and the w-axis. The term ff%]"kf sin®#sin®d oan

be approximated by a o-function as

())~‘d" sin? o — :1((5((4/)) “ (S(’/T . (:’))) (223)
where
g = Mgne (2.24)
n
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= 2me P2 I4(3%/2) (2.25)

Where Jy and I are Bessel functions [11], and we used the integral representation of Jy

(ibidem eq.8.411,7 pag .953 ).

The physical meaning of Eq.(2.25) is that the neutron is emitted in (or near) the reaction
plane. The §-function approximation is not valid at very forward angles because sin ¢ ~ 0
and A is very small. but in this region the out-of-plane contribution would be negligible

anyway.

In Ref. [2] the total breakup probability was given as

1 .
Pbreakup = g,—";g/dk* (kf)|2 (226)
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The double differential probability spectrum can be obtained from the above equation

as
d ,, g 1 dk
reakup __ ___Lz f A k
depdQ 878 d i k)l
= BF(6) (2.27)
Where
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The above formulas have been obtained in the case of a real interaction potential Va(r)
between the neutron and the taget. The generalization to the case of a complex potential
is obtained by substituting in the expression for B, Vi with 1} 2+ W¢ where Wy is the
strength of the imaginary potential. Usually the effect of the imaginary potential on the
elastic breakup is very small as its strength is about one order of magnitude smaller than

the strength of the real potential.

The form of the angular distribution is very simple and interesting to discuss. The term
indicated as B contains the dependence on the numerical and geometrical parameters of the
reactions in a very staightforward way. There is a rather strong a® dependence on the target
potential diffuseness. It is in a sense obvious as diffraction effects are very sensitive to the
sharpness of the diffractive surface. It is reminiscent of the so called Nemets effect {17,18]
of deuteron breakup where it was found that the breakup cross sections varied a lot if the
target changed from a closed shell to a non closed shell nucleus. The dependence on the

asymptotic normalization constant Cj of the initial state will be discussed in detail in the

9



next section. Then there is the exponential term which depends on the difference between
the distance of closest approach and the target radius. This term partially determines the

magnitude of the cross section as discussed in Section IV.

Also the dependence on the value of 7. defined by Eq.(2.5), is very important. A special
feature of the ' Be induced reactions is that the neutron binding energy, e; = —0.5MeV is
much smaller than for most other cases. The value of v; = 0.155fm ™! is also very small.
This makes the breakup cross section large and gives other features which will be discussed
later on in this paper. The values of the parameter 7 as a function of the final energy €y are
shown in Fig.(1) for the case of ' Be by the solid line. Also shown is the same parameter for
a 19 Be projectile (dashed line) whose last neutron binding energy is &; = —6.8MeV. There
is a much stronger energy dependence and the minimum value of 7 1s much smaller in the

case of ' Be .

The term F(6) contains all the angular dependence and also the energy-momentum
matching conditions. The source of the neutrons is in the overlap region. In a normal
diffraction the source is some arrangement of slits and it is two-dimensional. In our case
it is three-dimensional. It is a kind of cigar shaped region and Eq.(2.28) results from the
Fourier transform of the amplitude in that region. In Eq. (2.28) the first term comes from
the transform in the z-direction the second term comes from the y-direction perpendicular
to the reaction plane. and the denominator comes from the x-direction. The two terms
e_%k?Sinzw) and Iy(3?/2) compensate each other almost exacly because £%/2 is not too
large.

Then the form of the angular distribution is given just by the oscillating term in the

—k2aRo(cos f—ka k)2 .
jaRa(cosf-ka/ke)™ which comes from the

denominator multiplied by the exponential term e
Fourier transform of the target potential. The relative behaviour of these two terms is impor-
tant to determine whether or not the angular distribution will have a secondary maximum

at = 7. In principle this is possible if the decay of the exponential term is not too fast

because the denominator gives a maximum at § = 0 and 6 = =.
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In Fig.(6) we show the behaviour of the term ¢ and of the term

1
cosh(2kyam sin §)—cos(2naw)

in Eq.(19) for the ' Be breakup (solid line and dashed line respec-
tively), and for the *Be breakup (dotdashed line and dotted line respectively), for a final

neutron energy €5 = 40Mel’.

Finally we make some remarks on how our formula can be used to make comparison with
experimental data. We have scen that the dependence on ¢ is very close to a é- function
which means the neutrons are emitted preferentially on the reaction plane. The direction
of the momentum of the cjectile does not appear in our formulas and this corresponds to
experimental data in which one integrates on the direction of the ejectile. However it is im-
portant to notice that all the reactions we mentioned in the introduction, for which neutron
breakup is important. show ejectile angular distributions which are structurless and peaked
in the forward direction. It is worth mentioning also that in several experimental papers
the light particle breakup from the projectile is often called the "uncorrelated component”

because its behaviour does not depend on the angle of detection of the ejectile.

