
C
ER

N
-B

E-
20

23
-0

15
31

/1
0/

20
22

SURVEYPAD, A COMMON INTERFACE TO GEODE & DATA
PROCESSING TOOLS

P. Lewandowski∗, R. Ducceschi, F. Klumb, CERN, Geneva, Switzerland

Abstract
The metrology and alignment of components installed in

accelerators is a very complicated process requiring many
calculations to ensure the best performance of the CERN
complex. Throughout the years, surveyors at CERN have
been relying on several pieces of different offline processing
software that were meant to function without an internet con-
nection in the tunnels. Most of the programs were operating
as clunky command line tools. They required text input files,
formatted in a specialized and unique way, and generated
non-standardized text file outputs. At the same time, sur-
veyors had to use a survey database, and its web interface
named Geode, as the source of theoretical positions and all
related measurements and computations. Since a need to
simplify this workflow arose, SurveyPad was created.

SurveyPad is a C++ plugin-based software meant to in-
tegrate and govern multiple pieces of processing software.
It requires a plugin to be created for each one of them. The
plugins provide communication with their corresponding
software and come with a graphical user interface that can
be displayed within SurveyPad providing easy manipulation
of the project files. The plugins share some more advanced
features. These include elaborate text editing and one token
look-ahead, left-to-right grammars (LALR(1)) for a tailor-
made parsing of the contents of software files. Lastly, al-
though the pieces of survey software cannot communicate
with one another, the plugins can. They cooperate and share
some functionalities via SurveyPad.

Current feedback from users indicates that despite ongo-
ing developments, SurveyPad has already proved to be a
functional and convenient tool used by surveyors on a daily
basis.

INTRODUCTION
CERN complex consists of tens of thousands of elements

that need to be measured and aligned. This results in a great
quantity of data that has to be stored and analyzed. [1] The
measurement themselves are obtained with high-accuracy
survey instruments and the output from acquisition software
is stored in the survey database that can be accessed using a
browser via its web interface named Geode [2]. For further
processing and analysis of the data, several pieces of offline
software are used. Each of them requires data from Geode
and some of them need to upload their results back to the
database. This workflow is presented in Fig. 1.

For historical reasons, each piece of processing software
has different creators, different use cases, and therefore, dif-
ferent interface and data formats. Each of them uses a dif-
ferent format for input and output files, presents points in
∗ przemyslaw.lewandowski@cern.ch

different ways, and might use different (or several) reference
systems. There is no possibility to communicate between
them and due to that surveyors had to manually convert the
files to comply with their standards. Since most of them
have no user interface, users had to manually modify the
files with basic text editors and provide them as arguments
to the executable. However, these pieces of software are
crucial to surveyors and cannot be easily replaced without a
large workload.

OBJECTIVES
SurveyPad is meant to greatly simplify the previous work-

flow and is meant to call the processing pieces of software
in a user-friendly way. Its main principles are:

• One simple single interface to manage all pieces of
survey software.

• Facilitation of editing any survey project files.

• Interoperability between any survey software and better,
straightforward communication with the database.

Having fulfilled these objectives, the manual repeatable
work of handling and converting the files by surveyors would
disappear. Moreover, any additional project file editing fea-
tures will ease the daily work and might help in discovering
errors in computations. Lastly, by keeping the interface
simple and expandable using plugins, new advanced fea-
tures could be easily introduced without modifications to
the common interface.

ARCHITECTURE
In order to achieve it, a plugin-based architecture was se-

lected. For this application, it means that the main software
(SurveyPad) by itself will not provide any survey-specific
functionalities and these will be provided by respective sur-
vey software plugins. The main reason behind it is to decou-
ple, i.e. separate, all different pieces of processing software.
Since none of them is directly relying on any other, this ap-
proach avoids unnecessary dependencies and allows keeping
the development contained and specialized. This is espe-
cially important since any user can use different plugins and
is not required to install all of them to ensure the proper
operation of their software.

Plugins
The plugins themselves are specific to a single piece of

processing survey software, which is distributed in the form
of an executable. Plugins by definition are fully optional,
i.e. they are not required for an application to run, and are
meant to increase the set of functionalities provided by the

Figure 1: Initial data processing workflow.

software. [3] In SurveyPad they serve as bridges to their
respective processing software and they consist of the three
main components:

• Graphical interface - user interface meant to modify
the project files. It can be in any form: text, table, or
custom-made.

