Short Baseline Oscillations and the Gallium Mystery

Vedran Brdar

Theoretical Physics Department, CERN, Esplande des Particules, 1211 Geneva 23, Switzerland

Data from several neutrino experiments suggest an anomalous neutrino flavor transition across relatively short baselines which is in conflict with the three-flavor neutrino oscillation paradigm. In particular, MiniBooNE and BEST collaborations have reported anomalous findings at $\sim 5\sigma$. In this contribution, such measurements and their possible explanations within and beyond the Standard Model are discussed.

1 Introduction

Neutrino oscillation is a Nobel Prize awarded phenomenon 1,2 which has by now been measured using several different neutrino sources and detection techniques³. While this program has firmly established the three-flavor neutrino oscillation paradigm, there are still several experimental hints which suggest that the neutrino sector could possibly be even richer, e.g. supplemented with light sterile neutrino(s)⁴.

In particular, LSND experiment observed ~ 3σ excess of electron antineutrinos from the stopped pion source⁵. This suggests $\mathcal{O}(10^{-3})$ probability for electron antineutrino appearance from the source of muon antineutrinos. Given the energy of the beam and the baseline, such measurement can not be explained with the known parameters in the neutrino sector; hence, this motivates beyond the Standard Model (BSM) interpretation of this excess. LSND anomaly was tested at Fermilab with the MiniBooNE experiment which has, on several occasions ^{6,7,8}, also reported a low energy excess in both neutrino and antineutrino channel. In their most recent analysis⁸, 4.8 σ excess is claimed. MiniBooNE anomaly is currently being tested at the Short Baseline Neutrino Program (SBN)^{9,10} and MicroBooNE collaboration has already released the first results^{11,12}.

Both LSND and MiniBooNE have recorded accelerator-based neutrino events. The remaining short baseline anomalies are associated to somewhat smaller neutrino energies, namely the MeV scale. The reactor neutrino anomaly ^{13,14} is a reported disagreement between the observed and the expected event rates at detectors placed in the vicinity of nuclear reactors. This effect can be explained via mixing between electron and sterile (anti)neutrino^{15,16}. However, including the recent refinements in the reactor flux calculations¹⁷ it is strongly suggested that the reactor anomaly is disappearing; for the model with sterile neutrino, now the strong bounds are placed ^{18,19}. Regarding reactor antineutrino spectra, it is worthwhile, for completeness, to mention the so called 5 MeV bump ²⁰ that was reported by several experiments ^{21,22,23} and which is very difficult to explain with BSM physics ²⁴.

Last but not least, several experiments with ⁷¹Ga as a detection material have observed interactions of neutrinos from very intense radioactive sources and reported a deficit; GALLEX ²⁵ and SAGE ²⁶ produced data that corresponds to not very significant ~ 2σ . However, very

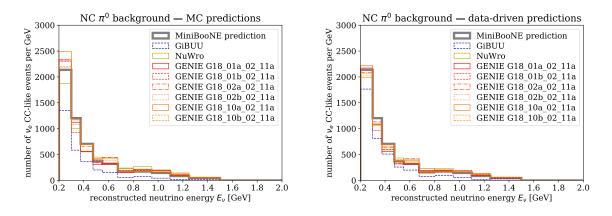


Figure 1 – Number of events for the π^0 channel as a function of reconstructed neutrino energy for several considered Monte Carlo event generators. The left panel shows the out-of-the-box event generator predictions while in the right panel data-driven predictions, where π^0 data is considered as well, are shown.

recently, BEST collaboration performed new measurements²⁷ and the lack of the observed with respect to the expected number of events is now established at a far more significant level. The gallium anomaly stands at $\gtrsim 5\sigma^{28,29,30}$.

In Sec. 2 and Sec. 3, the two statistically most significant anomalies among the above discussed, MiniBooNE and Gallium, are examined.

2 MiniBooNE Anomaly

MiniBooNE collaboration reported a ~ 5σ excess of electron-like events ⁸ with reconstructed neutrino energies between ~ 200 and 400 MeV. Let us first introduce the main Standard Model processes that contribute to the appearance of a single electromagnetic shower in the detector. Even though the beam consists of mostly muon neutrinos^{*a*}, there is a small admixture of electron neutrinos. Through the charged current interaction, $\nu_e + n \rightarrow e^- + p$, electron neutrinos lead to the production of electrons in the detector which in turn induce electromagnetic showers. Another relevant process, which can be realized via scattering of neutrinos of all flavors off nuclei ^{*b*}, is the neutral current production of π^0 which promptly decays to two photons. If the photons are very collimated, or if only one of them converts into e^+e^- pair within the fiducial volume, or if one of the photons is very soft, with energy below the detection threshold, the signature of the process would be a single electromagnetic shower. Finally, neutrino-nucleus scattering can also lead to a production of hadronic GeV-scale resonances which can decay to photons that appear as electron-like events in the detector.

