
C
ER

N
-B

E-
20

23
-0

02
31

/1
0/

20
22

FIRST EXPERIENCE ON PYTHON DEVELOPMENT FOR SURVEY
SOFTWARE, ADVANTAGES & DRAWBACKS

SANGLIER Pierre-Adrien, LEWANDOWSKI Przemyslaw, KLUMB Francis, CERN, Geneva, Switzerland

Abstract
During long shutdown and maintenance periods at CERN,

the surveying teams intensively use in-house data processing
software, developed in the last decades and mostly written
in C++ language.

The accurate measurement of the deviations of hundreds
of successive accelerator components with respect to their
theoretical positions, in either vertical or radial direction,
is part of survey activities. The final smoothing operations
consist of mechanically re-positioning some of those com-
ponents to ensure smooth transitions between elements and
to limit optical corrections of the particle beams orbits.
RABOT is the survey software currently used to process
the measured deviations and provide such smoothed data.
Initially designed in Fortran language in the ’90s, it had
been fully rewritten in C++ ten years later. However, the
unnecessary complexity of its code, as well as missing doc-
umentation made it difficult to maintain. Based on reverse-
engineering methods, it was recently decided to rewrite this
essential software using Python language.

The usage of Python as a software development language
is a questionable choice from a performance point of view.
Indeed, the compiled nature of the C++ language makes
it incomparably faster than equivalent algorithms coded in
scripting languages such as Python. Nonetheless, there are
multiple benefits of choosing Python for simple software
development. Amongst them: a more comprehensive syn-
tax and automatized implementation such as memory man-
agement and dynamic typing. It can drastically reduce the
development time and enhances the legibility for non-expert
programmers. As a direct consequence, available resources
and development efforts can be oriented towards algorithmic
optimization and improvements. Moreover, the development
relies on robust and efficient numerical libraries such as
NumPy that offer a wide variety of tuneable methods.

The first in-house survey software implemented fully in
Python was achieved and performances improved compared
to its older C++ implementation.

CONTEXT
The smoothing of an accelerator is the final alignment

operation refining the relative positions of its components to
avoid substantial displacements between neighboring mag-
nets. Out-of-tolerance positioning could indeed significantly
disturb the particle beam.

The CERN surveying teams first measure and compute
radial and vertical deviations of the accelerator components
with respect to their theoretical positions provided by the
beam physicists. Subsequently, they need specific process-
ing software to estimate an ideal smoothed trajectory of

the beam through the accelerator from these measured de-
viations. Regardless of the nominal accelerator geometry
(straight line as for beam injecting parts, circular or other
shapes), only measured deviations are taken into account in
the smoothing process.

The resulting data of this procedure are called "smoothed
offsets". They are the radial and vertical differences between
measured positions and the estimated smoothed curve repre-
senting the trajectory of the beam. Smoothed offsets larger
than a fixed tolerance correspond to components to be physi-
cally displaced and realigned by surveying teams in the field.
This process can be iterative and lead to several smoothing
operations while repeating measurements of the successive
element positions (see Fig. 1).

A brief history
The first processing software that the surveyors used to

compute such smoothed curves and related offsets has been
released during the prime time of the LEP accelerator in the
1990s. This program was named PLANE and was written
in FORTRAN language.

PLANE relied on least square piece-wise adjustment tech-
nique adapted from digital filtering methods. As results for
the users, it highlighted the accelerator components to be
moved in field to correct the beam trajectory, according to
calculated smoothed offsets.

PLANE was a command-line tool requiring additional
files generated by various other software that progressively
became obsolete. The data processing workflow was quite
complex with many different data sources and file formats.
To properly maintain and keep developments up-to-date, the
software was migrated to a more modern language. PLANE
became RABOT around 2010 and was ported to C++. Tak-
ing into account new user needs, this modernized version
also included new features such as visualization tools and
calculation options such as handling weighted input values.

Its documentation mainly describes the software func-
tionalities (input and output values and data formats) which
represent obviously the most crucial information for users.
However from a developer point of view, the documenta-
tion is lacking information. Important employee turnover in
recent years has also significantly impeded the knowledge
transfer between successive contributors of this project.

Software and related algorithms became difficult to main-
tain due to the lack of information about the code and internal
logic. The software was clearly non-perennial for long-term
usage.

The recent need to improve very sensitive parts of the
software algorithms precipitated the decision to shorten its
life cycle and to find alternative development solutions; a

Figure 1: Simplified magnet alignment workflow done by the survey team.

new data smoothing software prototype based on Python
language was developed and evaluated in this context.

Algorithm description
From the input data, i.e. a set of measured deviations of

accelerator components, the algorithm generates a smoothed
curve and provides in the end a list of accelerator components
to be mechanically moved in the field (see Fig. 2). This
process is always performed separately, either on radial or
on vertical deviations. It also treats individual points from
measured components, and not the components directly.

