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VERTICAL SHAPE DETERMINATION OF A STRETCHED WIRE
FROM OSCILLATION MEASUREMENTS

L. Fleig, A. Herty, CERN, Geneva, Switzerland

Abstract
The Geodetic Metrology group at CERN uses stretched

wires as a reference for the position monitoring and
alignment of accelerator components. Until now, stretched
wires find in particular use as horizontal offset measure-
ment references, since their vertical projection is a line.
However, the wire positioning system is able to measure
not only the horizontal but also the vertical wire position.
In order to use this data as vertical reference of the
alignment system, a framework to describe the vertical wire
shape is required. This work re-conceptualises a previously
proposed optimization based algorithm, that calculates the
vertical wire shape via its fundamental frequency from
oscillation measurements. As a result, the determination
of the vertical shape with respect to a static parabola fitting
model was improved one order of magnitude compared to
the previously available oscillation-based algorithm. Now,
it is possible to determine the wire position with respect
to static wire measurements with a precision of the same
order of magnitude as the static parabolic fitting model for
wires of up to 140m length. Furthermore, the study of
wire oscillations revealed methods to localize restrictions
of the wire. With these means, an alternative evaluation
method to the static parabolic fitting model is provided
that adds information to already existing alignment systems
and offers new sensor configuration possibilities for future
alignment systems.

INTRODUCTION
In order to collide particle beams, machine components

of particle accelerators need to be positioned with high
accuracy. In the Large Hadron Collider (LHC), stretched
wires are used for the position monitoring and alignment
of the Inner Triplet cryo-assemblies. Currently each of
these cryo-assemblies is equipped with minimum two
wire positioning sensors (WPS) and a minimum of three
hydrostatic levelling sensors (HLS), to follow horizontal,
vertical and roll movements over time [1, 2]. The HLS are
using the principle of communicating vessels to determine
relative vertical positions of the cryostats. The WPS are
capturing the horizontal and the vertical position of a wire
that is stretched along the cryostats and use this information
as a position reference. Therefore, models of horizontal
and vertical wire shape are required. Horizontally, it is
assumed that the stretched wire is a straight line. Vertically,
its sag has to be taken into account.

In the last decades, several approaches have been
developed to determine a vertical wire model, that serves
as a vertical reference in the context of accelerator
alignment. Following Timoshenko and Young, the shape

of a stretched wire can be described in dependence
of the gravity g, its tension T and its linear mass q
by the catenary model [3]. Mainaud showed that the
catenary model can be approximated by a second order
polynomial with sufficient precision. This polynomial
depends besides of the parameters of the catenary model
also on the endpoints of the wire [4]. According to
Touzé, the linear mass of the wire is affected by the
absorption of humidity [5]. Therefore, models dependant
on this parameter suffer from large uncertainties. To
overcome this issue, Touzé proposes to substitute the
quotient of tension over linear mass by a term that includes
the fundamental frequency of the stretched wire. In
order to determine the fundamental frequency, Schott
Guilmault [6] derived a model to describe an oscillating
wire. Furthermore, he implemented an optimization-
based method to determine the fundamental frequency
by fitting the Fourier transformed oscillation model on
Fourier transformed vertical position measurements of the
oscillating wire. To verify his model, he compared the
resulting sag of the vertical wire shape to the sag of the
best fitting second order polynomial obtained from static
wire measurements.

Although the oscillation based approach of Touzé
and Schott Guilmault [5, 6] avoids parameters with
large uncertainties, the latter comparison revealed a non-
negotiable difference of the resulting vertical wire sags.
The objective of this work was the improvement of their
approach with respect to the vertical wire shape that is
determined from the best fitting second order polynomial
on static wire measurements.

For this purpose, their approach is modified in three
steps. First, the wire oscillations are conducted and
recorded horizontally. Second, the oscillation model
is directly fitted on the wire oscillation measurements.
Third, the dimension of the search space of the optimized
variables is decreased to one, by fitting only the
fundamental frequency.

Having an algorithm to determine the vertical shape
of a stretched wire as an alignment reference adds
information to existing measurement installations and
offers the possibility for new configurations with regard to
the quantity and ratio of HLS and WPS for future alignment
projects, e.g. High Luminosity LHC (HL-LHC) [7] or
Compact Linear Collider (CLIC) [8].

