
Abstract

CASCADE, a multi-processor real-time data-acquisition system for HEP experiments developed at CERN by the
ECP-DS group, has now been in operation for one year. The current implementation supports configurations
based on VMEbus processors running OS-9 and on UNIX workstations interconnected via VICbus or Ethernet.
The project is reviewed by describing the main characteristics of the package, the applications in which it has
been used, and the results of this experience. The main improvements of 1994, which include a parameterized
multi-level event builder, a remote monitoring option and a powerful run control facility, as well as ongoing
developments and prospects for 1995, are presented.
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Abstract
CASCADE, a multi-processor real-time data-acquisition

system for HEP experiments developed at CERN by the ECP-
DS group, has now been in operation for one year. The current
implementation supports configurations based on VMEbus
processors running OS-9 and on UNIX workstations
interconnected via VICbus or Ethernet. The project is reviewed
by describing the main characteristics of the package, the
applications in which it has been used, and the results of this
experience. The main improvements of 1994, which include a
parameterized multi-level event builder, a remote monitoring
option and a powerful run control facility, as well as ongoing
developments and prospects for 1995, are presented.

I INTRODUCTION

CASCADE [1] [2] is a distributed, multiple-platform real-time
data-acquisition system developed at CERN by the Data-
acquisition System group of the Electronics and Computing for
Physics division. CASCADE provides services for data
collection and buffering, data flow across the data-acquisition
chain, event building and event sampling for on-line
monitoring, data recording and run control. Originally
developed following a request from the NOMAD [3]
experiment, CASCADE has been designed to adapt to a wide
range of applications and system configurations. System
extension and reconfiguration often imposed by changes in the
setup of experiments, require flexibility in the data-acquisition
design. A high degree of modularization of its components
facilitates the integration of the most recent advances in
technology.
To accommodate these design demands, the CASCADE system
is composed of a small number of building blocks and of their
connection units.

Fig 1.  CASCADE Unit construction system
and flow of an event through a stage

II THE UNIT CONSTRUCTION
SYSTEM CONCEPT

The CASCADE system has been designed with the aim of
achieving a high degree of homogeneity, flexibility and
scalability. Therefore the concept of a unit construction system
has been followed. The basic software unit, called the stage, and
the stage connection unit, called theinter-stage link,have been
defined as illustrated in Fig. 1. Plugs for special-purpose
connections like event monitoring, run control and experiment-
specific functions are provided. This approach allows for easy
task distribution and their communications in a distributed
system using a variety of operating systems and physical
hardware connections. Small and large configurations can be
built from these two components.

The stage operates on event data at a given level of
processing: it controls the data transmission through its input
and output ports, if necessary it merges event components into
full events, and it provides data access to processing and
monitoring programs. Equally, event recording is performed by
a specialized stage. The run control process and event-
monitoring programs access the stage via special purpose
connections. Application-specific functions, connected to the
stage, allow for experiment-specific tailoring. The inter-stage
communication is based on a set of interfaces and protocols
which hide the details of the transfer mode.

The physical architecture of a given experimental set-up
defines the principal hardware components, including
distributed processors and their corresponding connections for
the event data flow. This architecture can be mapped to an
equivalent logical software system representation using the two
software construction elements. It is then specified in a
configuration file, which defines the properties of the individual
stages being distributed on a set of processors in the system.

At various places in the data-acquisition system events are
manipulated for various reasons such as filtering, formatting,
merging, monitoring, routing, or recording. The unit
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construction system allows maximization of the overall efficiency,
as data buffers and processing elements are distributed in the
architecture so that different levels of the chain can work
concurrently on different events.

III THE CONSTRUCTION ELEMENTS

3.1 The Stage

The stage is the fundamental construction unit of CASCADE. It
performs the basic functionality of a general single-processor,
single-process, data-acquisition kernel. It is structured and
parameterized so that several stages can be grouped together to
form sub-systems such as event builders or farms.

