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Abstract

The running of the top quark mass (mt) is probed at the next-to-next-to-
leading order (NNLO) in quantum chromodynamics (QCD) for the first time.
The result is obtained by comparing calculations in the modified minimal
subtraction (MS) renormalisation scheme to a differential measurement of
the top quark-antiquark (tt) production cross section at

√
s = 13 TeV. The

scale dependence of mt is extracted as a function of the invariant mass of
the tt system, up to an energy scale of about 0.5 TeV. The observed running
is found to be in good agreement with the three-loop solution of the QCD
renormalisation group equations.

1. Introduction

In the modified minimal subtraction (MS) renormalisation scheme, the
parameters of the quantum chromodynamics (QCD) lagrangian, i.e. the strong
coupling constant αS and the masses of the quarks, depend on the energy
scale at which they are evaluated. This effect, often referred to as “running”,
is described by the renormalisation group equations (RGEs) of QCD, which
can be solved using perturbation theory. The running of the quark masses
has been calculated up to order α5

S [1, 2]. Measurements of the running of
quark masses are not only a fundamental proof of QCD as a renormalisable
theory, but also an indirect probe of physics beyond the standard model. In
fact, the QCD RGE would be modified e.g. in the context of supersymmetric
theories [3] or in models implying dynamic mass generation [4].

Experimentally, the running of the charm quark mass was investigated
using deep inelastic scattering data at the DESY HERA [5], while the running
of the bottom quark mass has been demonstrated using results from the
CERN LEP, SLAC SLC, DESY HERA, and CERN LHC [6, 7], up to the
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scale of the Higgs boson mass. The running of the top quark mass has
been investigated for the first time by the CMS Collaboration at the CERN
LHC [8]. The running was extracted using a differential measurement of the
tt production cross section at

√
s = 13 TeV and QCD calculations at next-

to-leading order (NLO) in the MS scheme [9] implemented in the MCFM
program [10, 11].

In this work, the CMS measurement is used probe the running of the
top quark mass at next-to-next-to-leading order (NNLO) in QCD for the
first time. This is achieved using NNLO differential calculations in the MS
scheme [12] implemented in the Matrix framework [13] that were not avail-
able at the time of the CMS measurement. This analysis also benefits from a
significantly improved fit procedure, which allows for a consistent treatment
of the numerical uncertainty in the theoretical predictions. This becomes
necessary due to the increased numerical uncertainties in the NNLO calcu-
lations, which are limited by computing time and resources. Furthermore,
variations of the renormalisation and factorisation scales are now fully taken
into account.

Similar to the work of Ref. [8], the present analysis is performed solely in
the framework of QCD. Electroweak corrections, which may play a relevant
role in the relation between the top quark pole and MS masses [14], are
not taken into account in this context as they are not implemented in any
calculation in the MS scheme which includes NNLO QCD effects.

2. Theoretical setup and experimental inputs

In the CMS analysis of Ref. [8], the dependence of the running top quark
mass mt(µm) is investigated as a function of the scale µm = mtt, where mtt

is the invariant mass of the tt system. In the calculation, the renormalisa-
tion (µr), factorisation (µf), and top quark mass (µm) scales are all set to
the value of mt. In each bin of mtt independently, the value of mt(mt) is
extracted by performing a χ2 fit of the theoretical calculation to the mea-
sured cross section. The extracted values of mt(mt) are then converted to
the corresponding values of mt(µk) using one-loop solutions of the RGEs,
where µk is the representative energy scale of bin k in mtt, corresponding
to the average mtt value in that bin. The bin boundaries for mtt and the
corresponding values of µk are reported in Table 1.

Following the approach suggested in Ref. [12], the CMS analysis was re-
peated by setting the scale µm to µk/2, independently in each bin of mtt.
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bin (k) mtt [GeV] µk [GeV]
1 < 420 384
2 420− 550 476
3 550− 810 644
4 > 810 1024

Table 1: Boundaries of the mtt bins and scales µk as defined in Ref. [8].

This choice is preferred over µk due to the fact that µk/2 corresponds ap-
proximately to mt in the vicinity of the tt production threshold, which is the
value typically used in the calculation of the total cross section. Further-
more, the bin-by-bin dynamic scale choice allows the value of mt(µk/2) to
be determined directly. The two approaches were found to yield consistent
results [15].

In this work, the approach proposed in Ref. [12] is adopted, and NNLO
calculations are used for the first time for the extraction of mt(µm). Unlike
in Ref. [15], the µr, µf , and µm central scales in the calculation are all set
to µk/2, and scale uncertainties are estimated by varying µr and µf by a
factor of two, avoiding cases in which µr/µf = 4 or 1/4. The scale µm is
not varied in this context, as it represents the independent variable with
respect to which the running is extracted. The calculation is interfaced with
the ABMP16 5 nnlo [16] set of parton distribution functions (PDFs), and
the tt production cross section is calculated in each bin of mtt for different
values of mt(µk/2). In the calculation, the value of αS is set consistently with
that of the PDFs. A comparison between the NLO and NNLO predictions
and the CMS measurement of Ref. [8] can be found in Ref. [12]. The PDF
uncertainties are estimated by performing the calculation using the complete
set of PDF eigenvectors. In each bin, the PDF uncertainties are estimated
with respect to a reference mass point, chosen such that the calculated cross
section for that mass is close to the measured one in order to minimise any
possible extrapolation bias. The relative PDF uncertainties obtained with
this procedure are assumed to be independent of the value of the top quark
mass. This approximation is necessary in order to keep the computing time
within an acceptable range. Finally, in the case of the ABMP16 5 nnlo PDFs,
the uncertainty in the value of αS is included in the PDF variations.