METHODS
Vertical Wire Models

For the description of the vertical shape of a stretched
wire, various models are available, that differ in terms
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of the required parameters and measurements. For the
method presented in this work, the fundamental frequency
dependent parabolic model derived by Mainaud [4] and
Touzé [5] is used. The static parabolic fitting model is
applied to validate the results of method presented in this
paper.

Fundamental Frequency Dependent Parabolic Model.
As illustrated in Fig. 1, Mainaud [4] proposes to describe
the vertical position y(x) of a stretched wire in the
longitudinal position x with the second order polynomial

y(x) =yO +
gq

2T
(x− xO)

2

+

(
h

l
− gql

2T

)
(x− xO) ,

(1)

that approximates the catenary model [3]. The coefficients
of the polynomial depend on the wire’s extremities, the
gravity g, the linear mass q and the tension T .

The sag f of the wire is defined to be the maximal
difference of the straight line d between the wire
extremities and the wire as shown in Fig. 1. Following
Mainaud, the sag is given by

f =
gql2

8T
. (2)

Inserting Eq. 2 in Eq. 1 leads to the second order
polynomial

y(x) = yO +
4f

l2
(x− xO)

2
+

h− 4f

l
(x− xO) . (3)

This model for the vertical wire position still depends via
the sag on the the linear mass q. According to Touzé [5], the
latter is affected by humidity, such that high uncertainties in
the model are caused. Therefore, he proposes the insertion
of the equation

ϕ =
1

2l

√
T

q
=

√
g

32f
, (4)

that relates the fundamental frequency ϕ to the quotient
of linear mass and tension and to the sag in Eq. 1. As
a result, the fundamental frequency dependent parabolic
model (FFDPM)

y(x) =yO +
4g

32l2ϕ2
(x− xO)

2

+
h− 4g

32ϕ2

l
(x− xO)

(5)

is obtained.

Static Parabolic Fitting Model. Instead of describing the
vertical shape of a wire with respect to parameters, vertical
position measurements of the wire itself can be used to
determine a second order polynomial.
Since a second order polynomial of one variable is
uniquely characterized by three coefficients a, b and c,
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Figure 1: Sketch of the vertical shape of a stretched wire.

three vertical position measurements are sufficient for
determining a parabolic vertical shape model of the wire.
If more measurements are available, suitable values for the
coefficients can be obtained by minimizing the least square
error between the polynomial

ymodel(x, a, b, c) = ax2 + bx+ c (6)

and a set of vertical position measurements
{ymeas(x1), . . . , ymeas(xn)} in the optimization problem

min
a,b,c∈R

n∑
i=1

∥ymodel(xi, a, b, c)− ymeas(xi)∥2 . (7)

The resulting best fitting parabolic model is referred to
as static parabolic fitting model (SPFM).

Wire Oscillation Model
Schott Guilmault [6], derived from the solution of the

wave equation the oscillation model

w(t, x) = H(t)
∑
n∈N

An(x)e
−αt cos(2πϕnt) (8)

that describes the position of an oscillation wire at time t in
the longitudinal position x. Supplementary, the Heavyside
function H is used for modelling the beginning of the
oscillation at t = 0 and the amortisation of the oscillation
over time is taken into account by including the factor e−αt.
The time-independent factor

An(x) := sin
(nπx

l

) 2

l

∫ l

0

w(0, x) sin
(nπx

l

)
dx (9)

is derived from the Fourier series and depends on the
initial position w(0, x) and the longitudinal distance l of
the extremities of the wire (see Fig. 1). The fundamental
frequency ϕ is a parameter of the oscillation model, thus
the notation wϕ(t, x) is used.

Experimental Setup

Oscillation Wire Measurement Setup. The measurement
setup consists of a carbon-PEEK wire, that is at one
extremity fixed and at the other extremity deflected 90
degrees by a ball bearing bedded wheel and stretched with
a weight of 15 kg that is attached to the wire.



In order to generate the wire oscillation, the wire is
deflected in one point by a fibre glass finger and released
after the wire reached a stable position. The wire position is
measured after the relaxation by a WPS, that is mounted in
the position interval

[
1
4 l,

1
2 l
]

along the wire. This interval
is based on the available access points to the wire and
chosen such that fast amortisations of the wire close to
its extremities and cancellations of waves in the middle
of the wire are avoided. The WPS data is read by an
oscilloscope with a 50 kHz sampling rate and saved with
12 bit resolution.
The position of the fibreglass finger along the wire is
chosen symmetrically to the position of the evaluated WPS
with respect to the middle of the wire. In contrast to
Schott Guilmault, who deflected the wire vertically and
estimated the initial position of the wire from the relative
vertical position of the wire after the deflection, the wire
is deflected horizontally, allowing to assume a piece-wise
affine initial position of the wire.

