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Abstract

A detailed quark-model study of the AN -EN(I = 1/2) system is given in
a coupled-channel formuiation of the RGM-F which is recently @ntroduced to
achieve a unified understanding of the NN and hyperon-nucleon interaction.
It is found that the effect of the AN - LN transition potential is strongly en-
hanced in the threshold region through important roles of the non-central com-
ponents. The antisymmetric LS() force, which is characteristically strong in
the quark model wi}.h the full Fermi-Breit interaction, reproduces a promi-
nent bump structure in the AN total scattering cross sections at the energy

slightly below the TN threshold.

§1. INTRODUCTION

In spite of the basic importance in the study of hypernuclei, our present understanding
of the hyperon-nucleon {Y'N) interaction is quite unsatisfactory in the sense that many
different versions of the one-boson exchange potentials (OBEP) are not discriminated due
to the scarce experimental information.!) Since hyperons and nucleons belong to the same
class of the spin-flavor SUs supermultiplet 56, the rich flavor symmetry of the quark model
will provide a strong constraint in which the YV interactions for various hyperons are
consistently described with the well-known NN interaction.

We have recently developed a unified description of the NN and YNV interactions in
the (3¢)-(3q) resonating-group method (RGM) with a minimum augmentation of effective
meson-exchange potentials.?® This model, which we call RGM-F,! incorporates the full
Fermi-Breit interaction with explicit flavor symmetry breaking (FSB) due to the mass dif-
ference of the up-down and strange quarks. Besides the well-known short-range repulsion
originating from the color-magnetic interaction and the Pauli principle, the spin-dependent
central, LS, and the short-range tensor forces are nicely described in this model. (See Ref.5)
for the LS and LS~ forces.) However, since the important medium-range attraction and
the long-range tensor force are never described by any kinds of the quark model, the RGM-F
introduces between quarks the central force of the scalar-meson-nonet exchange potentials
and the 7, K tensor force of the Nijmegen model-F ®). The space-spin parts of the exchange
kernels for these effective meson-exchange potentials are explicitly calculated by assuming
the SU; relations of the coupling constants at the baryon level.”) Owing to the appropri-
ate reduction of attractive components from NN to AN and EN in the original Nijmegen
model-F parameters, we only need to introduce a common adjustable parameter ¢ for each
of the flavor symmetry ; ¢ = 0.4212 for P = ¢ (3E or '0) and ¢ = 0.56 for P = s (*E or

30) for the central meson-exchange potentials. These values are determined from the fit to

tA preliminary result of this investigation is given in Ref. 4).



the deuteron binding energy and to the 'Sy phase shift of the NN system, respectively. No
adjustment is made for the tensor force of the pseudo-scalar mesons. The mass ratio of the
strange to up-down quarks is assumed to be A = m,/myq = 1.25. The Coulomb force is also
introduced in pp and T*p systems in a similar way to the meson exchange potentials.

In this paper, we extend the previous study® of RGM-F for the NN and Z*p sys-
tems to the coupled-channel system with the hypercharge Y = 1 and the isospin [ = 1/2,
AN - £N(I = 1/2), in which the approximate SUs-invariant Hamiltonian mixes these config-
urations not only through the central component but also through the very rich spin-flavor
contents of the non-central forces shared by the YN interaction. It will be found that
the RGM-F reproduces all the low-energy cross-section data of the YV scattering up to
Pl = 200 MeV/c, as well as the gross features of the NN phase shifts. In this energy
region, the cross sections are mainly determined by the low-energy behavior of the S-wave
phase shifts. At higer energies where the P-wave becomes important, one will find that the
antisymmetric LSt~7 force plays an important role in the strong coupling of the *P and 'P
channels of these I = 1/2 configurations, yielding a prominant bump structure at the energy
region slightly below the TN threshold.

In the next section, the coupled-channel RGM formulation of RGM-F given in Ref.3)
is further elaborated for the AN-ZN(I = 1/2) system with a particular emphasis on the
detailed treatment of the reduced-mass term and of the effective meson-exchange potentials.
The simple prescription in Refs.2) and 3) enables us to transform the calculated reduced
mass to the empirical reduced mass, and to replace the flavor-singlet coupling constants
with the phenomenological coupling constants at the baryon level. This needs further re-
finement when it is applied to the coupled-channel RGM equation with different types of
Y N configurations. This is particularly importaat in the 'Sy state of the AN - SN(I = 1/2)
system, where a complete Pauli-forbidden state exists. The phase-shift behaviot of the AN
and TN(I = 1/2) channels and their coupling features in the reflection and transmission
coefficients are discussed in §3.1. The effective-range parameters of the AN scattering are
also discussed in this subsection. The total and differential cross sections of the Ap and £ p
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systems are discussed in §3.2. under the approximation with the Coulomb force omitted.
The final section is devoted to a summary and an outlook for the further improvement of

this investigation.