The probability distribution Eq.(2.27) is appropriate for a situation where the final state
of the neutron is specified by its energy and angle of emission. The final state can also
be specified by giving the transverse (k. ) and longitudinal (k.) components of the neutron
momentum. Then the probability distribution follows directly from Eq.(2.26) as

reakup L

= - : 2.30
dk dk, 873 fde; (2.30)

Aot (k.. k)

III. APPLICATION TO 'BE-INDUCED REACTIONS

A. Asymptotic wave function and normalization constant

The breakup amplitude Eq.(2.3) depends on the Fourier transform of the asymptotic
part of the initial state wave function. The single particle wave function for the initial state
is

11



#(r)

T

(r) =

Y (€2) (3.1)

normalized such that [|¢(r)[?dr = 1 . According to Refs. [1,12] the asymptotic part of

Eq.(3.1) is given in terms of Hankel functions by
N S o AT o,
G(rY/r=Cr v by iyer)  at v — o0 (3.2)

where v; was defined after Eq.(2.5). €} does not give the normalization of the full wave
function Eq.(3.1) but it is defined in terms of it as

o(r)

=2
"'%’LEH (i)

at 1 — 00 (3.3)

Usually an accurate way to find ' is to solve numerically the Schrodinger equation
for ¢(r)/r with the requirement that it should have the correct values of the bound state
parameters €;, [, m and then to match it onto the corresponding Hankel function according
to Eq.(3.3). It is also possible to find an analytical form for C; using the WKB form of the
wave function [13,14]. The formula obtained in [13] in the case [ = 0 which is relevant for

the ' Be 2s;/, wave function is

etk (3.4)

where T is the classical period of the particle in the potential pocket [16], R = 2.6fm is
the radius of the nucleus. In this case T = 2.8 107%?sec, then a reasonable estimate is

C, ~ 0.94fm~Y2

Values of the constant C; have also been calculated by a numerical solution of the
radial Schrodinger equation corresponding to Woods-Saxon potentials having different sets
of parameters which however all give the correct binding energy for the neutron. All the
corresponding wave functions are very close to each other on the tail having a value of
\p(r)/r]? ~ 107 fm=> at r = 12fm and differ only in the innermost part of the potential.
The shell model wave function of Sagawa [15] has also the same behaviour. In all the cases

we studied we found values of C; = .81 — 1.01 fm ™7

12



Sometimes, however, the asymptotic form of the wave function is treated in a different
way which can lead to a very different effective normalization constant. We think that
the asymptotic form of the wave function should be taken to be an Hankel function and
the asymptotic normalization constant Cy should be obtained from a solution of the radial
Schrédinger equation as discussed above, possibly modified by a spectroscopic factor as we
will discuss in the following scction. For example the overall normalization to the data

-1/2 " This value

used in the calculations of Ref. [3] would correspond to Cy = 0.19fm
could be obtained only if [¢(r)/r]* ~ 107°fm™ at » = 12fm , which means the radial

wave-function should be an order of magnitude smaller than those calculated with several

standard potentials.

B. Momentum distribution

We have seen in Section II that the breakup amplitude Eq.(2.3) depends explicitly on the
momentum distribution of the neutron in the projectile given by Eq.(2.4). It was obtained
by an analytical calculation of the Fourier transform of the asymptotic part of the initial
state wave function. We show it in Fig.(3) for the neutron initial 25,7 state in 1 Be by the
solid line and for the 1pso state in ' Be by the dashed line. It is interesting to notice the
close resamblance between the momentum distribution in Fig.(3) and the angle integrated
energy spectra of the breakup neutrons of Fig.(6) which we discuss in detail in the next

section.

The momentum distribution is sharper in ' Be than in °Be. This is due to the lower
binding energy and larger ncutron radius (cf.Table I). It is also a characteristic of s-state
momentum distribution to be narrower than for larger /-values. The larger absolute value
of the 1ps/; momentum distribution in '°Be is due to the large value of the asymptotic

normalization constant.
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State ‘flt(MeV)‘%(fm‘l) Ci(fm VH)|C2S| By(fm)
UBe 2512 -0.5 0.155 0.94  |0.77 6.5
YBe 1py| -6.8 0.572 1.96 4 2.6
ULy 2819 -0.125 | 0.078 0.46 2 |4.4—6.4—84
MLilpya| 0125 0.078 0.11 2 |4.4—6.4—8.4

Table I: Initial-state parameters in ' Be, 1°Be, ' Li. For 174 we give three possible values
of the last neutron orbit radius 7, = R, — R» with R, and R, from Table IIT and Table 11

respectively.

