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ABSTRACT

Significance of nonlinear resonances in a multi-stage free-electron
laser for a two-beam accelerator is discussed. A large scale primary
resonance observed in numerical simulations is analyzed with a
newly developed theoretical model based on both the isolated
resonance theory and the macroparticle model.

1. Introduction

A two-beam accelerator (TBA) is a possible candidate for future linear
colliders, in which microwave (u) power required for a high-gradient linac is
provided from a multi-stage free-electron laser (MFEL) [1,2] driven by co-
propagating, intense, and relatively low-energy electron beam as seen in
Fig. 1. Actually, u-FELs have been experimentally demonstrated in a
single stage with notable output power exceeding 1 GW for Ka-band [3]
and 100 MW for X-band [4]. In the MFEL, after amplification of input seed-
power the driving beam is reaccelerated with an induction unit for energy
replenishment to go to the succeeding stage. The TBA driven by a few of
multi-stage p-sources will promise a big advantage of high total efficiency
over a conventional linac powered by thousands of klystrons.



One of important beam physics issues in the MFEL is nonlinear
resonances (NRs). Murray and Lieberman (M.L.) [5] have presented a
theoretical study and simulations on the NR induced in the synchrotron
motion due to the periodicity of the MFEL. They have showed that
longitudinal dynamics of particles is approximately described in the form of
a simple pendulum equation with periodic perturbations and that these
resonances, which are identified as bounded and localized resonance
islands in the longitudinal phase space, slightly modulate the amplitude
and phase of the generated u. Undoubtedly the TBA/FEL performance
strongly depends on a magnitude of such modulation. It was on the early
version of TBA/FEL [1] that M.L. have developed their theory, where a
fraction of amplified power is extracted by a kind of p-septum in a steady-
state manner [6] and a large amount of power is stored in the waveguide
through all stages. The ponderomotive force to give longitudinal focusing
is almost constant along the beam pass. The NR originates from mainly the
relatively small periodic-variation in the particle energy; loss in FELs and
gain at induction units. Unfortunately the early version has been discarded
because of practical reasons that the p-septum is subject to p-breakdown
and p-transport through the induction gap is subject to reflection and mode
conversion.
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Fig. 1 Schematic view of the multi-stage free-electron laser (the new version of the
TBA/FEL).

Recently a different sort of the MFEL has been introduced to remove the
above difficulties [2]. In this second version, a small u power is fed at the
start of each stage and all of the amplified power is extracted by an output
u-coupler [4] at the end of the stage. This p-handling process is
distinguished from that of the early version; the ponderomotive forces
drastically change through stage. Therefore the M.L.'s theory can't be
applied to this case. The dynamical system with such a large periodic



modulation is subject to more serious NR. To our knowledge, there has
been no theoretical and numerical works which focus on the NR in the
second version attracting big concerns of the high-energy accelerator
society. In this paper, essential aspects of the NR in the recent version of
the MFEL will be manifested by means of so-called multiparticle FEL
simulations and a theory of a nonlinear pendulum based on both the
macroparticle model of the MFEL [7,8,9] and the isolated resonance theory
[10]. The primary NRs observed in the simulation will be analyzed by this
nonlinear pendulum model with periodically and rapidly time-varying
“mass”.

Future linear colliders demand high-power u with good quality. For
instance, a shot-to-shot jitter in u's phase and amplitude must be
maintained within a tolerable level from a requirement for the final focusing
in a collider [8]. A significant obstacle against the quality is ampilification of
undesired modes in the MFEL. Fortunately the amplification of higher
modes can be avoided by suitable choice of the waveguide size, because
the FEL resonance energies for undesired higher-order modes shift away
from that for the fundamental mode (rectangular waveguide TEg1 mode)
with reducing its size. However we have to pay our attention on the
significant side-effect caused by reducing the waveguide size, i.e., the high
power-density. The MFEL with the reduced waveguide has an inherent
problem; the high power-density leads to the quickly increasing
ponderomotive force which is likely to give rise to strong NRs. In a practical
sense, it seems to be quite important to develop the NR theory in the MFEL
which enables us to choose an optimum waveguide size so as to avoid
both the NRs and higher-mode evolution in a realistic MFEL.