The stage is organized in several threads of execution. This
allows operations to take place concurrently on different events so
that the stage can deal with a number of input and output ports at
their individual rates. The thread scheduling sequence in the stage
is performed on a priority basis and has no fixed sequence, as Fig.
2 indicates. This is opposed to the flow of a particular event
through a stage, which passes from one thread to the next in a well
defined order as shown in Fig.1. Each thread corresponds to a
given operation to be performed on an event or to a control action
to be done on the stage.

Fig 2.  The stage organization into threads

3.1.1 The event data flow through the stage
Data enter the stage via one of the input connections, go through a
number of possible operations, and are finally passed to other
stages and to monitoring tasks which subscribed to this type of
event. Threads directly involved with the main data-flow are
called phases. The logical transition of an event through the stage
phases follows a fixed sequence and is controlled via signals
generated by the experiment trigger, the handshake between
connected stages, monitoring requests, or internally by another
thread. Events are handled and buffered in the form of event
descriptors. Upon reception of a trigger event descriptors are, as
shown in Fig.1, passed sequentially through:
• the input phase, which creates an event descriptor and, if

necessary, copies the event data,
• the construction phase, which, in the case of an event builder,

gradually links together the descriptors of the sub-events until
a complete event is created,

• the access phase, where they are marked for monitoring,
• the dispatch phase which formats and outputs them to one or

several other stages,
• the link-acknowledge phase which marks the events to be

released once the transfer through a particular output port has
been acknowledged.
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A set ofsampling handler phases takes care of the connection and
the event requests issued by monitoring programs which attach to
the stage.
Once connected, a monitoring program issues requests for events
and receives in return the relevant pointers and sizes so that it can
access the event. The communication with the run-control facility
is performed by the control thread. A scheduler has been
developed to control the execution of the threads. It reacts to
signals associated with each thread issued either externally by
other processes or internally by one of the other threads [1].

3.2 The Inter-stage Link

Two consecutive stage units in the data-flow topology are linked
by the CASCADE connection unit, the inter-stage link.
Communication between two stages is initiated by the dispatch
phase of the upstream stage, which triggers the input phase of the
downstream stage by sending it a signal. The protocol includes
exchange of a message containing the event descriptor followed
by the transfer of the event data. An acknowledge message is sent
by the downstream stage to the link-acknowledge phase of the
upstream phase once the event has been successfully transferred.

A high-level interface and a handshake protocol have been
specified for the inter-stage link communication. They have been
implemented on a number of hardware and software platforms.

IV EVENT HANDLING

4.1 Event Production

Events are produced by stages which have input ports declared
to be of type USER in the application configuration file. These
stages are generally 'front-end' stages. They differ from the others
only by the fact that some application-dependentevent production
functions have to be linked with the stage modules when the
system is generated. At execution time, when the stage is triggered
on one of its input ports, the input phase calls the appropriate event
production functions if the input port is of type USER. These
functions, for which templates are available, must read the event
data and declare the event to the stage. CASCADE code and a
number of I/O libraries are available to read events from a variety
of busses often used in HEP experiments.

4.2 Event Building

The event builder in CASCADE is a stage which can perform in
its construction phase parameterized multi-level event-building
operations on the data collected from its input ports. This mode of
operation has to be specified in the application configuration file
together with the event types and with some dependency rules
involved in the building process. A number of application-
dependentevent building functionshave to be written and linked
with the stage modules at system generation. These functions are
automatically called by the stage to get information on the
subevents and, if necessary, re-format them before performing the
actual building operation.

The event-building operation can be the simple merging of
subevents or events, or tagging of events with an error flag.
However, event building can as well affect the whole burst.
Operations such as ordering events according to their types,
checking the burst consistency, verifying the presence of special
data - for example, beam information delivered at every burst - can
be performed. Failure of any of these checks can result in marking
the burst with an error. The option to deliver one event at a time to
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the output port or, instead, the whole burst as one ‘superevent’ is
also available.