IV. RESULTS AND DISCUSSION

In this section we analyse the reaction 9Be(uBe.10 Be)®Be+n at Epe = 41A.MeV. Due
to the low binding energy of the neutron and to the rather high incident energy this reaction
is largely dominated by the breakup. For comparison we calculate also the one-neutron

breakup of 1°Be at the same energy and on the same target.

Vo(MeV) |a( fm)| Ro(fm)

i
|
’3-52.3 04 | 26

Table II: Target potential parameters in °Be .

We obtain the cross section in terms of the breakup probability as [1]

. <~ 4P}
Cureasnley. 0) = C2S27 /O ddstreaku (v p(4)

dEfdQ
. R,dP2..
= (S =2 (R, 4.1
7 d&fdQ ( a) ( )

where % is a geometrical factor whose value is close to the geometrical cross section and

C?S = (.77 is the experimental spectroscopic factor [3] of the 2s;/,-state in 1 Be. P, is the

14



probability that the projectile core-target system remains in the ground state during the
breakup reaction and we suppose that the strong absorption hypotesis is satisfied such that
P;=1ford> R, and Py, =0 for d < R, . R, is the strong absorption radius in the ion-ion
collision [1].

The expression for Py qx,p contains a factor e~ (B =12} which depends on the difference
between the strong absorption radius and the target radius. This difference can be regarded
as the breakup radius of the traditional theories of deuteron breakup. Its value has a strong
influence on the magnitude of the cross section and in our opinion it is also the parameter
that it is more difficult to determine from first principles and that could be taken as a fitting
parameter in cases like halo nucleus induced reactions. For the general case of heavy-ion
reactions one usually takes R, = 1.5(A%° + AY®) [19]. where Ap and Ar are the projectile

and target mass numbers.

In Fig.(4) we show the neutron angular distribution calculated with the formalism of
Section IT using the numerical parameter values of Table I. Experimental points from Ref.
(3] are also shown. In order to compare to the experimental data we have integrated the
enegy spectra in the range ¢; = 26 — 80MeV. The solid curve has been calculated at a
strong absorption radius of R, = 9.4fm, slightly larger than the sum of the radius of the
neutron orbit in the projectile (R; = 6.5fm) and of the target (R, = 2.6fm) radius. The

dotted line is the energy integrated angular distribution of the breakup neutron from '°Be.

In Fig.(5) we show the same numerical result of Fig.(4). for ! Be, over the whole angular
range together with the result of the calculation with a = 0.55 fm (close dotted curve) and
a = 0.65fm (dot dashed curve). It is very interesting to notice that the diffuseness parameter
of the target potential changes the behaviour at large angles showing that a sharp surface

diffracts more than a smooth one.

In Fig.(6) we show the angle integrated energy spectra. solid line for 1 Be projectile,
dotted line for °Be projectile. The corresponding total breakup cross section, integrated

over energies and angles, 18 Gpreaup = 0.16barn in good agreement we the results of Ref. [3]



for ' Be while for Y Be we obtain oyreaknp = 0.027barn. Also oue should notice that the form
of the energy spectrum reproduces that of the momentum distribution of the neutron in the
projectile given in Fig.(3). The relationship between the momentum scale in Fig.(3) and
the energy scale in Fig.(6) is given by Eq.(2.2). Is shows how the dynamics of the reaction

modifies the initial momentum distribution .

Finally we would like to comment on the rising of the angular distribution towards 6 =«
which is somehow surprising as one usually belives that breakup should be only focussed at
forward angles. When the condition n* < 1/2aR, is satisfied, the function F'() in Eq.(2.28)
can have a secondary maximum. Since from Eq.(2.5) the minimum value of n = ~; , the
previous condition can also be written as 1/7; < v/2aR,. This is equivalent to the statement

that the radius of the halo is larger than \/2aR,, since ~; is a mesure of the halo radius. In

this case the maximum at 6§ = 7 of the oscillatory term osh(arE; Sii(;)*ws(%w) in Eq.(2.28)

is not cancelled by the gaussian term ¢ kaRalcos 0—ka/ky)? (cf.Fig.(2)) .