§2. COUPLED-CHANNEL RGM FORMULATION FOR AN -EZN(I =1/2) SYSTEM

When applying the coupled-channel RGM formulation given in Eq. (2.2) of Ref. 3) to the
AN-ZN(I = 1/2) system, we need some careful consideration on the reduced-mass term
and on the coupling constants of the effective meson-exchange potentials. First of all, the
prescription we have introduced in §4 of Ref. 2) to transform the calculated reduced mass to
the empirical one cannot straightforwardly be applied in the present case, since the empirical
reduced mass uf*? for AN system and u5° for LN system are different. (From now on, the
channel indices a = 1 and a = 2 are used to stand for AN and IN channels, respectively,
by assuming that the first chaanel is always the incident channel. For the LN incident
channel, 1 and 2 are reversed.) One may imagine that an extension of Eq. (4.2) in Ref.2) to
the channel-coupling case can easily be done by replacing the off-diagonal exchange kernels

ME(R, R') and MMO(R, R') with
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but this procedure leads to the unfavorable fact that the Pauli principle is not always satis-
fied. To illustate this, we consider the most compact (0s)® harmonic oscillator (h.o.) config-
uration, which is a complete Pauli-forbidden state in the spin-flavor SUs coupling 1/2(11) x
1/2 (11) — 0 (11),. The explicit values of the spin-flavor-color factors Xy of the exchange

normalization kernel are given by
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As is well known in the nuclear cluster problems, an important resuit of this fact is that a set
of (0s) h.o. wave functions {x555(R)}=(1/v10) (xfs2(R), 3 x(s2(R)) forms a redundaat
state (the Pauli-forbidden state) which trivially satisfies the coupled-channel RGM equation
Eq. (2.2) of Ref. 3). This is usually called the redundancy condition. If the exchange kernels
of the kinetic-energy type are modified to Eq. (2.1) and the empirical reduced masses are
employed in the kinetic-energy term and the relative-energy expression, the redundancy
condition is no longer satisfied. Similarly; it is not satisfied either for the effective meson-
exchange potentials unless the direct potentials and the corresponding exchange kernels are
exactly calculated, starting from the gq interaction assumed in the original Hamiltonian.
Since we have evaluated the coupling constants of the meson-exchange potentials in such
a way that the direct potentials are reduced to the OBEP of the Nijmegen model-F, the
present approximation of the RGM-F clearly breaks the redundancy condition.

In the present application to the AN -TN(I = 1/2) system, these approximate treat-
ments of the Pauli principle in fact impairs the scattering solutions very little, since the effect
of the Pauli principle is usually very weak except for the 1S state discussed above. For exam-
ple, another compact S-wave configuration for the S state with (0s)® and S(\u), = 1(11),
quantum numbers has the norm eigen-value 1 + Xy = 8/9, indicating that the effect of the
quark antisymmetrization is very weak. On the other hand, the 1Sy phase-shift behavior is
strongly affected by the redundant component admixed due to the present approximation.
We cure this flaw of RGM-F by slightly modifying the spin-flavor-color factors in the non-
incident channel in the following way. Let us consider only the spin-flavor-color parts since
the spatial part is totally symmetric for the (0s)® configuration. We modify the relation-
ship Eq. (2.3) in such a way that the redundancy condition is still satisfied even when the
direct term takes the form of any arbitrary 2 x 2 symmetric matrix with three independent

elements a, band c;

The modification factors B and C of the exchange kernel are determined from a, b and ¢ as
1 1
B=a+3b, C=§(9c—a)=c+§(c—a) . (2.5)

When applying this to the kinetic-energy term, we choose ¢ = g3 /pi™, b = 0 and ¢ =
42/u3’?, resulting in B = g and C = ¢+ (1/8)(c — a). This modification is slightly different
from that of Eq. (2.1). This procedure, however, does not work when the scattering problem
with N incident channel is considered. This is because the X value for the AN diagonal
channel happens to be exactly zero. In this particular case, we assume a small but non-zero

value X for this factor and consider the condition

ab| [-34 -3} |[3

=0 . (26)
bec -iB xc /| \1

By supplementing an extra condition A = a, we find from Eq. (2.6)
B=a+3b , XoC=a—-c . (2.7)

Namely, we can set C = ¢ and X3 = afc — 1 which would be zero if a = ¢. The condition
A = a is required to guarantee that the present approximation reduces to the previous one
in the single-channel case.

It should be noted that the redundancy condition should be satisfied even when the
FSB is introduced. From the careful analysis of the generator-coordinate (GCM) kernels,
we find that a rather involved term which is not proportional to the factor Xy in the

~ exchange kemnels of the kinetic-energy and momentum-dependent retardation terms does

not contribute to the (05)® configuration. Therefore, the above discussion directly applies
to these exchange kernels when the AN channel is selected as the incident channel. On the
other hand, if the £V channel is adopted as the incident channel, we actually modify the
spin-flavor-color factors in the AN channel a8 Xy =0 = Xy = py—pp in Mg)(R, R)
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and XMC — XMC (24 1/N)(p ~ po) in My (R, R)), where pi = /i (i = 1, 2)
and XY is the E-type spin-flavor-color factor of the MC-type exchange kernel. For the
effective meson-exchange potentials, the present approximation described in §2 of Ref.3)
is equivalent to multiplying each component of the exchange kernels by the corresponding
direct factor a, b or ¢. Since the spin-flavor-color factors of the scalar-meson central force
are proportional to Xy, we can also apply the above prescription to the RGM kernels in
the 15, state. The tensor-type factors are not affected for this spin-singlet state. We should
also note that the reciprocity theorem is not exactly satisfied for the 15, state in the present
prescription.