For $\mathcal{O}(\text{GeV})$ neutrino energies ³¹, neutrino-nucleus interactions still feature relatively large uncertainties in the cross sections. It is therefore worthwhile to investigate whether different nuclear models can alleviate or possibly even explain the anomaly by predicting more events in the aforementioned three channels. Such an analysis was performed in ³² where nuclear and hadronic physics uncertainties have been explored. Different models are implemented in several Monte Carlo event generators; among the latter, GENIE ³³, GiBUU ³⁴ and NuWro ³⁵ are considered in ³². The differences in the neutrino event rates across models can be inferred from Fig. 1 for the π^0 channel. The upshot of the analysis is that the MiniBooNE anomaly gets alleviated for some nuclear models to $\leq 4\sigma$; this, however, also implies that the explanation of the anomaly within the Standard Model is not feasible. Let us point out that in the recent work ³⁶ another previously unconsidered process for the appearance of a single shower was studied and the authors also further explored the π^0 channel.

 $^{^{}a}$ For brevity, in this section, the term neutrino is used for both neutrinos and antineutrinos.

^bNamely carbon and hydrogen since the detector was filled with mineral oil.

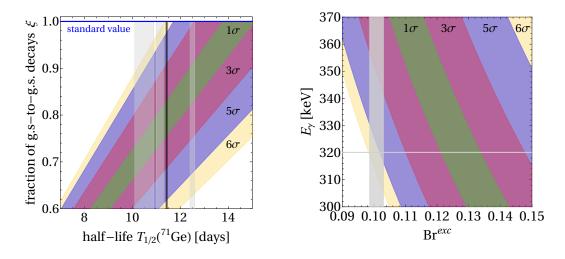


Figure 2 – Left: Statistical significance of the gallium anomaly as a function of the ⁷¹Ge half-life and the fraction of ⁷¹Ge decays into the ground state of ⁷¹Ga. Right: Statistical significance of the gallium anomaly as a function of the branching ratio for the decay into the excited state of ⁵¹V and the energy of the emitted γ -ray.

The results in 32,36 motivate future and justify previous BSM considerations of the Mini-BooNE anomaly. The most widely considered BSM scenario for the explanation of MiniBooNE anomaly is eV-scale sterile neutrino which poses as a "catalyst" for an efficient transition between muon and electron neutrinos where the latter induce electron-like events in the detector. This scenario requires relatively large sterile neutrino mixing angles. While MiniBooNE anomaly can be explained in such a framework ^{7,8}, this explanation is disfavored once all available data is included 37,38,39 ; this is mostly driven by MINOS and IceCube muon neutrino disappearance data 40,41 . While the consistency of the eV-scale sterile neutrino explanation can be improved by adding more BSM ingredients ⁴², let us stress the existence of many non-oscillatory solutions; see 43 for the summary of proposed models and ⁴⁴ for a model-independent approach.

The MiniBooNE anomaly remains a puzzle which will hopefully not outlive the SBN ^{11,12} with ICARUS ⁴⁶, MicroBooNE ⁴⁵ and SBND ⁴⁷ experiments.

3 Gallium Anomaly

In gallium experiments, radioactive source (typically ⁵¹Cr which decays via electron capture) produces a strong flux of electron neutrinos. The process of neutrino capture on ⁷¹Ga leads to the production of ⁷¹Ge which is then extracted using experimental techniques. The observed $\sim 20\%$ deficit of events corresponds to $\gtrsim 5\sigma$ anomaly, which emerged chiefly due to recent measurements from BEST ²⁷. An obvious solution to such an observation is the model with eV-scale sterile neutrino to which electron neutrinos would partially oscillate. However, in order to explain a 20% deficit, the mixing angle would need to be rather large ⁴⁸ and that is comfortably disfavored by solar and reactor experiments ^{18,19}. Hence, the gallium anomaly calls for an alternative explanation, either within or beyond the Standard Model.