Metrological Measurement Setup. The metrological
measurement setup is shown schematically in Fig. 2. It
contains three carbon-PEEK wires of different length.
The distances between their extremities are 141.465m,
92.736m and 49.456m. They are numbered with
decreasing length. The shorter wires are stretched by
weights, while the longest wire is stretched by the wire
stretching device described by Herty et al. [9].

The longest wire is observed by 7 WPS, the intermediate
by 5 WPS and the shortest by 3 WPS. For all wires,
its corresponding WPS are mounted on metrological
plates, that are equally distributed along the wire. The
metrological plates are additionally equipped with HLS,
which measure their vertical position continuously. As a
consequence, the static vertical positions of the wires at
each WPS are also determinable.

The position of the metrological plates in the setup is
known from laser tracker measurements. Thereof, the
longitudinal distance l of the wire extremities and the
position of the fibreglass finger were sufficiently precisely
obtained by tape measurements to the closest measuring
plate. The vertical distance h of the wire extremities
was not measurable with the tape method. Hence, h was
determined by inserting the measured calm wire position
at the WPS close to the wire extremities in the fundamental
frequency dependent parabolic model Eq. 5 and resolving
the equation for h.

For the shortest wire, the fibreglass finger is installed
near WPS 3-2 that is also used for the recording of the
oscillations. For the intermediate wire, the fibreglass
finger is installed near WPS 2-2 respectively 2-4 and the
recordings of WPS 2-4 respectively 2-2 are evaluated.
Equivalently, the measurement setup is chosen with WPS
1-3 and 1-5 for the longest wire.

Fundamental Frequency and Sag Determination
Method

Given oscillation measurements ŵ(t, xWPS) at the
longitudinal position xWPS of a stretched wire, the
fundamental frequency ϕ is determined by solving the
following optimization problem

min
ϕ∈R

∥wϕ(t, xWPS)− ŵ(t, xWPS)∥2 . (10)

Inserting the resulting fundamental frequency in Eq. 5
and 4 yields the description of the vertical shape of the wire
via the fundamental frequency dependent parabolic model
and the sag of this model respectively.

The optimization problem in Eq. 10 is solved in
MATLAB using the the Levenberg-Marquardt algorithm
implementation called LMFnlsq2 as programmed by Balda
[10]. The procedure of determining the fundamental
frequency by solving the optimization problem from Eq. 10
is referred to as fundamental frequency determination
method. Obtaining the sag by subsequently inserting in
Eq. 4 is referred to as sag determination method.

Before solving the optimization problem, the amortiza-
tion parameter α and a bound N ∈ N to cut of the infinite
sum in Eq. 8 have to be set to enable the evaluation of the
oscillation model wϕ(t, xWPS). A suitable amortization
parameter α is found by fitting the function

f(t) := ŵ(t1, xWPS)e
−αt (11)

to the set of peaks {ŵ(t1, xWPS), . . . , ŵ(tn, xWPS)} of
the oscillation measurement. The cut off bound N is
chosen in advance by setting it to the number of observable
harmonics in the Fourier transform of the oscillation
measurements.

Fundamental Frequency Dependant Parabolic
Model Determination Method

Besides the fundamental frequency, the parabolic model
of Eq. 5 requires the gravity g and the parameters xO, yO, l
and h that describe the position of the wire extremities. In
the metrological measurement setup, only g, xO and l were
available by measurements. Therefore, the measured static
wire positions ŷ(xWPS1−1) and ŷ(xWPS1−7) of the first
and the last WPS were considered to be fixed such that the
equation system{

ŷ(xWPS1−1) = y(xWPS1−1)

ŷ(xWPS1−7) = y(xWPS1−7)

can be resolved for h and yO. Subsequently, the
fundamental frequency dependant parabolic model can be
evaluated.