Next, let us briefly discuss the treatment of the threshold energies in RGM-F. In the
single-channel RGM formulation, the internal energies of clusters do not show up in the
RGM equation, since they are already subtracted from the exchange kernel. This is not the
case for the multi-configuration RGM equation, where the difference of the internal energies
of different channels should be explicitly evaluated from the original Hamiltonian. In the

present AN - TN(I = 1/2) system, the mass difference

2 I 1y 4
AE = E);; - E,\ = J;as (m) Mud (1 - -X) 5 (2.8)

from the color-magnetic interaction is the only source of the A-¥ mass splitting, since
the present approximation of the effective meson-exchange potential does not yield any
contributions. Since we use X = 1.25 in the present calculation, we obtain the mass difference
AE = 39.11 MeV, about a half of the empirical threshold energy AE = 77.49 MeV. In
a more advanced version of RGM-F, we will show that this discrepancy is reduced by a
more proper treatment of the flavor dependence of the meson-exchange potentials. In what

follows, we have to note that the “theoretical” LN channel opens at the momentum py

Dheam = 445.2 MeV /¢, though the corresponding empirical momentum is actually pi;%, =
637.9 MeV/c. In these estimations, we have employed the relationship between the non-
relativistic relative energy EYF in the center of mass system and the beam momentum Pream

given through ¥

Ebenm = vm2+p§¢am = m+Tbcum y

Eom = {/m? + M? + 2M Epeqm = /(m + M)? + 2MTicem

M
Pem = Pbeam Ec: ,

g P _ M Thear (1 + 75 Tbeam) 29)
re 28 m+M 1+ (T‘i%_)l'Tbeam
where 4 = mM/(m + M) is the noo-relativistic reduced mass with m and M being the
masses of the incident and target particles, respectively.
The coupled-channel RGM equations for the AN - ZN(I = 1/2) system are solved by a
variational technique developed by Kamimura ). From the resultant relative-motion func-

tions, we extract the scattering matrix S, , which is customarily parametrized as
Sau" = Nao' e2£6m,, ] (210)

where o = |Saw| are the reflection and transmission coefficients for a = o and a # o,
respectively. These coeficients and the diagonal phase shifts 0, are discussed in §3.1. The
number of channels specified by 25+, with the total spin S and the partial wave L is at
most four for each total angular momentum J with some definite parity, if one neglects the
isospin breaking. The coupling of the *L; and *L; partial waves by the antisymmetric Ls®
force is also explicitly incorporated.

§3. RESULTS AND DISCUSSION
3.1. Analysis of the Phase Shifts

The S, phase-shift curves of the AN and SN(I = 1/2) chanvels are shown in Fig.1,
together with the Ap phase shift predicted by the Nijmegen model-F 8) (crosses). These two
curves are obtained by choosing the AN channel as the primary channel. We find that the
present calculation yields very reasonable result of the AN phase shift comparable to the
model-F prediction especially in pay < 400 MeV/c region. In Fig.1, the AN single-channel



phase shift is also shown by the dashed curve. One finds that the channel-coupling effect
in this case is rather moderate, except for the cusp region in which the appearance of the
Wigner cusp is a common feature of the S-wave phase shifts without the Coulomb force. In
the low-energy region where the TN channel is closed, the phase-shift difference between
the single-channel and coupled-channel calculations is at most 7 ~ 8°. The weak-coupling
feature at higher energies above the threshold is also observed in the transmission coefficients
between the two channels (not shown). They are found to be less than 0.6 in all the energy
region below py =1 GeV/c.

An interesting enhancement of the AN - TN coupling is found in 35, phase shift shown in
Fig. 2, when the tensor force from the 7- and K-meson exchange potentials is incorporated.
In this case, the RGM equation is composed of the following four channels; AN 3S5;, AN
3p;, SN(I = 1/2) 3S; and EN(I = 1/2) 3Dy, which we call 1, 2, 3 and 4, respectively.
Let us first discuss the scattering from the AN channel. The AN phase shift in Fig.2
shows the effect of the channel-coupling is appreciable, reaching 12 ~ 13° difference from
the AN single-channel result. Owing to this appreciable effect, the resultant phase-shift
values show very nice correspondence to the model-F result in the almost full energy region.
The threshold effect found as the cusp structure in the 1Sy state now appears as a sharp
step-like resonance at the calculated ©N threshold with py = 445.2 MeV /c. Figure 3 shows
the AN 3D; phase shift and the mixing parameter ¢; for 3S;-3D; coupling. In this paper,
we follow the standard definition of the nuclear bar phase shifts for the mixing parameter
in the two-channel S-matrix. In Fig. 3, the predictions of the Nijmegen model-D ® are also
'shown with open circles. Except for the difference of the threshoid energies between RGM-F
and the Nijmegen models, the behavior of the AN 3D, phase shift and ¢, is rather similar
between these two models. It is interesting to note that the model-D and model-F predict
different signs for ¢;, and the result of RGM-F is rather close to that of model-D.