The main algorithm is based on successive polynomial
regressions, that are applied locally in small consecutive
and overlapping segments of the accelerator. Segments are
called smoothing windows, that consist of a fixed number
of neighboring points measured on the accelerator compo-
nents. In practice, multiple polynomial regressions with
different degrees are applied in each local window, and the
"best-fitting" one is selected to calculate the smoothed offset
corresponding to the middle point of the window.

The smoothing window slides over a whole accelerator,
from one component to the next one, generating the op-
timized trajectory of the beam from local polynomial re-
gressions. This general principle still remains the basis of
PLANE’s successors.

The data smoothing process can be described by the fol-
lowing steps or routines:

1. For a given dataset, containing the measured positions
of the accelerator components as radial or vertical de-
viations, a first routine splits the dataset into smaller
parts called smoothing windows. The width of these
windows is currently determined by a fixed number of
measured consecutive points.

2. In each window, the next routine applies polynomial
regressions of orders varying from 1 to 5 (see Fig. 4).

3. The following routine compares in each window the
polynomial regressions and selects the one with the
minimal root mean square error as the “best-fitting”

function. It subsequently calculates and saves the offset
between the measured position of the window’s mid-
dle point and its theoretical estimated position on the
"best-fitting" curve. This difference is the value of the
smoothed offset corresponding to the window’s middle
point.

4. The last routine selects the point with the highest ab-
solute smoothed offset value and moves it to the corre-
sponding curve position if this value is above a certain
tolerance.

The combination of all the previous routines represents
the main loop of the algorithm. The loop repeats until all
estimated smoothed offsets are below the given tolerance.

1: Split 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 into equal smaller parts called 𝑊𝑖𝑛𝑑𝑜𝑤𝑠

2: while Points should be moved do
3: for each 𝑊𝑖𝑛𝑑𝑜𝑤 do
4: Apply multiple polynomial regressions
5: Select the "best-fitting" polynomial function
6: Save the theoretical middle point position on the

best-fitting curve
7: if |theoretical pos. - measured pos.| > 𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒

then
8: Store in memory the point and its position
9: end if

10: end for
11: Within the stored points, move the point with the

biggest absolute difference to its theoretical position
12: end while

Figure 3: Simplified pseudocode of Rabot C++ algorithm

Figure 2: Principle of Rabot calculation algorithm. Socket points are the fiducial points measured on the components.

MAIN OBJECTIVES
Ensuring better maintenance

RABOT is a 30’000 lines of C++ code software that en-
sures a pretty good separation between visualization meth-
ods (data representation) and calculation core. The GUI
part has been continuously updated and improved following
user needs. This important part of code is based on Qt [1],
a popular and well documented GUI framework. On the
other side, the calculation core of the code uses no external
proven libraries, even for common tasks such as matrix op-
erations or polynomial regression. Moreover, this crucial
part of the code was not explicitly documented, nor written
using for example self describing variable names. Algo-
rithms have subsequently never been modified nor upgraded
in the last decade. The software documentation does not pro-
vide helpful information about its code design or theoretical
principles.

Implementing new features
As previously explained, the smoothing process relies on

a sliding window defined by a fixed number of neighboring
components. In practice, its length can vary in terms of
metric distances. In case of non-uniform spatial distribution
of measured components along the accelerator, the metric
length variations can have unexpected effects on the results
and lead to inconsistencies.

For example in dense areas comprising numerous contigu-
ous measured components the results will be precise enough
and the successive regressions are continuous between them.
However, in parts of the dataset with fewer elements, the
smoothing leads to discontinuous regressions.

Both calculation options, the "metric window" defined
by a distance expressed in meters and the "unit window"
defined by a fixed number of components, are illustrated in
Fig. 5. The top graph shows two unit windows in a non-
homogeneous area. Note that the unit window defined in the
less dense region is larger than the one defined in regions

with higher density. This anomaly can happen multiple times
during the loop, resulting in a loss of accuracy. The second
graph shows two windows defined by a metric distance. The
generated windows cover the same accelerator section in
terms of spatial distances. In some configurations, metric
window appears to be a more appropriate and realistic model
than unit window.

METHODOLOGY
Our main objective for RABOT was to make its algorithm

maintainable again. This has been achieved by deeper un-
derstanding of its calculation core and by creating proper
documentation.

Choice of Python
We initiated a reverse-engineering process and duplicated

the software in Python language. Indeed, the high-level syn-
tax of this programming language makes algorithms easier
and faster to write and read for further improvement.

