Search for the leptonic charge asymmetry of top-quark–antiquark pair production in association with a W boson with the ATLAS detector

MARCOS MIRALLES LÓPEZ ON BEHALF OF THE ATLAS COLLABORATION

Instituto de Física Corpuscular (IFIC) Universitat de València – CSIC, Valencia, SPAIN

A search for the leptonic charge asymmetry of top-antitop quark pair production in association with a W boson is presented. The search is performed using final states with exactly three charged light leptons (electrons or muons) and is based on $\sqrt{s} = 13$ TeV proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider at CERN during the years 2015–2018, corresponding to an integrated luminosity of 139 fb⁻¹. A profile-likelihood fit to the event yields in multiple regions corresponding to positive and negative differences between the pseudorapidities of the charged leptons from top-quark and top-antiquark decays is used to extract the charge asymmetry. At reconstructed level, the asymmetry is found to be -0.123 ± 0.136 (stat.) ± 0.051 (syst.). An unfolding procedure is applied to convert the result at reconstructed level into a charge-asymmetry value in a fiducial volume at particle level with the result of -0.112 ± 0.170 (stat.) ± 0.055 (syst.). The Standard Model expectations for these two observables are calculated using Monte Carlo simulations with next-to-leading order plus parton shower precision in quantum chromodynamics and including next-to-leading order electroweak corrections. They are $-0.084^{+0.005}_{-0.003}$ (scale) ± 0.006 (MC stat.) and $-0.063^{+0.007}_{-0.004}$ (scale) ± 0.004 (MC stat.), respectively.

PRESENTED AT

15th International Workshop on Top Quark Physics Durham, UK, 4–9 September, 2022

Copyright [2022] CERN for the benefit of the ATLAS Collaboration. CC-BY-4.0 license.

1 Introduction

The production of a top-quark-antiquark $(t\bar{t})$ pair in association with a W boson, commonly referred to as $t\bar{t}W$, is a rare process in the Standard Model (SM) which can be produced at the Large Hadron Collider (LHC). State-of-the-art cross-section calculations for the $t\bar{t}W$ process are especially complex, as large corrections arise from higher powers of both the strong and weak couplings [1]. Thus, measurements of the $t\bar{t}W$ process represent a sensitive test of the predictions of quantum chromodynamics (QCD) and the electroweak (EW) sector of the SM, as well as their interplay.

These proceedings present a search for the leptonic charge asymmetry (A_c^{ℓ}) in $t\bar{t}W$ production using proton-proton (pp) collision data at $\sqrt{s} = 13$ TeV in the trilepton (3ℓ) channel with the full Run 2 dataset with the ATLAS detector [2], corresponding to an integrated luminosity of 139 fb⁻¹. The leptonic charge asymmetry is defined as,

$$A_{c}^{\ell} = \frac{N\left(\Delta_{\eta}^{\ell} > 0\right) - N\left(\Delta_{\eta}^{\ell} < 0\right)}{N\left(\Delta_{\eta}^{\ell} > 0\right) + N\left(\Delta_{\eta}^{\ell} < 0\right)},\tag{1}$$

where $\Delta_{\eta}^{\ell} = |\eta_{\bar{\ell}}| - |\eta_{\ell}|$ is the difference between the absolute pseudorapidities of the leptons decaying from the top quarks $(|\eta_{\bar{\ell}}|)$ and top antiquarks $(|\eta_{\ell}|)$, respectively.

Refs. [3, 4] give a comparison of next-to-leading order QCD matrix elements matched to parton shower (PS) calculations of the leptonic charge asymmetries of $t\bar{t}$ and $t\bar{t}W$ production in the full phase space at $\sqrt{s} = 13$ TeV. The charge asymmetry for $t\bar{t}W$ is larger with respect to $t\bar{t}$ production at the expense of a smaller cross section of the process. In addition, the charge asymmetry is sensitive to BSM physics, such as axigluons [3] and Standard Model Effective Field Theory scenarios corresponding to four-fermion operators [5, 6].