The behavior of the reflection and transmission coefficients at the threshold region is
plotted in Fig.4(a) for the scattering with AN incident channel and in Fig. 4(b) for that
with TN channel. From the curve for 1y, in Fig. 4(a), we find that the 35; and 3D, channels
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of the AN configuration strongly couple to each other only in the very narrow region of
the thereshold energy. Apparently this is initiated by the combined effect of the AN-
LN coupling and the tensor.force, since the dashed curves in Figs.2 and 3 show smooth
behavior entirely different from the solid curves. The rather moderate strength of the AN -
LN coupling except for this narrow threshold region is reasonable, since the tensor force in
the AN system is dominantly contributed from the K-meson exchange through the exchange
Feynman diagram.

On the other hand, the £V system has the contribution from the 7-exchange tensor force
in the direct diagram and shows a strong effect of the 35;-3D; coupling. This feature is indeed
seen in Fig. 5, where the TNV phase-shift curves are depicted in various approximations. In
Fig.5, the dotted curve shows the LN(I = 1/2) single-channel calculation with the tensor
force turned off. When all the non-central forces are turned on, we obtain the dashed curve
which is the result of the full TN single-channel calculation. The maximum value of the
phase shift has increased from 20° to 48° mainly due to the tensor force in this £V channel.
If we further introduce the channel-coupling to the AN configuration, we find the very strong
attractive nature of the phase shift at low energies. Namely, the XN phase shift sharply
decreases from 180° to about 90° at py = 60 MeV/c.

One may think that this strong coupling of the narrow width between AN 3S) and
LN(I = 1/2) 35; channels is caused by the strong one-pion temsor force existing between
AN 38, and XN(I = 1/2) 3D, channels, in addition to the above mentioned tensor force
in the N channel. However, this does not seem to be the case, since the transmission
coefficient 7y, in Fig. 4(a) does not show a prominent rise. On the other hand, the 73 curve
in Fig.4(b) for the SN(I ='1/2) 351 to AN 3D, channels shows a rather sharp rise up to
13 = 0.6. To make sure that this component is actually very important, we show in Fig. 6
the reflection coefficients 733 and the transmission coeficients when the channel coupling to
AN configurations is turned on (solid curves) and off (dashed curves) in the TN(I = 1/2)
scattering. We here find that the above coupling is essential for the sharp resonance behavior

at the £V threshold.
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In Fig.5, the ZN(I = 1/2) 'S, phase shift is also shown for comparison with the same
curve in Fig. 1. Only difference is that the curve in Fig. 1 is obtained by selecting the AN
channel as the primary channel, while that in Fig.5 is by selecting the SN channel. As is
discussed in §2, these two curves are not exactly equal in the present treatment. However,
if we compare the phase-shift values at the same incident momentum, we find that the
difference is rather small. For example, the phase-shift value at py = 1,000 MeV/cin Fig. 1 is
—76.15°, while that in Fig. 5 at the corresponding ¥ incident momentum py = 911.2 MeV/c
through Eq. (2.9) is about —74° and the difference is just a couple of degrees.

In order to make sure that the low-energy behavior of the AN S-wave phase shifts is
consistent with the available Ap cross section data, we list in Table I the comparison of
the singlet and triplet S-wave effective-range parameters predicted by RGM-F with those of
_the other models and some experimental analyses 911, We see that these parameters for
the AN system have very nice correspondence to the.valum determined by many successful
OBEP models like the Nijmegen models®® and the Jiilich models?). In particular, the
singlet and triplet scattering lengths satisfy the condition |a,| > |a:|, which is required from
the spin assignment of H system.'®

Figure 7 shows the phase-shift behavior of the four-channel calculation composed of AN
'Dy-°D; and TN(I = 1/2) ' D;- D, channels. The antisymmetric LS force couples ! D,
and 3D, channels. The full calculation reproduces the behavior of the Ap phase shifts of the
model-F very nicely.

Next, we discuss P-wave phase shifts in the AN and SN(I = 1/2) systems. For J = 0
.and 2, the results of the two-channel calcuiations are given by solid curves in Figs.8 and 9,
respectively. Here we also find that the coupling effect between these two channels is not
particularly significant in the whole energy region. In both cases, it increases the attractive
feature of the single-channel AN phase shifts by up to about 10 degrees. The AN 3P, phase
shift shows a weak Wigner cusp at the £V threshold, while the 3P, phase shift is appreciably
more attractive than either of the model-D or model-F predictions.