Algorithmic Error and Uncertainties
The fundamental frequency and the sag determination

method were tested on simulated wire oscillations in order
to estimate the algorithmic error. The latter increases with
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Figure 2: Schematic illustration of the metrological measurement setup.

increasing wire length. For wires with a length of 140m the
algorithmic error was maximal of magnitude 1× 10−7 m.

For validating the results, not only the algorithmic error
but also the propagation of uncertainties of the parameters
to the sag has to be taken into account. The uncertainty
of the WPS reading is assumed to be of magnitude 1 ×
10−6 m. The uncertainty of the wire extremity distance
l and the WPS position xWPS along are assumed to be
of magnitude 1 × 10−3 m. The uncertainty of the initial
deflection of the wire is assumed to be of magnitude
1 × 10−5 m. Also the magnitude of the uncertainty of the
gravity g is assumed to be 1×10−5 ms−2. The uncertainty
propagation was calculated using the METAS UNC-library
in MATLAB [11]. The values were expected to be normal
distributed and the propagation was assumed linear. The
resulting uncertainty of the sag f and the vertical positions
of the fundamental frequency dependant parabolic model
is thus of magnitude 1× 10−6 m for wires of 140m length
and accordingly better for shorter wires.

RESULTS
Resulting Fundamental Frequencies and Sags

Table 1 shows the results of the sag determination
method applied to different measurement configurations
and repeated oscillation measurements of the wires in the
metrological measurement setup. For the shortest wire,
the obtained sags vary 6 µm at most, for the intermediate
wire they differ up to 29 µm and for the longest wire up to
32 µm. The algorithmic error and the uncertainty of the sag
have been estimated to not exceed the micrometer scale.
Consequently, a repeatability of the sag determination
within micrometer range was assumed but could not be
verified in the experiments. Thus, either uncertainties
were underestimated or the wire oscillation model ignores
further effects.

Comparison between FFDPM and SDFM
The wire positions derived with the fundamental

frequency dependant parabolic model (FFDPM) determ-

ination method are compared to static wire position
measurements (SDFM) and the static parabolic fitting
model on the latter.

The average sags of the resulting parabolic models are
compared in Table 2. For the shortest wire they differ the
most. Nevertheless, the difference stays less than 29 µm.
Schott Guilmault [6] analysed also the difference between
the sag derived from oscillation measurements and the
sag of the static parabolic fitting model. He obtained a
difference of 277 µm between the two sags. With our
adjustments of his approach this difference is decreased by
one order of magnitude.

The static vertical wire position measurements can
also directly be used as a validation reference for the
vertical wire shape that is determined by the two vertical
wire models. Table 3 shows the differences between
the predicted vertical wire position by the parabolic
models and the measured static vertical wire positions.
Note, that for the determination of the fundamental
frequency dependent parabolic model for the metrological
measurement setup the vertical position of the wire at
the outer WPS were considered to be given by the static
measurements. Therefore, the difference in these positions
equals zero. Over the range of all WPS positions, both
parabolic models differ in the order of 1 × 10−5 m from
the static vertical measurements. Being the best fitting
parabolic model by definition, the differences of the static
parabolic fitting model are smaller than the differences of
the fundamental frequency dependent parabolic model.

DETECTION OF WIRE RESTRICTIONS
Besides the determination of the vertical shape of a

stretched wire, the fundamental frequency determination
method is found to be useful for the detection of wire
restrictions. The stretched wires that are installed for
the position monitoring and alignment of the LHC Inner
Triplet cryo-assemblies are covered by a wire protection
system. However, they might accidentally touch an object
in their proximity or even get blocked at one point.



Table 1: Results of the fundamental frequency and the
sag determination method applied to repeated oscillation
measurements and different fibreglass finger positions
(xfinger) and WPS positions (xWPS) for the stretched wires
in the metrological measurement setup.

wire xWPS xfinger ϕ [Hz] f [m]

3 3-2 3-2

7.88472 0.004929
7.88633 0.004927
7.88713 0.004926
7.88633 0.004927
7.88944 0.004923
7.88883 0.004924

2

2-2 2-4
4.16624 0.017654
4.16683 0.017649
4.16660 0.017651

2-4 2-2
4.16365 0.017676
4.16342 0.017678
4.16318 0.017680

1

1-3 1-5

2.77252 0.039864
2.77231 0.039870
2.77239 0.039868
2.77263 0.039861
2.77260 0.039862
2.77266 0.039860
2.77246 0.039866
2.77242 0.039867

1-5 1-3

2.77284 0.039855
2.77343 0.039838
2.77246 0.039866
2.77298 0.039851
2.77267 0.039860
2.77274 0.039858

Both scenarios influence the wire shape and deteriorate
the reference line. Consequently, the touching object
needs to be localized and removed. Due to the wire
protection system that hides the wire, the localization can
be time consuming. As an alternative to the manual
localization of wire restrictions, approaches that include
the determination of the fundamental frequency were
studied for two scenarios.