Using Python offers many advantages over low-level lan-
guages such as C and C++. Low-level languages will still
perform better for hardware interfaces, embedded devices or
in contexts where performance and accurate resource man-
agement are highly required. However, this is not the priority
for RABOT where automated high level mechanisms such as
memory management with garbage collector can be applied
without any inconvenience.

Common numerical operations can be profitably managed
by mathematical libraries such as NumPy [2]. NumPy is an
open-source library for Python, comparable to MATLAB [3]
since both are interpreted at execution time. Graphical in-
terfaces can be developed using PyQt, which is a binding of
C++ Qt library. It thus ensures good performance.

Simplicity in programming is the key. “Simple is bet-
ter than complex” is the third Zen principle [4], stated by
Python’s creator. In other words, a simple design always
takes less time to finish than a complex one. This idea has

Figure 4: Example of regressions at different degrees for the same window. Circled points weight values are arbitrarily set
to 0, they do not contribute to the different regressions but impact the estimated curve.

guided the portage of the existing C++ code to a newer one
in Python.

Reverse engineering and porting
A reverse-engineering process has been applied to all

methods used by the calculation core. An in-depth look at
those routines, combined to the analysis of previous versions
of the program, helped understanding most of them. At this
first stage of the project, routines were strictly and rigorously
translated into Python language and tested one by one.

Using Microsoft Visual Studio [5] tools, such as step-by-
step debugging and live-access tools for objects and variables
content, a wide range of data has been collected while exe-
cuting the C++ version of RABOT. Deeper tests have been
made on those ported routines using the collected data. Nu-
merical results from a version to another were systematically
compared to ensure identical values.

Obviously, since C++ is a compiled language and Python
is an interpreted language, translated routines were at first
slower than their original ones (see Table 2). Nevertheless,
thanks to clearer and readable code, some optimizations
could be implemented to simplify the procedures and speed-
up calculations. These enhancements will be explained in
the next paragraph.

Comparative tests also showed that some original routines
relied on numerical approximations. Although the differ-
ences of results were not significant for the day-to-day survey
and alignment work, considerable time was spent analysing
them. To ensure the highest possible precision, ported code

has been slightly modified to avoid such approximations, as
presented in the next section.

Furthermore, the initial software relied on its own imple-
mentation of matrix operations. To provide more standard-
ized behavior and not reinvent the wheel, NumPy library
methods were used for common mathematical operations.
Results between previous C++ and equivalent Python rou-
tines turned out to be strictly identical. Computation time
was shorter using NumPy instead of the Python ported im-
plementation of matrix operations. This can be explained
by the multiple optimizations available in this widely used
numerical libraries.

Once RABOT’s code has been ported from C++ to Python
and results were strictly compared and analyzed, important
efforts were directed towards better documenting algorithms
and improvements.

This initial Python software version was not intended to
be released in production mode. It served as a basis for fur-
ther more detailed discussions with users and final decision
makers. It was at the same time a proof of concept to decide
whether Python could be a pragmatic alternative to some of
our developments done or foreseen in C++ environments.
As the initial goal was to fully analyze and deeply under-
stand algorithmic parts, this prototype did not provide any
advanced GUI feature. A complete and appropriate graphi-
cal interface adapted to user needs has been implemented at
a further step of the project.

Figure 5: Example of the difference between unit defined windows (top graph) and metric defined windows (bottom graph).

PERFORMANCE OPTIMIZATIONS

The Python software prototype called PyRabot has been
enhanced at different levels to become a robust application
expected to replace RABOT for future survey activities. It
includes new calculations options that have been long re-
quested by the users.

Algorithm enhancement
Among the changes in the algorithms migrated from C++

to Python language, one major modification concerns the
management of the weighted input data.

Users have the possibility to assign different weights to
the measured positions, depending on the type of accelerator
component or the precision of the related observations in the
field. As seen in Fig. 4, those weights might have significant
effects within the polynomial regression steps and greatly
modify the results of the global processing.

In the C++ version, to ignore desired points in the smooth-
ing process, very low weight values (typically 0.001) were
set to corresponding measured radial and vertical deviations.
Our numerical analysis showed slightly different results by
purely suppressing those low-weighted elements from the in-
put dataset. Mathematically results should be identical, but
the C++ implementation of the algorithm itself introduced
some numerical biases and approximations noticed by users
for years but never corrected due to high code complexity.
The Python version of the software solves this issue by to-
tally excluding 0-weighted data from the smoothing window
and related regressions.

The simplicity with which Python makes it possible to
manage and re-arrange lists of objects highly facilitated such
quick improvements.

Results
Important optimizations where further performed in the

last routine described in Fig. 3 that moves points whose
smoothed offset values exceed the tolerance value. In the
C++ version, such points are moved one-by-one in the suc-
cessive loops, the one with highest smoothed offset first, to
ensure it will not influence others.