2 Event Selection

Only events with exactly three charged light leptons (electrons or muons) are selected. The selected events are classified into four signal regions (SRs), depending on their jet and *b*-jet multiplicities, as well as their $E_{\rm T}^{\rm miss.}$. In addition, four control regions (CRs) are defined in order to constrain the dominant backgrounds. A series of specific event selections are used for each region to enrich the CRs and SRs with the target background or the signal yields, respectively.

In the $t\bar{t}W$ process, the leptonic charge asymmetry is manifested only in the leptons that originate from the top quark and top antiquark. Hence, as this search targets events with three leptons, a problem arises when selecting the two leptons used to compute the A_c^{ℓ} value. This problem is addressed using a Boosted Decision Tree (BDT) classifier algorithm that computes a discriminator value for each *even*^{*} lepton in each event. The fraction of events in the $t\bar{t}W$ sample in which the even

^{*}In the 3ℓ final state, the two leptons with equal charge are called the even leptons.

lepton with the highest BDT discriminator value originates from a top-quark or topantiquark decay is estimated to be $\approx 71\%$, using the information from Monte Carlo (MC) simulations.

3 Results

To extract the leptonic charge asymmetry from the reconstructed leptons (detector level), a simultaneous fit to the numbers of observed events in the SRs and CRs is performed. The fit is based on the binned maximum profile-likelihood technique. The normalisation factors for the most relevant background processes in the SRs, namely $t\bar{t}Z$, non-prompt electrons/muons from HF decays and electrons from γ conversions, are allowed to freely float in the fit. Each of the four SRs and the four CRs are separated into $\Delta \eta^-$ and $\Delta \eta^+$ regions. These are shown in Figures 1 and 2, respectively. For the $\Delta \eta^-$ ($\Delta \eta^+$) set of regions, a single factor $\mathcal{N}_{\Delta \eta^-}$ ($\mathcal{N}_{\Delta \eta^+}$) models the relative normalisations of the signal yields across the four SRs. Accordingly, the A_c^{ℓ} value is extracted as a function of these normalisation factors. Similarly, separate normalisation factors in the $\Delta \eta^-$ and $\Delta \eta^+$ sets of regions for the major background processes are allowed to float freely in the fit in order to avoid a bias from an assumption of SM asymmetries for these processes in data.

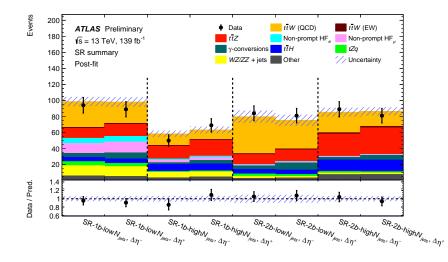


Figure 1: Comparison between data and the post-fit predictions for $\Delta \eta_{\text{BDT}}^{\ell} \leq 0 \ (\Delta \eta^{-})$ and $\Delta \eta_{\text{BDT}}^{\ell} > 0 \ (\Delta \eta^{+})$ in the four SRs. The error band includes the total uncertainties of the post-fit predictions. The ratio between the data and the total post-fit predictions is shown in the lower panel. Taken from Ref. [7].

The normalisation factors for the major background processes, $\mathcal{N}_{t\bar{t}Z}$, $\mathcal{N}^{e}_{\gamma\text{-conv}}$, $\mathcal{N}^{e}_{\mathrm{HF}}$ and $\mathcal{N}^{\mu}_{\mathrm{HF}}$ (all obtained separately for $\Delta \eta^{-}$ and $\Delta \eta^{+}$), together with $\mathcal{N}_{\Delta \eta^{-}}$ and the A^{ℓ}_{c} value for the $t\bar{t}W$ signal, are given in Figure 3. An uncertainty is added to account