2. 1-D FEL simulation

For the 1-D FEL simulations, the standard FEL equations [11,12] are
numerically integrated by the Runge—Kutta—Gill method, assuming a single
TEg: mode. A set of typical parameters of the MFEL of interest is listed in
Table 1. In the simulations, an initially bunched beam with a half phase
spread of Ay =45 and an energy spread of Ay =1 is injected in the first

stage. Here y and wzj(kﬁ,+ks)dz ~wt+¢, are the Lorentz factor and
ponderomotive phase of a particle, w, is p's angular frequency, &, the

wavenumber of wiggler, «" the horizontal size of rectangular waveguide,



k, =\/(ws/c)2 —(7r/a')2 the wavenumber for TEgy mode, ¢, the signal phase,

t time, z longitudinal coordinate, and ¢ the speed of light. Particles outside
an rf bucket don't coherently lose their energy owing to the FEL interaction
but periodically gain the energy by repetitive passage through induction
units. In the simulations, hence, particles exceeding a typical limit (y > 30)
in such a manner are removed from the calculation, because high energy
particles are not matched to the beam-transport line designed for the
resonant energy of the FEL.

Table 1. TBA/FEL parameters

beam current ' I 2 kA
beam energy (Lorentz factor) 7y 23
energy gain per period Ay 1

wiggler wave length A, 26 cm
wiggler length per period L, 52 cm
wiggler peak field B, 3.85-3.6 kG
signal frequency fs 17.1 GHz
input power P, 10 MW
waveguide width a 20-4 cm
waveguide height b 3cm
number of FEL stage 300

In order to evaluate effects of the u power-density on the NRs, only the
waveguide width &’ is varied while the other parameters are fixed. This
never alters the FEL resonance condition for TEpy mode, because the
phase velocity of TEgy mode dose not depend on a'. For a relatively wide
waveguide (a" =10 cm), our simulation shows that the beam propagates
from the first to the 300-th stage without particle loss, maintaining the
original bunch shape. This is just the result which was obtained in the
previous simulation [8]. For cases of smaller waveguide a'= 8, 4 cm,
meanwhile, the fourth and third-integer resonances are observed in an
extremely large-scale, as shown in Figs. 2(a) and (b). These resonances
are understood to be caused by the strong u fields resulting from the
reduced waveguide width. The phase-space structure in the MFEL
longitudinal dynamics has been found to strongly depend on the
waveguide dimension, that is, the u power-density.
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Fig. 2 Longitudinal phase-space structure for the FEL simulation. (a) the fourth-integer
resonance (a' =8 cm). (b) the third-integer resonance (a' =4.cm).

Typical degradation of the MFEL performance are shown in Figs. 3(a),
(b) where the power and phase of the generated p are plotted as functions
of FEL stage number for a'= 15, 8, and 4 cm. Once these resonances
occur, the beam evidently continues to lose its population, the pu power
decreases, and the signal phase changes. They are significant and quite
fundamental problems for the multi-stage p-source where transport of a
high current beam over a long distance is indispensable to maintain a
constant amount of amplified p-power.
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Fig. 3 Evolution (simulation) of (a) m-power and (b) phase versus FEL stage number for
a' =15, 8, 4cm.