A similar feature to the threshold resonance in the 3S; AN phase shift is seen in the four-
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channel calculation of the P-wave J = 1 system. The 1P, and 3P, phase shifts of the AN and
EN(I = 1/2) systems are shown in Figs. 10 and 11, respectively, together with the model-F
predictions for the AN phase shifts. Here one finds that, although the AN phase shifts are
very small in the single-channel calculations (dashed curves), they gain vigorous resonance
behavior through the channel-coupling at py = 380 MeV/c, which is about 65 MeV/c below
the LV threshold. It is important to note that the resonance in the 3P, chaonel in Fig. 11
shows the step-like behavior, while that in the ' P, channel in Fig. 10 shows the dispersion-like
behavior. This implies that the resonance state has a larger partial width in the 3P; channel
than in the 'P, channel.’® In order to see that the dominant component of this resonance
state lies in the TN(I = 1/2) 3Py channel, we show in Fig.12 the reflection coefficient M1
and the transmission coeflicients 7y, 73; and 74, for the S-matrix with the AN 1P, incident
channel. Here, the AN 'P;, AN 3Py, SN(I = 1/2) 'P, and EN(I = 1/2) *P; channels
are denoted by 1, 2, 3 and 4, respectively. The coefficient 4, has a very sharp rise at the
threshold and increases up to ny = 0.7 at py = 1 GeV/c:

The origin of this resonance is in fact the weak attraction already found in the TN I=
1/2) 3P central phase shift discussed in Ref.2). In order to see this, we show in Fig. 13
how the TN(I = 1/2) 3P; phase shift changes with the successive introduction of various
pieces of interactions. The 3P phase shift calculated only with the central force (dotted
curve) shows weak atiraction up to 25° at pr = 800 MeV/c. It is strongly enhanced by
the LS and tensor non-central forces and reaches 60° at the maximum value (dot-dashed
curve). The introduction of the LS(~) force further enhances this attractive effect through
the coupling with the ' P, channel of the TN(I = 1/2) system (dashed curve). The phase
shift goes beyond 90° at ps = 260 MeV/c. Further extension of the model space through
the coupling with the AN channel suddenly pushes this resonance away to the 3P, state of
the AN channel, where the very prominent broad step-like resonance appears a3 in Fig. 11.
This interesting effect of the LS~} force in the AN-IN coupled-channel problem is not
introduced in the Nijmegen model, which gives very smooth behavior in Figs. 10 and 11.

Quite clearly, this is related to the fairly strong LS force predicted in the quark model
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with the full Fermi-Breit interaction®. Unlike the SN(J = 3/2) channel, the ZN(I = 1/2)
and. AN channels gain a very strong effect of the LS() force which causes the transition
between the symmetric and antisymmetric octet configurations, (11} x (11) — (11), and
{11),, even for the SUs-scalar Hamiltonian with exact flavor symmetry. Since the flavor
symmetric SN (I = 1/2) configuration contains the (11), component with 90 % (see Table
I of Ref.2)), the effect is apparently the strongest for the transitions to the TN(I = 1/2)
channel. Here we again find the phenomenon that the rather insignificant AN - EN(I = 1/2)
coupling in each of the 3P, and ! P, channels is strongly enhanced by the non-central force,

this time, the LS¢ force.

3.2. Total and Differential Cross Sections

The calculated total cross sections for the Ap scattering are compared with the experi-
mental data'?1:4) in Fig. 14. A broad bump in the energy region px = 300 ~ 500 MeV/c
is a consequence of the prominent resonance structure in 3P, and ' P, states discussed in the
preceding subsection. The agreement with the experiment is fairly good except for the last
two high-momentum data points at py = 290 and 300 MeV/c by the Rohovoth-Heideiberg
collaboration 1 and by the Maryland group!V. We should, however, note that the present
calculation gives too small threshold energy for the LN configuration. In a more realistic
calculation with the correct threshold energy, it is probable that the peak position shifts to
the higher momentum region and the peak height becomes much lower. Furthermore, the
threshold resonance of the 35, and ®Dy states appearing in the Nijmegen models®®) and
the quark model in Ref.15) does not seem to show up clearly in this calculation. This is
probably because the width of this resonance is very sharp as is seen in Figs. 2 and 3.

For the £~ p scattering cross sections, we have the reservation that the present calcula-
tion does not incorporate the Coulomb force. This is because the approximate treatment
developed in pp and T*p systems is not sufficient for incorporating the isospin symmetry

breaking of the present coupled-channel systemn. One has to deal with the difference of the
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threshold energies of the ©~p and £%r systems. Since the effect of the Coulomb force is less
than 10 ~ 20 % in the cross sections as is discussed in Ref. 12}, we simply use the isospin
relations to construct the scattering amplitudes with these particle bases. Figure 15 com-
pares the calculated the total elastic cross sections for ™ p scattering with the experimental
data of Ref. 16). The calculation overestimates the experiment more than 40 ~ 50 %, which
is common to the quark-model study in Refs.17), 15) and 18). Figure 16 shows the dif-
ferential £~ p elastic cross sections at pr = 160 MeV/c. The calculation overestimates the
magnitude, and does not fully reproduce the rather steep forward rise of the experimental
data. The total reaction cross sections for the £~p — In charge-exchange reactions are
shown in Fig. 17, together with the experimental data of Ref. 19) and the unpublished data
of the Massachusetts group?”. The total reaction cross sections for Sp — An and the
differential cross sections at pr = 160 MeV/c are shown in Figs. 18 and 19, respectively,
together with the data of Refs. 19) and 20). A reasonable agreement is obtained between
theory and experiment, although more accurate determination of the cross sections is clearly

indispensable for a detailed comparison.