• Launcher interface - defines how to launch the applica-
tion.

• Configuration interface - exposes configurable settings
to SurveyPad.

Every plugin needs to implement the SPluginInterface
that contains all these interfaces. This design is presented
in Fig 2. The plugin interface is contained inside of SUrvey
Graphical Library (SUGL in short). This library is shared be-
tween plugins and SurveyPad, and therefore, it also contains
all the plugin-shared functionalities.

Figure 2: Plugin interface.

In terms of implementation, plugins can differ a lot. Some
of them might provide just a text editor displaying the project

files, some others table editors, and some others both, or a
custom GUI form. There is no restriction in terms of graph-
ical representation. The same naturally applies to settings
or launching the application since it may be very specific
and unique for each piece of software. This freedom is very
important and allows adapting the plugins to the needs of a
survey application and its project files.

As for the programming language, C++ was chosen for
implementation. This is due to the fact that most of the
survey processing software is also C++ based. Moreover,
along with C++ Qt can be easily used. It is a cross-platform
software for creating graphical applications, and although
Windows is the main operating system used by surveyors,
SurveyPad is still meant to run both on Windows and on
Linux operating systems. The last external dependency is
QScintilla, which is a port to Qt of the Scintilla programmers
editor widget [4] [5]. Scintilla is a free, open-source library
that provides a text editing component that is extremely
important for the implementation of reliable and advanced
text editors required for all pieces of survey software.

SurveyPad
With a plugin-based approach, the software can be logi-

cally split into core and its extensions. Having a stable core
the application can be extended on demand with plugins
and the core itself could be delivered with the minimum
functionalities. Hence, the application is fully customizable
and can be adapted to the user’s needs. [3]

By applying this concept, SurveyPad became a relatively
simple application that is meant to load and govern the plu-
gins and their projects during its operation. By itself it will
provide the following functionalities:

• Plugin loading and project management.

• Handling general settings and the ones specific to plug-
ins.

• Displaying the graphical interface provided by a plugin.

• Logs handling and display.

Figure 3: Simplified data processing workflow with SurveyPad.

The rest is meant to be provided by the plugins themselves.
Since the plugins extend the possibilities of SurveyPad and
some of them can directly interact with the database, the
current workflow is simplified and is presented in Fig 3.

MAIN FEATURES
SurveyPad provides many improvements to the workflow

and provides some features that were tailor-made for the
needs of surveyors.

User interface
In Fig. 4 the current interface is presented, with a Project

Manager and a Help dock on the left, a Log viewer at the
bottom, and a dedicated editor for a plugin in the center. The
most distinguishing features of this interface are:

• A Project Manager that has typical file management
functionalities of creating new files, opening, saving,
and closing them. It shows the projects in a clear tree
structure to ease the navigation. It also distinguishes
between plugins that can have multiple projects and the
ones that should be single instance only.

• A highly customizable graphical interface that allows
changing positions of all docks and toolbars that will
be kept and restored properly when reopened. Toolbars
contain often accessible functionalities whereas a full
list of them is available in the submenus on top.

• A Help dock displaying currently relevant information.
What is displayed there is plugin specific, but most of
the time, it consists of three elements. The first one
is the Help tab with text information explaining what
is expected of the user. The second is the Marker tab
that allows to mark positions in a text editor to ease
the navigation and also displays the positions of errors.
Lastly, there is a File Structure tab displaying a schema
of a currently processed file as a nested hierarchy.

• A Logs viewer that keeps track of all that happened
during runtime. It supports log filtering based on the
severity level.

• All plugins expose their expected file extension and
SurveyPad automatically knows which plugin to pass
the file to and all these extensions are associated with
SurveyPad on Windows.

Text editing
Besides the typical text editing features along with mark-

ers and help dock mentioned in User Interface, text editors
also provide advanced text styling. This styling is achieved
with QScintilla and the logic is realized using lexers or, in
more complicated cases, parsers along with some hand-made
grammar. The basic principle of operation is quite simple:
find tokens (i.e. words), try to identify them, and based on
their type or positioning, style them. However, the contents
of the input and especially output files of survey software
are not very systematized and easily analysable since such a
use case was never foreseen. Moreover, lexers and parsers
cannot be easily duplicated between the plugins since the
formatting of these files is entirely different and nonstandard.