4.3 Local and Remote Event Monitoring

Typical CASCADE data-acquisition configurations consist of
multi-crate front-end VME systems linked to a number of
workstations. An important task of the workstations is to
monitor and analyze the data collected by the front-end systems,
which must be able to provide a high rate of events to the
workstations. Monitoring on a workstation is generally preferred
over event monitoring on a front-end system as it offers more
CPU power and an attractive environment for monitoring tasks.

Local monitoring programs run as separate processes in the
same CPU as the stage from which they retrieve events. A set of
functions, provided in the form of a library, are called by the
monitoring programs to connect to a given stage and specify the
event-sampling criteria, to request an event, to release an event,
and to disconnect from a stage.

This scheme requires the existence of a stage in each
workstation which performs monitoring. In order to reduce run-
control overhead and to simplify the data-acquisition
configuration a new scheme calledremote monitoringhas been
introduced. This allows a monitoring process (MP) to connect to
a stage which is running on a remote CPU. The monitoring
functions are mapped across the network in a transparent way.
Monitoring programs can misbehave without affecting the
stages and correct ending of the monitoring connection to the
stage is guaranteed. Remote Monitoring programs may be
started on any workstation with a TCP/IP connection to the
target system. By loading different libraries the user can switch
between local or remote monitoring mode.

Fig 3.  Local and Remote Monitoring

4.3.1 Event sampling
In the stage a service thread, called the sampling handler

phase, serves the asynchronous requests issued by the various
monitoring programs. It also handles the event bookkeeping in
conjunction with the stage access phase.

The MP is notified asynchronously as soon as an event of the
requested type becomes available. Inrequest mode there is no
guarantee that a minimum percentage of events will be seen. In
fixed mode the MP is guaranteed to receive at least the
percentage of events that it has specified and more if possible.

An event is made available to the MP by means of sizes and
pointers to the event header, data and trailer. The communication
between the MP and the stage is based on pipes for the exchange
of control or (dis)connect, request and reply messages, and on
shared memory for the access to events.

      UNIX workstation front-end (OS-9)
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4.3.2 Remote monitoring
Remote monitoring is a mechanism which maps client

monitoring onto equivalent server functions across the network
via TCP/IP as illustrated in fig. 3. It is based on existing
software elements: the local monitoring, the CASCADE
network connection tool and the inetd daemon mechanism.

A remote monitoring client program (RMP) on a UNIX
workstation connects to a remote monitoring server (RMS) on a
processor where a stage is running. The RMP requests events
from the server which - using the 'local' monitoring functions -
extracts events from the stage and returns event data and status
to the client, where the event is then available for analysis. The
RM servers are created dynamically when a client opens a link,
and disappear when the client disconnects or fails.

4.4 Event Recording

Events are recorded by a special type of stage called a
recorder which has the unique task of storing events on an I/O
device. Recorders must run in the same CPU as the stage which
feeds them. Recorders have only one input and have no output
to other stages. The inter-stage link between the recorder and its
feeding stage is based on shared memory.

The formatting of events into blocks is performed by the
dispatch phase of the stage connected to the recorder, where
they are then split into fixed blocks and written to the device.
Separating the formatting and actual recording over two
processes permits concurrent execution of these two operations.
CASCADE supports the CERN ZEBRA [4] format. At present,
recording can be done on disk files, locally or via NFS, and,
under OS9, it can be done either on the IBM3480-compatible
STK4280 cartridge device or on EXABYTE drives.

The recorder can also be configured to use its own disk
recorder server on a UNIX system accessed via the network. It
allows CASCADE event data to be written to a remote disk.
The same functionality as recording via NFS is provided, but
the recording speed could be increased significantly. For
example, when sending events from an OS9 system and
recording them on a UNIX workstation the recording speed is
about 500 to 600 kilobytes/s, whereas over NFS it is 30 to 40
kilobytes/s. Remote disk recording uses a TCP/IP client-server
approach similar to remote monitoring.

V RUN CONTROL

The run control facility is comprised of two processes running
on a UNIX workstation: the run control engine (NRC) and the
human interface (XHI).