3. Nonlinear pendulum equation

in order to realize how the NR observed in the simulations occurs, we try
to develop a theory based on the so-called macroparticle model discussed
in several literature [7,8,9], where a bunched beam in the MFEL is treated
as a single particle (macroparticle) placed at the bunch center and the
amplitude and phase evolution of u in the MFEL can be described in terms
of analytic functions of the independent variable ;. Following the
derivation of M.L. [5] and using the definition of the macroparticle [7,8,9], the
FEL equations are proved to be equivalent to the Hamiltonian

.
N

H(e.EE. )= 2{(/& Ok, Yy, + €)+ ———(1+a2)
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where y,, v, are the Lorentz factor and ponderomotive phase of the
macroparticle, £, £ are deviations from the energy and phase of the
macroparticle, N the number of particles, &, =w /c—k, the shift of
longitudinal wavenumber from its value in vacuum, a, =B, /+2m.ck, the
normalized wiggler amplitude, J, beam current density, e, normalized
signal-field, e and m, are the charge and rest mass of electron, Z, =377Q,
E=Nmce [eZ,J, and y=—-¢,. Here vy, v,, ¢, ¢, are determined in the
self-consistent FEL interaction and written in terms of the analytic functions
of z according to the macroparticle model [7,8,9].

Expanding the Hamiltonian (1) in powers of g/y, and retaining the
dominant terms, we have the Hamiltonian

H(e,&z)= %G(z)g2 - F(z)cosy, cosE+ F(z)siny, (sinE - &), (2)
where
G(z)=2(1+a?), F(z)="% (3a,b)
Y. 7.

Neglecting friction terms which are proportional to & because they are
smaller than the remained terms in most of cases of our interest, a second-
order differential equation



&+ G(z)F(z){sin ¥, (cos&E—1)+cosy, sin E} =0, 4)

is derived from the Hamiltonian (2), where primes denote differentiation
with respect to z. Since Eq. (4) reduces to &” + G(z)F(z)cosy , &E=0 in the
limit of small amplitude oscillation (£ 0), we can refer to Eq. (4) as a
nonlinear pendulum equation. According to the macroparticle model [9], ¢,

in Eq. (3b) is written in a term of the trigonometric function

2
c\(‘:)z—Ksinl—}ilz, (5)
ap| 2

where a=7v,/Kak,, b=k -6k —w /2¢(Kka), K=eZJ [2mc’k,, and
K =sinAy /Ay are constant which depend on the MFEL parameters [7,8].
The macroparticle model assumes y, «<a,; hence GF in Eq. (4) is
determined mainly by e. In the limit of small-amplitude oscillation
GFcosy, is a periodic function of z as depicted in Fig. 4 and this linear
system has been numerically proved to be stable for a parameter region of
current interest although the stability of the small amplitude oscillation is not
discussed in detail in this paper.

G T T T .054
. [- FeG@))  [----- beta] {
d Jo.52
— 10k [N ) RN
N - L]
1 ;Y doN /X035
< 8k .I ', h - -
N 4 ’ ’ o
s 6} P \ h | K -0.48
w ,‘ ’ \‘ ‘l \ ’,
4N - Jo.46
3 Jo0.44
oLd 1 AP P A L
0 0.2 0.4 0608 1 1.2 14156

Z

Fig. 4 The restoring coefficient GF cosy, and the longitudinal amplitude function B(z)

versus the independent variable z over three periods.

Figures 5(a), (b) show the results of numerical integration of Eqg. (4) in
the phase space for a" = 8, 4 cm, respectively. We observe that Eq. (4) can
well reproduce the results of the FEL simulations seen in Fig. 6. Thus, we
consider the Hamiltonian (1) with Ee¢’, y=-¢ determined by the
macroparticle model as a theoretical base to analytically assess the NRs in
the MFEL.
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Fig. 5 Phase-space plots of the nonlinear-pendulum's solution for (a) a” = 8 cm and (b)
a =4cm.