§4. SUMMARY AND OUTLOOK

The final goal of this investigation is to achieve a unified description of the hyperon-
nucleon (Y N) interaction consistent with the nucleon-nucleon (/N N) interaction by employ-
ing the compositeness of the octet baryons in terms of the quark degrees of freedom. Since
hyperons and nucleons belong to the same class of the spin-flavor SUs supermultiplet 36,
the rich flavor symmetry of the quark model is expected to provide a strong constraint on
the internal consistency of the NN and Y' N interactions. In this and previous? papers, it
is found that such a description is indeed possible, if the SUs quark model incorporates the
full Fermi-Breit interaction with explicit flavor symmetry breaking, and is reinforced with
the minimum effective meson-exchange potentials induced from the scalar-meson central

attraction and 7, K tensor force of the Nijmegen model-F potential. With two adjustable
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parameters determined from the deuteron binding energy and NN 1S, phase shift, all the
low-energy cross sections of the hyperon-nucleon interaction currently available are reason-
ably reproduced in a unified RGM framework. We call this model RGM-F, since all the
meson parameters are taken over from the Nijmegen model-F potential.

In this paper, we have discussed the system with the total hypercharge Y = 1 and the
isospin I = 1/2; i.e., AN-ZN(I = 1/2) system, in which the channel-coupling effect of
the AN and EN(I = 1/2) configurations plays an important role. The effective meson-
exchange potentials in the coupled-channel equation are constructed by following basically
the same idea as adopted in the previous single-channel calculations in the NN and T+*p
systems.? No further parameter fitting is made in the present coupled-channei calculation.
By the careful elimination of the Pauli-forbidden component in the 1Sy state, it is found
that the AN - XN(I = 1/2) channel-coupling effect is usually not significant except for some
specific energy regions. One is the EN threshold region in the AN scattering, in which a
cusp structure appears in the 'Sy state. This cusp structure is strongly enhanced by the
tensor force to show sharp step-like and dispersion-like resonance behavior in the 3S; and
3D, states, respectively. The effect of this threshold resonance on the Ap total cross sections
is not strong, probably because the width is very small. On the other hand, the very strong
antisymmetric LS} force characteristic in.the quark-model study of the [ = 1/2 system
gives a prominant bump structure with a large width at the energy region slightly below the
LN threshold. This is caused by the intriguing mechanism that the weak 3P resonance in
the EN(I = 1/2) channel due to the effect of the Pauli principle is strongly enhanced in the
3P, channel by the L5 and the other non-central forces and that the developed resonance
moves to the 3P, and ! P, states of the AN channel. The 3P, resonance is step-like and the
1P, resonance is dispersion-like in the present calculation.

In spite of the predictive feature of the present calculation, the qualitative aspect of the
Ap resonance should not be overtrusted, since we have made a couple of simplifications to
make this calculation possible. First of all, we have introduced rather weak flavor symmetry
breaking by adopting A = m,/m. = 1.25. With this value of A, the calculated threshold
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energy of the £V chaanel in the AN scattering is only a half of the empirical value. Although
the other half is expected to be accounted for by the effect of meson-exchange potentials,
the present approximation is too crude to give the non-zero contribution to the internal
energies of the constituent clusters. The choice of a larger A value around A ~ 1.69 does not
seem to be permisgible, if one tries to realize the intricate balance of the central attraction
required in the overall reproduction of the !.S phase-shift behavior of the NN, AN and
EN systems. Furthermore, we have neglected the effect of the Coulomb force which is
appreciable especially in the £~p system. In connection with this, we have to note that the
Y~ p elastic cross section is already overestimated in the present calculation. It is possible
that the central attraction of the TN(/ = 1/2) channel is too attractive in the present
model. If the resonance in the £~ p single-channel calculation is not so prominent as in the
present case, it is very probable that the bump structure in the Ap total scattering cross
section is much more suppressed than in the present calculation.

We have to stress, however, that the main purpose of the quark-model study is not ac-
tually the reproduction of the experimental data, but to study the many-body aspect of the
quark-gluon dynamics manifested in the rich phenomena of the hadron-hadron interactions.
Because of the restriction of the non-relativistic quark model, it is preferable to avoid the
dynamical aspect of the quark confinement by assuming a simple harmonic-oscillator wave
function for the spatial cluster functions and to concentrate on the symmetry aspects of the
spin, flavor and color degrees of freedom. In this respect, the RGM framework is extremely
convenient, since it can isolate contributions of particular pieces of the quark residual in-
teraction through explicit evaluation of the quark-exchange diagrams. The most important
finding of this investigation ‘is that the short-range part of the NN and Y N interactions
is well described as the interaction between composite particles of quarks which interact to
each other with the residual interaction exemplified by the color analog of the Fermi-Breit
interaction. As for the relationship between the quark exchange effect and the vector-meson
exchange effect, Ref. 21) should be referred to. By assuming that the phenomenological con-

finement potential is flavor independent, we have succeeded in reproducing the rich flavor
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dependence of the hyperon-nucleon interaction in the short-range region with the standard
values for the limited number of quark-model parameters. The dominant contribution comes
from the color-magnetic and LS pieces of the Fermi-Breit interaction and the effect of the
Pauli principle among quarks as well. After this details analysis of quark-model contribu-
tions, we can then proceed to studying the important meson-exchange effects in the medium-
and long-range regions.