V. PREDICTIONS ON "LI-INDUCED REACTIONS

The halo nucleus ' Li has two very weakly bound nucleons. It is not sure whether the
dominant structrure is (si,)* or (p1/2)%. There is a possibility that a breakup reaction
could distinguish between these two structures. To obtain a qualitative understanding of
the factors involved we assume that the two nucleons are uncorrelated with a binding energy
of e; = —0.125MeV . equal to one half of the total binding energy of the two halo neutrons.
We calculate the breakup cross section for the two cases where the two neutrons are in a (i)
(81/2)2 configuration and (i1) a (pl/g)? configuration. The breakup cross section has a sharp
peak near the beam energy which can be characterized by giving the total breakup cross

section and the width at half peak.
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11

o
~1
<O

7,12.20611.733|1.305

0.252]0.180]0.129

I, 4.5 ] 4.0 | 38

L, 7.0 | 64|57

7,10.20010.14410.104

7,10.02610.017/0.012

ryl11.2] 10 10

18 15,‘2! 15

Table IIL:Results for the 2n-breakup in 'Li at E;,. = 33A.MeV (top) and Eip. =
200A.MeV (bottom). Units are: R, in fm. 2n-breakup cross section in barn, widths at

half maximum of the 0%-energy distribution in MeV.

We show results at two incident energies E,. = 334.MeV and Ej,. = 200A.MeV for
the reaction *Be(**Li.? Li)°Be + 2n. The 2n-breakup cross section calculated from Eq.(35)
integrating over angle and energy. depends on the strong absorption radius R; which is not
so well determined from first principles. To see the sensitivity to R, we calculate for a range
of values. The results arc given in Table III. The given widths refer to the energy spectrum

at 8 = 0°.

The numbers in Table III show that the breakup characteristics are very sensitive to
the initial state structure as well as to the strong absorption radius. There is an order
of magnitude difference between the si,» and pi/, total cross sections and about a factor
e~2ARs — () 78 difference when the strong absorption radius decreases by AR ;=2fm. Also
the width at half maximum for the 0°-energy spectrum increases by about 50% from the
25179 to the 1pyo state. We show results at two incident energies Ei,. = 33A.MeV and

E;,. =200A.Mel".
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VI. CONCLUSIONS

In this paper we have developed a diffractional model to study neutron breakup from
the projectile in heavy-ion reactions. Our model provides the neutron angular distribution
and energy spectrum. It is obtained from the calculation of the transition amplitude in time
dependent perturbation theory. We assume that the initial state of the neutron is given by
the asymptotic part of the single particle bound state wave function in the projectile and

that the final state is a free particle wave function of given momentum.

The accuracy of the model has been tested by applying it to the study of the reaction
9Be(11Be, ¥ Be)®Be +n at Eyy,. = 41A.MeV . which is particulary suited as the last neutron
in 1! Be is weakly bound and its wave function has a long tail. Comparison with the expe-
rimental angular distribution and absolute value of the cross section is good. Furthermore
we have suggested that there is some evidence for a rather large breakup radius. Also our
calculations show that the angular distribution should have a secondary maximum at ¢ = 7.
We have interpreted this effect as due to the particular dimension of a halo projectile. If this
effect is confirmed by experiment we would have found a new nice method to investigate the

halo properties. The breakup of 'Y Be has also been discussed.

Finally we have presented some qualitative estimates for the 2n-breakup cross section in

17 i-induced reactions.
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Figure Captions

Fig.1 Values of the parameter 1 from Eq.(2.5) for ' Be solid line, and 1Y Be dashed line.

—k?aR«g(cos@—kg/kf)" 1

cosh{2ksan sin 8)—cos(2narw) n

Fig.2. Plot of the term ¢ and of the term
Eq.(2.28) for the ' Be breakup (solid line and dashed line respectively), and for the

Y Be breakup (dotdashed line and dotted line respectively), for a final neutron energy

e, =40MeV.

Fig.3. Momentum distribution for the 25y, state in 1 B¢, solid line, and 1p, s-state in

10 Be, dashed line.

Fig.4. Angular distribution of the one-neutron breakup in the reactions
9Be(1Be.!? Be)? Be + n solid line, and °Be(*°Be.? Be)? Be + n dotted line, at Eine =
41A.MeV. The target potential parameters are those of Table II. Experimental points

for the ! Be-induced reaction are from [3n

Fig.5. The solid curve is the same as Fig.2 but now the dashed line 1s calculated with
a = 0.55fm and the dotted line with a = 0.65fm. a is the diffuseness parameter of

the target Woods-Saxon potential.

Fig.6. Angle integrated energy spectra for ' Be (solid line) and 10 Be projectile (dotted

line).
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