4. Isolated resonance theory

It is not difficult to calculate the size and position of the primary NR
islands, using the isolated resonance theory [10] which is rather familiar.in

beam dynamics of circular accelerators. Expanding the Hamiltonian (1) in
powers of & and ¢/y,, itis written to fourth order in £ and € by

(e&z)——Ge ,e ch Lo By 5—— FE -—c §e+F &
?’u Y Ya
_i{c_q___ ST
2 Yo 17 Ya Y.
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where F,. = Fcosy, and F; = Fsiny,. The expression can be regarded as
the Hamiltonian for a pendulum with time-varying “mass” G and “length” F.

affected by nonlinear perturbations. Using the generating function
F,(&,&;z)= E€//G(z), the Hamiltonian (6) is transformed in the form

H(E,E;Z) =1/2 (Ez + GFCS2 ) + (nonlinear perturbations), (7)

by use of the new variables (£,8). Furthermore we try to write the
Hamiltonian in the action-angle variables (/,8), using the generating

function E(E,e): —(a +tanB)E* /28, where «, B satisfy



2BB” -B*+4AGEB =4, a=-P)2. (8a,b)

Here B is referred to as a longitudinal amplitude function in the MFEL,
which is a quantity analogous to a transverse amplitude function in circular
accelerators. Since the linear part in the Hamiltonian (7) is stable or has a

bounded solution, this function represents the orbital evolution of the bunch
envelope in the MFEL. The periodic solution B(z) with period L, is

uniquely determined from G(z)F.(z); a typical pB(z) calculated for

parameters in Table 1 is plotted in Fig. 4. Thus the Hamiltonian (7) is
transformed to

H(J,6,2) = v,/ B(z))J + (nonlinear perturbations). (9)

It is convenient, for further theoretical arguments, to remove the z-
dependence of the linear part. Instead of the independent variablez, we
use a new variable o defined by

1 J’Z dz 1 dz’
g = — —_—, v, = — — (10a,b)
Vo Jo B(2') °oond. B2
where 2nv, is the phase advance per FEL period and v, is referred to as
the longitudinal tune or synchrotron frequency per period in the MFEL.
Retaining only the dominant terms after some straightforward mathematical
manipulation, we have the Hamiltonian written by

H(J,6,0)=v,J - %vﬁ%ﬁ“ﬁ +7(6,26)

372 372 1/2
_2'2_4_VOFSG3/2B5/2J3/2 COS(39)+ VO 2 _F‘LG_BB/ZJ3/2 Sln(39)
I 1 FG

—4—8VOFCG2[33J2 cos(46) - v, 1 BJ 7 sin(46), (11)

where 7(0,20) comprises the first and second harmonic terms of angle
variable 6. Let focus on the third-integer resonance which are seen in
Figs. 2(b), 5(b). The isolated resonance theory allows us to neglect all other
nonresonant terms. Fourier expanding the perturbing terms

2% vapsi2  d . :
——EZVOFSG‘ B :—i(l+;a" cos(no)+ b, sin(no), (12a)
23/2 F. 172 ’ oo -
Vv, 2 Lﬁ“:%+Zc,,cos(no)+dnsm(no), (12b)
’}/u n=|

10



substituting them into Eq. (11), and neglecting the rapidly oscillating terms,
we obtain the truncated Hamiltonian

H.(J,8,0)=v,J +hJ* +h,J""* cos(30 —mo) + hy,J ' sin(30 —mo), (13)

where h =~(27)[ VG ES [16do, hy=(a,+d,)2, hy=(-b,+c,)f2,

and m is an integer which satisfy 30 —mo =0. To examine the phase-
space structure near the resonance, we write the Hamiltonian (13) in the
rotating coordinates (/.6) obtained with the generating function

F(0,7;0)=T(6 —mo/3); it is just the “time”™-independent Hamiltonian for the
isolated third-integer resonance

H,(7,0)=6, 7 +hJ" +hJ" sin(30 +0,), (14)

where &,,,=v,-m/3, hy=h,+h," and ©, =k, /h, are constants. Using

Eq. (14), the stable and unstable fixed points (SFP, UFP) of the resonance
island are easily calculated from dJ/do = -0H,/d6 =0, d8/do =JH,/d] =0,

then

‘71/2:;§E+K§b§_] _%} , (15)
8 h 8 h 2h,

where the upper sign means the SFP, and the lower the UFP. For
simplicity we define the island width by AJ =2(Jg,, —J ). In a similar way,

the Hamiltonian and actions at the SFP, UFP for the fourth-integer
resonance islands are written by