Localization of Blocking Points
Given that the wire is totally blocked in one point,

the fundamental frequency determination method can still
be carried out. By inserting the resulting fundamental
frequency in

l =
1

2ϕ

√
T

q
(12)

the length of the remaining oscillating section of the wire
can be estimated and thus the blocking point be localized.

In the metrological measurement setup, the intermediate
wire was intentionally blocked such that the remaining
oscillating part had a length of 68.696m. The average
resulting fundamental frequency derived from seven
oscillation measurements was inserted in Eq. 12, leading
to the result l = 68.602m. Thus, the blocked point is
localized with the accuracy of centimetres.

Localization of Wire Touching Objects
Given that the wire touches an object at one point

but the wire is not completely blocked at this point. In
this case, the effect is used that the wire oscillates also
when it is deflected by the fibreglass finger and not only
when it is released. During the deflection, the fibreglass
finger blocks the wire and consequently separates it in two
independently oscillating sections. The local restriction
will be only in one of these sections and affects the
determination of the fundamental frequency in this section.
Nonetheless, two fundamental frequencies ϕ1 and ϕ2 of
the wire sections can be calculated with the fundamental
frequency determination method from the wire oscillations
after the deflection. Subsequently, the product ϕ1 · l1 and
ϕ2 · l2 can be computed. If the wire is untouched, the
following equation holds

ϕ · l = 1

2

√
T

q
. (13)

Therefore, it can be checked if the products ϕ1·l1 and ϕ2·
l2 equal the constant 1

2

√
T
q to determine the wire section

that contains the touching object.
Repeating this procedure systematically by putting the

fibreglass finger in different positions along the wire
decreases the length of the section that contains the
touching object.

DISCUSSION
The algorithm of Schott Guilmault to determine the

fundamental frequency and thereof the vertical shape of
a stretched wire has been revised. Comparisons of the
resulting wire shape to static wire measurements and
the best fitting parabolic model on these measurements
have shown that the approach of Schott Guilmault has
been improved by one order of magnitude. However, it
remains impossible, due to the lack of repeatability of the
determination of the fundamental frequency, to obtain the
vertical wire shape with micrometric precision.

Nevertheless, the resulting vertical wire shape did not
exceed a difference of 24 µm compared to static wire
measurements for wires of up to 140m length. Thus,
the fundamental frequency determination method provides
an alternative evaluation method to the static parabolic
fitting method to obtain a vertical reference. The latter
adds information to existing alignment setups and offers
new configuration possibilities, especially regarding the
number of required HLS in future projects. Furthermore,



Table 2: Comparison of the average wire sag of the fundamental frequency dependent
parabolic model and the wire sag of the static parabola fitting model for the wires in the
metrological measurement setup.

wire number 1 2 3

average sag according to fundamental frequency 39.860mm 17.665mm 4.926mm
sag of static parabolic fitting model 39.842mm 17.667mm 4.955mm
difference 18 µm 2 µm 29 µm

Table 3: Difference between the vertical wire position determined by the fundamental
frequency dependent parabolic model (FFDPM) and the static parabolic fitting model
(SPFM) and the measured static wire positions in the position of the WPS for the
longest wire in the metrological measurement setup.

model WPS 1-1 WPS 1-2 WPS 1-3 WPS 1-4 WPS 1-6 WPS 1-7

FFDPM 0 µm 3 µm 20 µm 24 µm 5 µm 0 µm
SPFM 1 µm 6 µm 4 µm 7 µm 12 µm 6 µm

the fundamental frequency is a helpful indicator for the
localization of wire restrictions.

Future research could focus on the optimization of the
oscillation measurement setup in order to improve the
repeatability. Besides, further investigations in the vertical
wire model, that include non-constant linear masses and
different directions of gravity along the wire, could be
conducted to decrease the model error.
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