NRC is a modular, general-purpose control program allowing
complex data-acquisition systems to be modeled in an object-
oriented way. It is based on a system originally designed by the
OPAL [5] experiment and adapted in collaboration with
NOMAD to better suit their needs.

Operator interaction with the data-acquisition system is
achieved by XHI, an X11/Motif program which provides a run-
time configurable graphical interface including menus, dialog
boxes and various types of display panels.

NRC is a process controlling data-acquisition (DAQ) units
such as stages, recorders, monitoring programs and user-
specific processes. Its main purpose is to provide
synchronization between various DAQ units and to hold their
respective states. Within NRC, each element is described in a
uniform way as a Finite State Machine (FSM), as shown in Fig.
4. A FSM is an object having a predefined set of allowed states
and allowed transitions between these states. Since DAQ units
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are external to NRC, they are represented by internal FSM
correspondents. A hierarchy of internal FSMs can be
introduced to control subsets of the entire DAQ system.

Fig 4.  The NRC architecture
Communication between NRC and the external FSMs is

based on NIC, the CASCADE Network component
package via TCP/IP. XHI, although a special object,
communicates with NRC in the same way as the DAQ
units. The NRC master is the network server and the
external DAQ units are the clients, which can connect
dynamically to the server. NRC maintains the states of all
the data-acquisition components as well as run-time
parameters in an external ORACLE data base. A run
control domain is defined by an identifier which is used by
NRC and the connected FSM’s. In a given domain each
object is identified by its unique ASCII name. More than
one instance of the run control facility may be running at a
given time using different addressing domains. For
example a full production run can coexist with the test or
calibration of a particular sub-detector. When the NRC
program is started the configuration information is read
from an ORACLE database. This information is used to
build the run control data structures: the FSM definitions,
default state of objects, state transitions, elements of the
graphical user interface and run time parameters. A NRC
user library allows for easy preparation of an external DAQ
unit using three function calls.

VI UTILITIES AND TOOLS

6.1 Error handling and reporting

A set of facilities [2] [6] is available to handle error or
information messages originating from both the application
specific modules and the CASCADE system code itself. It
allows for message preparation outside the application
code, selective message routing at run time, message
transport across heterogeneous operating system platforms
and support for a variety of message destination types.

6.2 The CASCADE Utility Libraries

The basic CASCADE unit and its connection unit rely
on a number of other packages, each of them providing a
given category of required services. Packages specifically
developed for this project form 'components' of
CASCADE. For some requirements, it was possible to use
already existing packages.

Most of these packages are written in C and some of
them in C++. Where possible they are available for all the

supported platforms and hence are the pre-requisite for
portable CASCADE application code.

Thread scheduling, event building, monitoring and
recording services, as well as run control and error
handling facilities have already been addressed earlier.

The management of event descriptors, linked lists, space
allocation, and shared memory segments is provided by a
specialized package. A network communication library
based on TCP/IP, and one for inter-process pipe
communication as well as application configuration file
interpretation and debugging facilities have been written.

6.3 Development and maintenance tool

A powerful tool based ongmakehas been developed in
order to provide the CASCADE developer with a coherent
set of templates, macros and symbols. It assists in the
creation, validation, release, and maintenance of
component packages across all the supported platforms. It
also handles the distribution and archiving of the
CASCADE system release.

VII SUMMARY OF APPLICATION-
DEPENDENT PARTS

The application-dependent parts in a CASCADE-based
data-acquisition system are:
• event production functionsto be linked with the front-

end stages;
• event building functions to be linked with the event

builder stages;
• monitoring programswhich may attach to stages;
• control parameters to be entered via SQL statements

into ORACLE;
• the configuration file, which specifies the functional

and physical characteristics of every stage and inter-
stage link as well as the topology of the whole system;

• description files for the error handling and rooting;
• script files to load and start execution of the CASCADE

related processes in the various processors of the
application.

Templates are distributed for all the modules listed above
together with template makefiles.