It is almost clear that we need more advanced treatment of the effective meson-exchange
potentials. The replacement of the coupling constants at the baryon level, as well as the
readjustment of the reduced mass to the empirical value, is not an entirely satisfactory
procedure in the RGM framework. It is more desirable to reproduce the medium-range
attraction and long-range tensor force through some appropriate quark-quark interactions.
This is possibly achieved either by the evaluation of spin-flavor-color factors of the meson-
exchange potentials between quarks or by the explicit introduction of the quark-antiquark
excitations carried out in the study of the NN interaction 22-%). Although both of these
directions need further analytical and numerical work, such an effort should be very fruitful
since they will certainly lead to a new generation of the quark-model potentials for the YNV

interaction.

ACKNOWLEDGMENTS

The authors would like to thank members of Nuclear Theory Groups of Kyoto and Niigata
Universities for useful discussions. They also would like to acknowledge the generous grants
of computer time by the Research Center for Nuclear Physics, Osaka University. This work
was supported by Grant-in-Aid for Scientific Research (C) from the Ministry of Education,
Science and Culture (04640296).

17

REFERENCES

[1] See, for example, Nucl. Phys. A547, Nos. 1, 2 (1992) 243c ; Proceedings of the U.S.-
Japan Seminar on Properties and Interactions of Hyperons, ed. B. F. Gibson, P. D.
Barnes and K. Nakai (World Scientific, Singapore, 1994).

[2] C. Nakamoto, Y. Suzuki and Y. Fujiwara, submitted to Prog. Theor. Phys. (1995).
(3] Y. Fujiwara, C. Nakamoto and Y. Suzuki, submitted to Prog. Theor. Phys. (1995).

[4] Y. Fujiwara, C. Nakamoto and Y. Suzuki, in Proceedings of the Second International
Sympostum on Medium Energy Physics, ed. Weiqin Chao and Pengnian Shen (World
Scientific, Singapore, 1995), p. 124.

(5] C. Nakamoto, Y. Suzuki and Y. Fujiwara, Phys. Letters B318 (1993), 587.
(6] M. M. Nagels, T. A. Rijken and J. J. de Swart, Phys. Rev. D20 (1979), 1633.
[7] M. Kamimura, Prog. Theor. Phys. Suppl. No. 62 (1977), 236.

[8] M. M. Nagels, T. A. Rijken and J. J. de Swart, Phys. Rev. D15 (1977), 2547.
[9) Particle Data Group, Phys. Rev. D50 (1994), Part 1.

[10] G. Alexander, U. Karshon, A. Shapira, G. Yekutieli, R. Engelmann, H. Filthuth and
W. Lughofer, Phys. Rev. 173 (1968) 1452.

[11] B. Sechi-Zorn, B. Kehoe, J. Twitty and R. A. Burnstein, Phys. Rev. 175 (1968) 1735.
[12] A. Reuber, K. Holinde and J. Speth, Nucl. Phys. A570 (1994) 543.

[13] See, for example, Section 9.4b. of K. Wildermuth and Y. C. Tang, A Unified Theory of
the Nucleus, Clustering Phenomena in Nucles, Vol. 1, ed. K. Wildermuth and P. Kramer

( Vieweg, Braunschweig, Germany, 1977).

{14) J. A. Kadyk, G. Alexander, J. H. Chan, P. Gaposchkin and G. H. Trilling, Nucl. Phys.
B27 (1971), 13.

18



{15] Ulrich Straub, Zhang Zong-Ye, Kurt Briuer, Amand Faessler, Surenda B. Khadkikar
and Georg Liibeck, Nucl. Phys. A508 (1990), 385c.

[16] F. Eisele, H. Filthuth, W. Fohlisch, V. Hepp and G. Zech, Phys. Letters 37B (1971),
204.

[17] U. Straub, Zhang Zong-Ye, K. Briuer, Amand Faessler, S. B. Khadkikar and G. Liibeck,
Nucl. Phys. A483 (1988), 686.

(18} Zong-ye Zhang, Amand Faessler, U. Straub and L. Ya. Glozman, Nucl. Phys. A578
(1994), 573.

(19] R. Engelmaan, H. Filthuth, V. Hepp and E. Kluge, Phys. Letters 21 (1966), 587.
(20] D. Stephen, Ph. D. thesis, Univ. of Massachusetts, 1970 (unpublished).

[21] K. Yazaki, Prog. Part. Nucl. Phys. 24 (1990), 353 ; Perspectives of Meson Sciences,
eds. T. Yamazaki, K. Nakai and K. Nagamine (North-Holland, Amsterdam, 1992), p.
795.