For simple cases, a hand-written lexer with all the relevant
logic can be created that will handle the styling. However,
for more complicated cases a parser is required. To obtain
it, QLALR from Qt is used. QLALR is a parser generator
that, based on a file with grammar, produces C++ code that
can match input to that grammar. The accepted grammar
needs to be one token look-ahead, left-to-right grammar
(LALR(1)). This is a type of deterministic context-free
grammar, also called Chomsky Type 2. Such grammar al-
lows a text to be matched to a sequence of replacement rules,
which can match to other rules, but finally always resolves
to terminal symbols [6]. Terminal symbols are the ones that
can be seen directly inside of the text files, whereas non-
terminal symbols, also called rules, are the ones that define
relations between them.

Figure 4: SurveyPad v0.6.1.

Number : ’0 ’ | ’1 ’ | ’2 ’ | ’3 ’ | ’4 ’
| ’5 ’ | ’6 ’ | ’7 ’ | ’8 ’ | ’ 9 ’ ;

L e t t e r : ’A’ | ’B’ | ’C’ | ’D’ | ’E ’
| ’F ’ | ’G’ | ’H’ | ’ I ’ | ’ J ’
| ’K’ | ’L ’ | ’M’ | ’N’ | ’O’
| ’P ’ | ’Q’ | ’R’ | ’S ’ | ’T ’
| ’U’ | ’V’ | ’W’ | ’X’ | ’Y’
| ’Z ’ ;

EOL: ’ \ n ’ ;
L e t t e r s : L e t t e r

| L e t t e r s L e t t e r ;
Name : L e t t e r s ;
P o i n t : Name Number Number Number EOL;
P o i n t s : P o i n t

| P o i n t s P o i n t ;

Figure 5: Simplified example grammar defining a list of
points separated by an end-of-line character.

As seen in Fig. 5, the first three rules consist of terminal
symbols only, whereas the rest uses non-terminal rules to de-
fine the relations. Grammars of this type can even match re-
cursive "nesting", however, they act locally, i.e. they cannot
handle problems regarding the entire document. Nonethe-
less, using QLALR to generate our own parser, one can still
supply user-written code to introduce superficial context-
sensitivity, which is extensively used in some plugins. The
limited context-sensitivity includes storing some names en-
countered in some grammar rules and accessing them in
further rules to enable some specialized behavior. For in-

stance, this could be storing a point name when it is defined
and counting its dedicated observations to check if their
number is sufficient for a given point type.

With both lexers and parsers, a number of things can be
achieved and personalized for given words or lines:

• Colour styling of the text. Different styles for point
names, coordinates, sigmas, etc.

• Showing tooltips with additional information when
hovering over text.

• Input and output data validation to discover some
irregularities that can be marked with both markers
or colour.

• Linking some words together, even between different
files. That means that by clicking on some word, the
user can be directed to other parts of the text or file.
As an example, by clicking on the point name, the user
will always be directed to its declaration.

This enables dynamic text editing, with error detec-
tion while working on the file, and enhanced clarity when
analysing the results.

Software Interactions
Since all the processing pieces of software are dealing

with different input and output text formats, their interactions
were limited in the past. However, using SurveyPad some
plugin-plugin and web interactions are feasible.

Figure 6: Copy content serialization from LGC plugin to Chaba plugin, with multiple serialization representations on the
right.

Plugins First of all, copy contents can be serialized if
needed. This allows serializing some data structures, for
example, point definitions, in one software (plugin), and
pasting this content into some other one automatically with
a different format and the same data, without the user’s effort.
An example is presented in Fig. 6 where the contents from
one plugin are serialized on copy to multiple different for-
mats and on paste action, the most fitting format is selected
for deserialization or used as is.

Moreover, plugins can share some functionalities with
one another using Entry Points [7]. These are some ex-
posed and agreed-on names that provide specific behavior or
classes without sharing any source code between them. This
is realized using Qt’s Meta-Object System [8]. Each plugin
registers its own entry points with some name when loaded
and any other plugin can search for any exposed functionali-
ties just by knowing the name of the functionality it needs.
The extent of shared functionalities is not limited in any way
and currently, it includes modifying some paths for other
plugins, providing some methods to go to specific places in
editors, or exposing its own serialized to others.