An explanation of the anomaly can be sought in the cross section for $\nu_e + {}^{71}\text{Ga} \rightarrow e^- + {}^{71}\text{Ge}$. Given that ${}^{71}\text{Ge}$ decays via electron capture, the matrix element is the same as for the ν_e capture on gallium. Therefore, the cross section of interest can be determined via measurement of ${}^{71}\text{Ge}$ half-life. The most precise measurement to date reads 11.43 ± 0.03 days 49 and it is this half-life that is being employed when claiming $\sim 5\sigma$ deviation from the expected event rate. While the result from 49 appears robust since it is obtained by performing several measurements with two different methods, one should still point out that there are three other measurements that found different results for the half-life (see gray vertical bands in the left panel of Fig. 2); in particular, if the one that corresponds to the largest half-life is taken at face value, the gallium

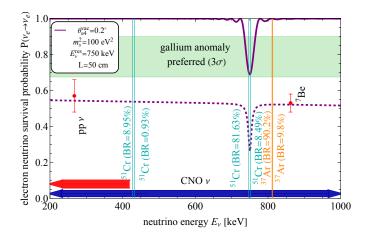


Figure 3 – Survival probability of electron neutrino for the model in which MSW resonance is induced. The resonance appears in a very narrow energy window and hence is not constrained by solar neutrino data (see pp and ⁷Be data points).

anomaly would be alleviated to ~ $3\sigma^{c}$. Another way on how to overestimate matrix element for neutrino capture on gallium is a scenario in which ⁷¹Ge in 20% of the cases decays into as yet undiscovered excited state(s) of ⁷¹Ga, existence of which is admittedly not supported by the nuclear data. The dependence of the statistical significance of the anomaly on such a scenario as well as on the ⁷¹Ge half-life is shown in the left panel of Fig. 2.

Another potential avenue for the explanation of the anomaly is the neutrino flux. The ⁵¹Cr source intensity is determined calorimetrically. ⁵¹Cr decays into ⁵¹V via electron capture and in roughly 10% of those decays excited state of ⁵¹V is produced. This results in an emission of a 320 keV γ -ray. For the explanation of the anomaly, the branching ratio to the excited state should be roughly 2% larger ³⁰, see right panel of Fig. 2 where the dependence of the significance of the anomaly on the energy of the emitted γ -ray is shown as well. Gallium anomaly can also be explained if extraction efficiency of ⁷¹Ge is ~ 20% smaller than claimed $\approx 95\%$ ⁴⁸; see detailed discussion in ³⁰.

Regarding BSM, as discussed above, vanilla eV-scale sterile neutrino is strongly disfavored. However, if sterile neutrino mixing angle can feature an enhancement at energies corresponding to those of neutrinos emitted from 51 Cr, gallium anomaly could be explained without tension with solar and reactor data. This is possible by utilizing Mikheyev-Smirnov-Wolfenstein (MSW) resonance 51,52 . For this particular case, it was found that the resonant sterile neutrino mixing angle enhancement is achieved by introducing sterile neutrino interaction with ultralight dark matter or dark energy 30 . This is illustrated in Fig. 3 where the electron neutrino survival probability is shown. 51 Cr emits neutrinos at four discrete energies; the most intense emission line is around 750 keV and, as seen from the figure, that is the energy where the resonance was achieved. The constraints form solar experiments are evaded due to a very narrow resonance; note, however, that forthcoming precise measurements of CNO neutrinos can probe this scenario. In order to evade limits from cosmology, it was found that sterile neutrino should decay 30 . Further details about this model, as well as several other options for explaining the anomaly with BSM physics (e.g. via parametric resonance 53) may be found in 30 .

4 Summary and Conclusions

Several short baseline anomalies still remain unsolved and, among those, MiniBooNE and gallium anomalies stand out as statistically the most significant ones. Recently, it was demonstrated that nuclear and hadronic physics uncertainties can mildly alleviate but not fully resolve the

^cThe impact of ⁷¹Ge half-life to the gallium anomaly was studied also in ⁵⁰.

MiniBooNE anomaly. The MiniBooNE anomaly is currently being tested at the SBN, using three detectors placed at different distances from the neutrino source. This experimental program is expected to have the final word on both oscillatory and non-oscillatory BSM explanations of the MiniBooNE anomaly.

The gallium anomaly is another mystery whose explanation was recently scrutinized both from the Standard Model and the new physics perspective. Essentially, all proposed explanations can be tested by performing measurements with a different neutrino source (e.g. ³⁷Ar or ⁶⁵Zn) and/or another detection material (e.g. ³⁷Cl). Specifically, in the BSM scenario with the tuned MSW resonance, no deficit in the event rate is expected for the measurement with a ⁶⁵Zn source that is being actively considered by BEST collaboration.