This method only considers the maximal smoothed offset
evaluated in the large dataset. It moves the corresponding
component to its fitted position before restarting the whole
iteration steps described in Fig. 3. By moving simulta-
neously several components together in each iteration, we
considerably decrease the computation time. However this
grouping can only be applied for components sufficiently far
apart from each other. Moving for example two consecutive
components at the same time will not produce identical re-
sults than those generated by moving them separately in this
iterative process.

Furthermore, our reverse engineering process pointed
out a considerable amount of calculations re-done in each
iteration while input data remain strictly unchanged. As a
matter of fact, sliding the smoothing window over unchanged
positions does not affect the various polynomial functions
previously estimated by the regression routine.

Two major improvements have thus been performed to
drastically improve the execution time:

• The first improvement is to move multiple points at the
same time in each iteration step of the loop, after ensur-
ing that they do not influence each other (i.e.: moved
points should not be part of the same regressions, so at
least spaced twice the size of the smoothing window).

• The second improvement consists in systematically
keeping all calculated smoothed offsets in a temporary

data storage (computer memory cache). It makes them
directly accessible within the next loop and avoids un-
necessary identical data processing. The trade-off for
this speed improvement comes at the cost of increased
memory usage. Considering largest datasets processed
in the LHC accelerator complex (several thousands of
components), this increase remains nevertheless accept-
able.

Table 1: Files Specifications

File 1 File 2 File 3 File 4
Total 13170 770 3870 5370
WS 61 (0.5%) 11 (1.5%) 11 (0.3%) 11 (0.2%)
Moved 150 (1.1%) 100 (13%) 27 (0.6%) 63 (1.1%)
Total = total number of points.
WS = window size.
Moved = number of moved points.
Values indicated with % are proportion represented regarding the
total number of points in the file.

Table 2: Computation time (value in second)

Algorithm File 1 File 2 File 3 File 4
Rabot C++ 806 10.2 26 27
Rabot Python ported 2103 38 53 173
Rabot Py optimized 235 2.7 6 7.9
Rabot Py opti + cache 38 1 2.3 3.2

Applying those two upgrades in the Python version, exe-
cution time drastically reduced by a factor of 10 in average
when comparing to C++, see Tables 1 and 2. The ease of
Python syntax allowed us to focus on the theoretical part,
instead of spending time on pure code implementation.

CONCLUSION AND PERSPECTIVES
A new version of RABOT has been developed in a few

months for dedicated CERN survey activities, which in-
cludes all the functionalities of previous versions. It also
includes several new features and an upgraded algorithm
that is faster than the previous C++ one, while being written
in Python.

By focusing on the survey business core of the code and
not on the languages subtleties, it has been released in a short

amount of time. The total number of lines of code has been
drasticaly reduced from 30.000 in C++ version to 2.000
of well documented lines in PyRabot. It is more human-
readable for both developers and users, which allows us to
discuss the code with non-expert programmers. It is also
easier to learn and use, so developers can be more efficient
and users can understand how the algorithm is implemented
in the software. And from the organization and manage-
ment point of view, the increasing popularity of Python
language [7] allows more flexibility to recruit new graduate
students in the future.

Using Python for survey development was at first a trial
and became a proof of concept. This project size was ideal to
do it and allowed to evaluate Python for GUI and calculations
core. This PyRabot example concludes that Python can be
used for rapid application development. It seems to be a
viable solution for projects where performance is not critical.
Moreover, Python is supported now at CERN for machine
accelerator control [8].

Again, the main reason we achieved those upgrades that
quickly is the Python high-level syntax. It makes develop-
ing, reading and modifying to the needs of the users easier
and faster. Alternative theoretical approaches could also
be tested easily, basing calculations on NumPy library, that
allows the software to adapt quickly if needed. Optimizing
the algorithm and correcting potential errors are also eas-
ier. Based on NumPy facilities, other theoretical approaches
could also be implemented, evaluated and compared in the
future such as adaptive splines [9] or B-splines with penalties
to fully automate the process.

REFERENCES
[1] Qt https://www.qt.io/

[2] NumPy https://numpy.org/

[3] MATLAB https://www.mathworks.com/products/matlab.html

[4] Zen of Python https://en.wikipedia.org/wiki/Zen𝑜 𝑓𝑃𝑦𝑡ℎ𝑜𝑛

[5] Microsoft Visual Studio https://visualstudio.microsoft.com/

[6] GitLab https://about.gitlab.com/

[7] Programming language popularity ranking
https://www.tiobe.com/tiobe-index

[8] Acc-Py environment and packages
https://abpcomputing.web.cern.ch/guides/accpy/

[9] Vivien Goepp, Olivier Bouaziz, Grégory Nuel. Spline Regres-
sion with Automatic Knot Selection. 2018. hal-01853459