Web As communication with the survey database and
its interface named Geode is of great importance, a dedi-
cated Geode plugin was created. Instead of a typical editor,
this plugin features its own Chromium based browser. The
objective of this plugin is not only to render Geode’s contents
but also to cooperate with other survey software. Currently,
whenever a file is downloaded, it is directly opened with the
right plugin, some additional project files may be directly
created on download, and using entry-points, output data
can be easier transferred back to the database.

Customization
SurveyPad is highly customizable and can be adapted

to users’ needs. It provides preferences editable by users
that define global tweaks to the entire user interface and all
plugins. These include the option to auto-save the projects,
editors’ visibility, logs, text editor styles, and many others.

Moreover, all the plugins have their own dedicated settings
that greatly influence their behavior. All these settings can
be modified directly via SurveyPad when plugins are loaded.

FUTURE PROSPECTS
Besides already implemented functionalities, SurveyPad

and its plugins are still upgraded and expanded with addi-
tional features.

In order to improve the plugin interoperability, the work
to serialize/structurize the data coming from some survey
software is undergoing. That means that besides the output
text files some data could be structured and packed to a
common format, for example JSON, that can be interpreted
without any tailor-made parsers. This would simplify the
development of some features and the analysis of the entire
calculations, with less effort spent on developing more and
more complex grammars.

Having easily accessible and well-formatted data, plugins
meant for 2D/3D data visualization could be created. Since
Qt provides such graphical modules, no additional external
dependency would be required. This could be an additional
tool for inspecting networks of points and for detecting po-
tential errors.

In terms of web capabilities, ongoing developments test
the possibility to communicate with Geode directly using
REST API. This will open new possibilities that will not
have to rely only on Geode’s web interface. Moreover, this
would allow progressive migration of some of the existing
processing tools already implemented in Geode that should
not be there per database design.

CONCLUSION
To solve the issue of simplifying the surveyor’s data anal-

ysis workflow SurveyPad was created. It was designed with
maintainability, interoperability, and ease of expansion in
mind. This was achieved with its plugin-based architec-
ture. Thanks to that, SurveyPad can govern all of the survey
pieces of processing software via plugins with the standard-
ized interface but without any restrictions in terms of their
capabilities.

Moreover, a number of specialized features, not often
present in other software, were created to further enhance
the user experience. This covers advanced text editing, com-
munication between plugins, interoperability with web inter-
face Geode, and many other improvements. With the current

architecture new integration possibilities appeared that will
be investigated.

Overall, current positive feedback from users indicates
that SurveyPad has already demonstrated that it is a func-
tional and convenient tool used by surveyors on a daily basis.
Despite its ongoing developments it has proven to be a stable
application with evolving features and promising prospects
in the future.

REFERENCES
[1] CERN. LHC Guide. https://cds.cern.ch/record/

2255762.
[2] A.-V. Naegely, I. Iliev, and A. Bensahla Talet. Geode: a new

database with apex. IWAA’16, ESRF, Grenoble, France, Octo-
ber 2016.

[3] Y.L. Theng and H.B.L. Duh. Ubiquitous Computing: De-
sign, Implementation and Usability: Design, Implementation

and Usability. Premier reference source. Information Science
Reference, 2008.

[4] Riverbank Computing. Qscintilla, September 2022. https:
//riverbankcomputing.com/software/qscintilla.

[5] Scintilla. Scintilla and scite, September 2022. https://www.
scintilla.org/.

[6] Noam Chomsky. Three models for the description of language.
IRE Transactions on information theory, 2(3):113–124, 1956.

[7] Remi Ducceschi. Entry points python style for qt plugins,
September 2022. https://github.com/remileduc/qt_
plugin_entrypoint.

[8] The Qt Company Ltd. The meta-object system, September
2022. https://doc.qt.io/qt-6/metaobjects.html.

https://cds.cern.ch/record/2255762
https://cds.cern.ch/record/2255762
https://riverbankcomputing.com/software/qscintilla
https://riverbankcomputing.com/software/qscintilla
https://www.scintilla.org/
https://www.scintilla.org/
https://github.com/remileduc/qt_plugin_entrypoint
https://github.com/remileduc/qt_plugin_entrypoint
https://doc.qt.io/qt-6/metaobjects.html

	INTRODUCTION
	OBJECTIVES
	ARCHITECTURE
	Plugins
	SurveyPad

	MAIN FEATURES
	User interface
	Text editing
	Software Interactions
	Plugins
	Web

	Customization

	FUTURE PROSPECTS
	CONCLUSION