The differential cross section measured in Ref. [8] is re-scaled in order to
take into account the latest measurement of the total integrated luminosity
by the CMS experiment [17]. This implies both a shift in the central values
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Figure 1: Calculated tt production cross section (σk
tt

) in bin k of mtt as a function of
mt(µk/2) (points) compared to the re-scaled value of the measured cross section of Ref. [8]
(horizontal lines). The vertical error bars represent the numerical uncertainty in the theo-
retical predictions, while the horizontal error bands correspond to the re-scaled uncertainty
in the measured cross sections. The dependence of the calculated cross section on the value
of mt(µk/2) is parameterised assuming a quadratic dependence (line).
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of the measured differential cross section and a reduction in the luminosity
uncertainty from 2.5% to 1.2%. The covariance matrix between the bins
is re-calculated accordingly by subtracting (adding) the covariance matrix
corresponding to the old (new) luminosity uncertainty, assuming a fully cor-
related effect in the different bins. The obtained results are compared to the
NNLO theoretical predictions as a function of mt(µk/2) in Figure 1. The
dependence of the calculated cross section on the values of mt(µk/2) is found
to be well described by a second-order polynomial.

3. The fit procedure

An improved fit procedure compared to the one of Ref. [8] is developed
for this work. The values of mt(µk/2) are extracted simultaneously by means
of a χ2 fit of the theoretical prediction to the measured differential cross sec-
tion. The χ2 is parameterised as a function of the values of mt(µk/2) and of
the nuisance parameters representing the effect of the numerical uncertain-
ties in the NNLO calculation and the PDF uncertainties on the predicted
differential cross section. This allows the numerical uncertainties and their
correlations with the other parameters of the fit to be consistently taken into
account, avoiding any possible bias in the determination of the running. As
for the PDF uncertainties, this approach is equivalent to the ABMP16 5 nnlo
prescription [16]. The χ2 function can be written in the form:

χ2(~m,~j, ~η) = ~∆T(~m,~j, ~η)C−1
exp

~∆(~m,~j, ~η) +
nPDF∑
p=1

j2p +
nPred∑
t=1

η2t , (1)

where
∆k(mk,~j, ~η) = σk

exp − σk
th(mk,~j, ~η) . (2)

Here, ~m represents the free parameters used to determine the values of
mt(µk/2), while ~j and ~η are the nuisance parameters modelling the effect
of the PDF uncertainties and numerical uncertainties in the calculated cross
sections, respectively. Furthermore, σk

exp and σk
th correspond to the values of

the measured and calculated cross sections in bin k of mtt, respectively, the
latter depending on the ~m, ~j, and ~η parameters. The matrix Cexp represents
the covariance between the bins of the measured differential cross section,
and it includes the effect of the experimental and extrapolation uncertainties
described in Ref. [8]. For asymmetric extrapolation uncertainties, the maxi-
mum between the positive-side and negative-side variations is conservatively
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taken. The first term in Eq. 1 is the statistical term, while the two following
ones are Gaussian penalty terms representing the prior assumptions on the
nuisance parameters. In the fit, all nuisance parameters are defined such
that they follow a standard normal distribution. The index p runs up to the
number of PDF variations, nPDF = 29, while the index t runs up to the
number of theoretical predictions used in the fit, nPred, which include the
38 mass points and the 29 PDF variations.

The effect of the numerical uncertainties is modelled by introducing mod-
ifiers to the calculated cross sections that depend on the corresponding nui-
sance parameter and the size of the numerical uncertainty. For each calcu-
lated cross section σt

th, including those obtained for the various PDF eigen-
vectors, the quantity σt

th(ηt) is defined:

σt
th(ηt) = σt

th(1 + ηtδ
t
num) , (3)

where δtnum is the relative numerical uncertainty in σt
th. For each nominal

mass point m in bin k of mtt, the dependence of the calculated cross section
on the PDF variations is then estimated as:

σm,k
th (~j, ~η) = σm,k

th (ηm,k)
nPDF∏
p=1

[
1 + jp

(
σp,k
th (ηp,k)

σm0,k
th (ηm0,k)

− 1

)]
, (4)

where σm0,k
th is the nominal cross section for the reference mass point m0 used

to derive the PDF variations in bin k (see Section 2), and σp,k
th is the calculated

cross section corresponding to the PDF variation p for the reference mass
point. In Eq. 4, all calculated cross section are corrected for their numerical
uncertainties according to Eq. 3.