References

- Y. Fukuda *et al.* [Super-Kamiokande], Phys. Rev. Lett. **81** (1998), 1562-1567 [arXiv:hepex/9807003 [hep-ex]].
- Q. R. Ahmad *et al.* [SNO], Phys. Rev. Lett. **89** (2002), 011301 [arXiv:nucl-ex/0204008 [nucl-ex]].
- I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, T. Schwetz and A. Zhou, JHEP 09 (2020), 178 [arXiv:2007.14792 [hep-ph]].
- C. Giunti and T. Lasserre, Ann. Rev. Nucl. Part. Sci. 69 (2019), 163-190 [arXiv:1901.08330 [hep-ph]].
- A. Aguilar *et al.* [LSND], beam," Phys. Rev. D 64 (2001), 112007 [arXiv:hep-ex/0104049 [hep-ex]].
- A. A. Aguilar-Arevalo *et al.* [MiniBooNE], Phys. Rev. Lett. **102** (2009), 101802 [arXiv:0812.2243 [hep-ex]].
- A. A. Aguilar-Arevalo *et al.* [MiniBooNE], Phys. Rev. Lett. **121** (2018) no.22, 221801 [arXiv:1805.12028 [hep-ex]].
- A. A. Aguilar-Arevalo *et al.* [MiniBooNE], Phys. Rev. D **103** (2021) no.5, 052002 [arXiv:2006.16883 [hep-ex]].
- 9. R. Acciarri *et al.* [MicroBooNE, LAr1-ND and ICARUS-WA104], [arXiv:1503.01520 [physics.ins-det]].
- P. A. Machado, O. Palamara and D. W. Schmitz, Ann. Rev. Nucl. Part. Sci. 69 (2019), 363-387 [arXiv:1903.04608 [hep-ex]].
- 11. P. Abratenko *et al.* [MicroBooNE], Phys. Rev. Lett. **128** (2022), 111801 [arXiv:2110.00409 [hep-ex]].
- 12. P. Abratenko *et al.* [MicroBooNE], Phys. Rev. Lett. **128** (2022) no.24, 241801 [arXiv:2110.14054 [hep-ex]].
- G. Mention, M. Fechner, T. Lasserre, T. A. Mueller, D. Lhuillier, M. Cribier and A. Letourneau, Phys. Rev. D 83 (2011), 073006 [arXiv:1101.2755 [hep-ex]].
- P. Huber, Phys. Rev. C 84 (2011), 024617 [erratum: Phys. Rev. C 85 (2012), 029901] [arXiv:1106.0687 [hep-ph]].
- M. Dentler, A. Hernández-Cabezudo, J. Kopp, M. Maltoni and T. Schwetz, JHEP 11 (2017), 099 [arXiv:1709.04294 [hep-ph]].
- S. Gariazzo, C. Giunti, M. Laveder and Y. F. Li, Phys. Lett. B 782 (2018), 13-21 doi:10.1016/j.physletb.2018.04.057 [arXiv:1801.06467 [hep-ph]].
- V. Kopeikin, M. Skorokhvatov and O. Titov, Phys. Rev. D 104 (2021) no.7, L071301 [arXiv:2103.01684 [nucl-ex]].
- C. Giunti, Y. F. Li, C. A. Ternes and Z. Xin, Phys. Lett. B 829 (2022), 137054 doi:10.1016/j.physletb.2022.137054 [arXiv:2110.06820 [hep-ph]].
- J. M. Berryman, P. Coloma, P. Huber, T. Schwetz and A. Zhou, JHEP 02 (2022), 055 [arXiv:2111.12530 [hep-ph]].