[22] Y. Fujiwara and K. T. Hecht, Nucl. Phys. A444 (1985), 541 ; A451 (1986), 625 ; A456
(1986), 669 ; A462 (1987), 621 ; K. T. Hecht and Y. Fujiwara, Nucl. Phys. A463 (1987),
255¢.

{23] Y. Fujiwara, Prog. Theor. Phys. Suppl. No. 91 (1987), 160.

19

TABLES

TABLE I. The S-wave effective-range parameters for AN system derived from RGM-F and the
other models; Nijmegen model-D®, model-F %), and Jilich models A and B'2. Some results of

the effective-range analysis are also shown in “exp’t”.

AN a,(fm) 75(fm) a:(fm) re{fm)
RGM-F -2.03 3.05 -1.66 3.26
model-D ~1.90 3.72 -1.96 3.24
model-F —2.29 3.17 -1.88 3.36
model-A -1.56 1.43 —-1.59 3.16
model-B -0.56 7.77 -1.91 2.43
exp't 19 -18 2.8 -16 3.3
exp't 1 -2.0 5.0 -2.2 3.5




Fig.1

Fig.2

Fig.3

Fig.4

Fig.5

Fig.6

Fig.7

Figure Captions

: Calculated AN and TN(I = 1/2) phase shifts for !S; channel as a function of the
incident momentum p, in the laboratory system. The AN phase shift in the single-
channel calculation is also shown in the dashed curve. The ¥V channel opens at the
“theoretical” threshold energy of p» = 445.2 MeV/c. The crosses denote Ap phase
shift predicted by the Nijmegen model-F® in the full calculation.

: Same as Fig. 1, but for 35, channel. The 3S;-3D, coupling by the tensor force is

included even in the AN single-channel calculation.

. Same as Fig. 1, but for (¢): AN phase shift in 3D; channel, and (b): the mixing
parameter ¢; for the AV 35, -3D; coupling. The predictions by the Nijmegen model-

D ® are also shown by open circles.

: The reflection and transmission coefficients ny; for J = 1 even-parity states of AN -
TN(I = 1/2) system. The channels f and i are specified by 1: AN 35, 2: AN 3D;,
3: SN(I =1/2) 35y, and 4: TN(J = 1/2) 3Dy. The coefficients in (a) are for AN 35,

incident channel and those in (b) are for TN(I = 1/2) 3S; incident channel.

: Calculated SN(I = 1/2) phase shifts in 3S;, 3D, and 15, channels as a function of
the incident momentum py in the laboratory system. The dashed curves denote the
results of SN(I = 1/2) single-channel calculations. The 35, phase shift calculated
with the LN central force only is also-shown by the dotted curve.

: Same as Fig. 4 (b), but as a function of the incident momentum py, in the laboratory
system. The result of the ZN(I = 1/2) single-channel calculation is also shown in the

dashed curves.

: Same as Fig. 1, but for D, and *D, channels. The coupling by the LS\ force is
included.
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Fig.8

Fig.9

Fig. 10

Fig. 11

Fig.12

Fig. 13 :

Fig. 14

Fig. 15

Fig. 16

Fig. 17

: Same as Fig. 1, but for 3P, channel.

: Same as Fig. 1, but for *P; channel. The Ap prediction by the Nijmegen model-D®

is also shown by open circles.

: Same as Fig. 1, but for ! P; channel. The coupling between ' P; and 3P; channels due

to the LS() force is included even in the AN single-channel calculation.

- Same as Fig. 1, but for 3P, channel. The coupling between ! P, and ®P; channels due

to the LS(-) force is included even in the AN single-channel calculation.

: The reflection (dashed curve) and transmission (solid curves) coefficients ny; for J =1
odd-parity states of AN - ZN(I = 1/2) system. The channels f and ¢ are specified by
1: AN 1P, 2: AN 3P;, 3: ©N(I = 1/2) ' Py, and 4: SN(I = 1/2) 3P,. The incident
channel is AN 'P;.

LN(I = 1/2) 3P, phase shifts in various approximations. Three types of single-
channel ZN ([ = 1/2) calculations are done by including the central force only (dotted
curve), non-central forces except for the LS force (dot-dashed curve), and the full
non-central forces (dashed curve). The solid curve indicates the full calculation with

both P -3P, and EN(I = 1/2)- AN couplings included.

. Calculated AN total elastic cross sections compared with the experimental data of

Refs. 10), 11) and 14).

: Calculated Tp total elastic nuclear cross sections compared with the experimental

data of Ref. 16). The Coulomb force is not included.

. Calculated T-p differential cross sections at py = 160 MeV /c compared with the

experimental data of Ref. 16). The Coulomb force is not included.

- Calculated ©~p — Z%n total reaction cross sections compared with the experimental

data of Refs. 19) and 20). The Coulomb force is not included.
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Fig.18 : Calculated £~p — An total reaction cross sections compared with the experimental

data of Refs. 19) and 20). The Coulomb force is not included.

Fig.19 : Calculated differential cross sections for &~p — An at py = 160 MeV/c compared

with the experimental data of Ref. 19). The Coulomb force is not included.
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