The quantities σm,k
th (~j, ~η) are then used to derive the dependence of the

calculated cross section on mk = mt(µk/2). For each choice of values for ~j
and ~η, the dependence σk

th(mk) is estimated by means of a quadratic interpo-
lation, as shown in Figure 1. This way the theoretical dependence on mk is
smoothed and the impact of the numerical uncertainties mitigated. Further-
more, the correlations between the different mass points introduced by the
PDF variations are fully taken into account in the interpolation procedure.
These correlations arise from the fact that a single mass point is used to
derive the dependence on the PDF variations.

Finally, the uncertainties related to the choice of µr and µf are estimated
by repeating the fit for different scale choices. The maximum variation ob-
served in each bin, which in all cases correspond to one of the combined
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variations of µr and µf , is conservatively taken as the scale uncertainty in
that bin. The correlations between the scale variations in the different bins
are kept track of, and an additional covariance matrix is derived.

4. Results

In Figure 2, the extracted mt(µk/2) are compared with the evolved value
of mt(mt) obtained in Ref. [18]. The value of mt(mt) was extracted from a
measurement of the inclusive tt cross section at

√
s = 13 TeV using NNLO

predictions and the same PDF set as in this work. The numerical values of
the mt(µk/2) are reported in Table 2. The experimental (exp) uncertainty,
corresponding to the total uncertainty in the measured differential cross sec-
tion, is obtained by fixing all the ~j and ~η parameters to their post-fit values.
The combination between PDF and numerical uncertainties is then obtained
by subtracting in quadrature the experimental component from the total un-
certainty, and is denoted with “PDF+num”. In this analysis the PDF and
numerical uncertainties are strongly correlated, therefore their individual im-
pacts are not estimated.

µk/2 [GeV] mt(µk/2) [GeV] exp [GeV] PDF+num [GeV] scale [GeV]
192 160.90 0.61 0.81 +0.13,−0.69
238 156.9 2.5 2.4 +1.4,−3.0
322 152.9 4.2 4.4 +4.4,−6.7
512 134.8 8.7 7.0 +9.0,−12.2

Table 2: Extracted values of mt(µk/2) and their uncertainties. The experimental (exp)
component is obtained by freezing all the nuisance parameters to their post-fit values,
while the combination between PDF and numerical uncertainties (PDF+num) is obtained
by subtracting in quadrature the experimental component from the total uncertainty. The
scale uncertainty refers to the variations of µr and µf .

Following the strategy of Ref. [8], the running is defined with respect
to the reference scale µref = µ2/2 = 238 GeV. The choice of the reference
scale is arbitrary, and does not affect the conclusions of the analysis. The
quantities rk = mt(µk/2)/mt(µ2/2) are derived and compared to the RGE
prediction for mt(µm)/mt(µ2/2). The advantage of this approach is the can-
cellation of the correlated components of the systematic uncertainties in the
mt(µk/2). Furthermore, the scale dependence of the QCD running is probed
independently of the value of mt. The RGE is solved at three loops in QCD
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Figure 2: Extracted mt(µk/2) (circles) compared to the value of mt(mt) (squared) ob-
tained from the inclusive tt production cross section [18]. The inner vertical bars represent
the combination of experimental, PDF, and numerical uncertainties, while the outer bars
also include the QCD scale uncertainties. The band represent the evolved total uncertainty
in mt(mt).

assuming 5 active flavours, consistently with the calculation of Ref. [12], us-
ing the CRunDec program [19]. Good agreement between the measured
points and the RGE prediction is observed, as shown in Figure 3. The re-
duced χ2 between the RGE and the measured rk is obtained in the Gaussian
approximation by combining the covariance matrix from the χ2 fit to that
corresponding to the scale variations. A reduced χ2 of 0.49 is obtained, which
corresponds to a p-value of 69%, reflecting the good agreement between the
RGE prediction and the observed running of mt.

5. Summary

The running of the top quark mass is studied at next-to-next-to-leading
order (NNLO) in quantum chromodynamics (QCD) for the first time. The
analysis makes use of NNLO QCD predictions in the MS scheme based on the
Matrix framework [13] and implemented in Ref. [12], and of a differential
measurement of the top quark-antiquark (tt) production cross section from
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Figure 3: Extracted running of the top quark mass (full markers) normalised to the
reference energy scale of 238 GeV (hollow marker), compared to the 3-loop solution of
the QCD RGE assuming 5 active flavours (line). The inner vertical bars represent the
combination of experimental, PDF, and numerical uncertainties, while the outer bars also
include the QCD scale uncertainties.

the CMS experiment at the CERN LHC [8]. The running is extracted as a
function of the invariant mass of the tt system by means of a χ2 fit of the
theoretical predictions to the measured cross section. The analysis benefits
from a significantly improved fit procedure, developed for the purpose of this
work, which consistently takes into account the numerical uncertainties in the
calculation and their correlations with the other parameters of the fit. The
extracted running is found to be in good agreement with the solution of the
QCD renormalisation group equations, within experimental and theoretical
uncertainties.
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