- 20. P. Huber, Phys. Rev. Lett. 118 (2017) no.4, 042502 [arXiv:1609.03910 [hep-ph]].
- 21. S. H. Seo [RENO], AIP Conf. Proc. 1666 (2015) no.1, 080002 [arXiv:1410.7987 [hep-ex]].
- F. P. An *et al.* [Daya Bay], Phys. Rev. Lett. **116** (2016) no.6, 061801 [erratum: Phys. Rev. Lett. **118** (2017) no.9, 099902] [arXiv:1508.04233 [hep-ex]].
- 23. Y. Abe *et al.* [Double Chooz], JHEP **01** (2016), 163 [arXiv:1510.08937 [hep-ex]].
- 24. J. M. Berryman, V. Brdar and P. Huber, Phys. Rev. D 99 (2019) no.5, 055045 [arXiv:1803.08506 [hep-ph]].
- 25. W. Hampel et al. [GALLEX], Phys. Lett. B 420 (1998), 114-126
- J. N. Abdurashitov *et al.* [SAGE], Phys. Rev. C **59** (1999), 2246-2263 [arXiv:hep-ph/9803418 [hep-ph]].
- 27. V. V. Barinov *et al.* Phys. Rev. Lett. **128** (2022) no.23, 232501 [arXiv:2109.11482 [nucl-ex]].
- V. Barinov and D. Gorbunov, Phys. Rev. D 105 (2022) no.5, L051703 [arXiv:2109.14654 [hep-ph]].
- 29. C. Giunti, Y. F. Li, C. A. Ternes, O. Tyagi and Z. Xin, JHEP 10 (2022), 164 [arXiv:2209.00916 [hep-ph]].
- 30. V. Brdar, J. Gehrlein and J. Kopp, [arXiv:2303.05528 [hep-ph]].
- 31. J. A. Formaggio and G. P. Zeller, Rev. Mod. Phys. 84 (2012), 1307-1341 doi:10.1103/RevModPhys.84.1307 [arXiv:1305.7513 [hep-ex]].
- V. Brdar and J. Kopp, Phys. Rev. D 105 (2022) no.11, 115024 [arXiv:2109.08157 [hep-ph]].
- 33. C. Andreopoulos, A. Bell, D. Bhattacharya, F. Cavanna, J. Dobson, S. Dytman, H. Gallagher, P. Guzowski, R. Hatcher and P. Kehayias, *et al.* Nucl. Instrum. Meth. A **614** (2010), 87-104 [arXiv:0905.2517 [hep-ph]].
- T. Leitner, O. Buss, L. Alvarez-Ruso and U. Mosel, Phys. Rev. C 79 (2009), 034601 [arXiv:0812.0587 [nucl-th]].
- 35. T. Golan, C. Juszczak and J. T. Sobczyk, Phys. Rev. C 86 (2012), 015505 [arXiv:1202.4197 [nucl-th]].
- 36. K. J. Kelly and J. Kopp, [arXiv:2210.08021 [hep-ph]].
- M. Dentler, A. Hernández-Cabezudo, J. Kopp, P. A. N. Machado, M. Maltoni, I. Martinez-Soler and T. Schwetz, JHEP 08 (2018), 010 [arXiv:1803.10661 [hep-ph]].
- S. Gariazzo, C. Giunti, M. Laveder and Y. F. Li, JHEP 06 (2017), 135 [arXiv:1703.00860 [hep-ph]].
- J. M. Hardin, I. Martinez-Soler, A. Diaz, M. Jin, N. W. Kamp, C. A. Argüelles, J. M. Conrad and M. H. Shaevitz, [arXiv:2211.02610 [hep-ph]].
- 40. P. Adamson *et al.* [MINOS+], Phys. Rev. Lett. **122** (2019) no.9, 091803 [arXiv:1710.06488 [hep-ex]].
- 41. M. G. Aartsen *et al.* [IceCube], Phys. Rev. Lett. **125** (2020) no.14, 141801 [arXiv:2005.12942 [hep-ex]].
- 42. K. S. Babu, V. Brdar, A. de Gouvêa and P. A. N. Machado, Phys. Rev. D 107 (2023) no.1, 015017 [arXiv:2209.00031 [hep-ph]].
- M. A. Acero, C. A. Argüelles, M. Hostert, D. Kalra, G. Karagiorgi, K. J. Kelly, B. Littlejohn, P. Machado, W. Pettus and M. Toups, *et al.* [arXiv:2203.07323 [hep-ex]].
- 44. V. Brdar, O. Fischer and A. Y. Smirnov, Phys. Rev. D 103 (2021) no.7, 075008 [arXiv:2007.14411 [hep-ph]].
- 45. R. Acciarri *et al.* [MicroBooNE], JINST **12** (2017) no.02, P02017 [arXiv:1612.05824 [physics.ins-det]].
- 46. C. Rubbia et al. JINST 6 (2011), P07011 [arXiv:1106.0975 [hep-ex]].
- 47. N. McConkey [SBND], J. Phys. Conf. Ser. 888 (2017) no.1, 012148
- 48. V. V. Barinov et al. Phys. Rev. C 105 (2022) no.6, 065502 [arXiv:2201.07364 [nucl-ex]].
- 49. W. Hampel and L. P. Remsberg, Phys. Rev. C 31 (1985), 666-667

- 50. C. Giunti, Y. F. Li, C. A. Ternes and Z. Xin, [arXiv:2212.09722 [hep-ph]].
- 51. L. Wolfenstein, Phys. Rev. D ${\bf 17}$ (1978), 2369-2374
- 52. S. P. Mikheyev and A. Y. Smirnov, Sov. J. Nucl. Phys. 42 (1985), 913-917
- 53. M. Losada, Y. Nir, G. Perez, I. Savoray and Y. Shpilman, JHEP **03** (2023), 032 [arXiv:2205.09769 [hep-ph]].