VIII SUPPORTED ENVIRONMENT

CASCADE relies on various other packages mainly
concerning the I/O infrastructure required for physics
input/output, inter-crate communication, and data
recording. At present, the basic hardware and software
platforms on which CASCADE is supported are as follows.
The stages must execute either on the MC68040-based
CES [7] FIC8234 running the OS-9 operating system in
VMEbus crates or on workstations running either ULTRIX
or SunOS. Triggering is done via the CES VMEbus
CORBO trigger module. CAMAC LAMs or FASTBUS
service requests could be considered. Front-end stages may
read data directly from VMEbus or from CAMAC or
FASTBUS by using the CES-supplied hardware interfaces
and their associated libraries [7]. The VICbus inter-stage
links and the tape recording devices interfaced via SCSI
use CERN developed libraries [2], whereas
communications across Ethernet for inter-stage links and
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for CASCADE component communications use standard TCP/
IP and NFS.

IX PRESENT APPLICATIONS

NOMAD has been the first experiment using CASCADE for
its data-acquisition and has been in production since April 1994.

Fig 5.  The NOMAD DAQ layout.
The layout consists of five 'front-end' stages, one for each sub-

detector, linked via VICbus to an event builder stage. Two
output ports of the EVB connect to a tape recorder stage, and to
a remote disc recorder stage, all running on CES FIC8234 CPUs
under OS-9. Each of the front-end stages have four input ports
for three burst types and for calibration data, and one output port
to the EVB. They are triggered by VMEbus CORBO modules.
The event builder stage has eleven input ports: five are
connected to the front-end stages while the others are special
events such as beam information, calibration summary or
signals for time-out and synchronization. The EVB stage makes
extensive use of all the CASCADE event-building features. A
number of dedicated SUN workstations running SunOS are
connected to the system via Ethernet. Their tasks are to monitor
the subdetector data and the event builder data remotely and to
serve for run control, event display, on-line reconstruction, disk
recorder server and as OS9 boot and file server. During the first
months of operation of CASCADE some instabilities were
experienced. After consolidation and tuning, the system is now
operating smoothly and fulfilling all its requirements.

The Energy Amplifier Project [8] has also used CASCADE
during 1994. Its data-acquisition system was simpler and
included one stage and one recorder. However, it had to handle
very large events of up to four Megabytes at a low rate. The
data-taking went very successfully.

X PERFORMANCE

At present, the stage has an overhead of one millisecond on a
FIC8234 running OS-9. Parameters such as event size, system
architecture, type of recording, number of monitoring programs,
as well as their sampling criteria, have a strong influence on the
overall performance. Currently, the CASCADE-based
applications are limited to several hundred events per second in
continuous mode and several thousand events per second in
burst mode. A systematic time analysis coupled with the
optimization of the critical areas in the code is to be initiated.

XI FUTURE DEVELOPMENTS

Several experiments and projects have recently announced
either their intention or their decision to use CASCADE for the
data taking of their experiment or for their tests. RD24 [9] is to
demonstrate the use of the Scalable Coherent Interface (SCI) in

a data-acquisition environment together with parallel event
building using CASCADE. The CES Fast Data Link (FDL)
may be evaluated in a similar environment. Both of these
requests have initiated new developments aiming at the support
of SCI and FDL as inter-stage link media and at the possibility
of handling farms of stages in particular for event-building.
Porting of CASCADE to new platforms has started. The port to
the LynxOS operating system is well advanced whilst OSF/1 is
being considered. The use of PowerPC-based processors will
start after some evaluation of the market offerings. A Digital
Linear Tape device (DLT) will be proposed as a recording
device for CASCADE-based applications.

XII CONCLUSIONS

The design concept of a unit construction system for a data-
acquisition system used in HEP experiments has shown strong
advantages at various levels. The logic system layout feature,
easy task distribution in a heterogeneous environment while
keeping a homogeneous concept, and scalability aid the
experimenter. Recent additions have proven that the integration
of new platforms and hardware connections is straightforward.
The emphasis on modularity and the design concept of a unit
construction system allow new user requirements or advances
in technology to be accommodated without design changes.
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