H,(T,0)=6,,J+hJ’+hJ"sin(40 +0©,), (16)
T (17)
2h +2h

where -v,F.G’B'/48 and -FGv,°/12y, are Fourier expanded,
8Os =Vo—m/4, h, ‘“\/h +h42 ’ O, =hy/hy, hy, E(am+dm)/2’
h, =(~b, +c,)/2. Eventually we arrive at the exact mathematical formula

necessary to theoretically asses the primary resonance observed in the
simulations.
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5. Discussion

Figs. 6(a), (b) show lines of the equi-Hamiltonian in the phase space for
a = 8, 4 cm in the rectangular coordinates P = \/ﬁsiné, Q= \/ﬁcosﬁ to
compare with the results of the simulations and the nonlinear pendulum
model. A particle moves along a line because the Hamiltonians (14) and
(16) are constants of motion. The position and size of the islands calculated
from Egs. (15), (17) are in agreement with simulations, as depicted in Fig. 7
where the vertical bars express the half widths of the islands obtained from
simulations. The magnitude of beam-current in theoretical calculations is
adjusted so as to be equal to that in the simulations with beam-loss, i.e.,
1.85 kA. Thus, the resonant structure observed in the FEL simulations is
identified as isolated NRs in the MFEL. In addition, Fig. 7 suggests
overlapping between two different primary-resonance islands in the
parameter region of small a” (< 5 cm), in which the oscillation amplitude is
well-known to quickly reach to a large size [13]. Gradual beam-loss
observed in the simulations (a¢° = 4 c¢cm) can be related to this amplitude
pumping mechanism.
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(a) (b)
Fig. 6 Phase-space plots of the equi-Hamiltonian for (a) the fourth-integer resonance (a*=

8 cm) and (b) the third-integer resonance (a' =4cm).

Shown in Fig. 8 is the longitudinal tune v, calculated from Eq. (10b) as a

function of a". The smaller the waveguide is, the larger the phase advance

is. The longitudinal tune of each particle in the nonlinear system depends
on its action /. We define an effective tune by v={(dH,/dl), where ()

denotes averaging with respect to phase 6. v=v,+2hJ where h is
always negative in our case; therefore, the third-integer resonance occurs

12



only when the unperturbed tune v, exceeds 1/3. Also for v,>1/4 the fourth-

integer resonance can appear. Our numerical simulations certainly support
this transition in the phase-space structure. Hence we can say that the
longitudinal motion in the MFEL with high tune v,>1/4 is always dominated
by the large-scale lower-order NRs. In this paper, we have neglected the
drift space between adjacent stages for simplicity, because simulations
taking account of the drift space do not alter the qualitative features of the
NRs which have been shown here.
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Fig. 7 Action (theoretical) of SFP, UFP versus waveguide width a : the third-integer
resonance and the forth-integer resonance. Edges of vertical bars represent the SFP and

UFP obtained by simulations.
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Fig. 8 Longitudinal tune Vv, versus waveguide width a’.

In conclusion, a theoretical model to asses the NR in the MFEL has
been developed. For the first time, we have manifested the essential
aspects of primary resonances by the theoretical analysis and simulations,
which do determine the longitudinal phase-space structure in the MFEL.
The theory is able to give a crucial suggestion in choosing practical MFEL
parameters. Moreover it is noted that a concept of the NR induced by the

13



periodicity, which is inherent in multi-stage u-sources with an extremely
large coupling between a driving beam and interaction device, will be
applied to other multi-stage devices such as a relativistic klystron [14].

One of authors (S.H.) thanks Prof. Hiramatsu for useful suggestions. The
numerical calculations were performed on DEC 3000 AXP-500.
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