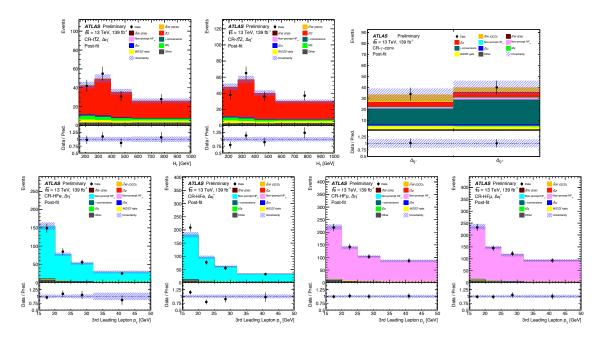


Figure 2: Comparison between data and the post-fit predictions for $\Delta \eta_{\text{BDT}}^{\ell} \leq 0 \ (\Delta \eta^{-})$ and $\Delta \eta_{\text{BDT}}^{\ell} > 0 \ (\Delta \eta^{+})$ in the CRs. The error band includes the total uncertainties of the post-fit predictions. The ratio between the data and the total post-fit predictions is shown in the lower panel. Taken from Ref. [7].

for the potential spurious impact of these background normalisation factors in the A_c^ℓ ($\Delta \eta^{\pm}$ dependency). The normalisation factor for the $t\bar{t}W$ process has been checked and found to be (within its uncertainty) compatible with the latest ATLAS and CMS $t\bar{t}W$ cross-section measurements [8, 9]. Tests in simulations have also been performed to validate that the extracted A_c^ℓ value is not biased by the absolute normalisation of the $t\bar{t}W$ process. The measured A_c^ℓ is compatible with the SM prediction and is limited by the available statistics. The largest systematic uncertainties originate from the $t\bar{t}W$ and $t\bar{t}Z$ modelling.

3.1 Unfolding procedure

To obtain the charge asymmetry at particle level (PL) in a specific fiducial volume, an unfolding procedure is performed. This allows for the correction of detector effects, as well as signal efficiency and acceptance effects. The unfolded value of A_c^{ℓ} is $-0.112 \pm 0.170 \text{ (stat.)} \pm 0.055 \text{ (syst.)}$. An injection test is performed to verify that non-SM A_c^{ℓ} values can be recovered in the unfolding procedure. This is done by injecting the non-SM A_c^{ℓ} values into the particle level predictions, which are propagated to detector level and treated as pseudo-data in the fit. After the fit to real data, the observed A_c^{ℓ} is substituted into the relation to extract the bias. This bias is small and is added as an extra uncertainty to the unfolded A_c^{ℓ} value.

ATLAS Preliminary vs = 13 TeV, 139 fb ⁻¹		
	1.59 ± 0.40	N _{tłw} (Δη ⁻)
 	1.28 ± 0.15	$N_{t\bar{t}Z}\left(\Delta\eta^{+} ight)$
	1.05 ± 0.14	N _{tīz} (Δη ⁻)
	1.04 ± 0.10	$N^{\mu}_{HF}\left(\Delta\eta^{\scriptscriptstyle +} ight)$
	0.98 ± 0.09	N^{μ}_{HF} ($\Delta\eta^{-}$)
	0.98 ± 0.08	N_{HF}^{e} ($\Delta \eta^{+}$)
	0.83 ± 0.09	N ^e _{HF} (Δη¯)
	1.27 ± 0.40	$N^{e}_{\gamma\text{-conv}}\left(\Delta\eta^{\scriptscriptstyle +} ight)$
	0.74 ± 0.34	N ^e _{γ-conv} (Δη ⁻)
- - -	-0.12 ± 0.14	A_c^{\prime}
0 0.5 1 1.5 2 2.5 3 3.5		

Figure 3: Normalisation factors for the major background processes, together with $\mathcal{N}_{\Delta\eta^-}$ for $t\bar{t}W$ and the A_c^{ℓ} value. The indicated uncertainties consider statistical as well as systematic uncertainties. The solid red vertical line in the last entry shows the SM expectation for A_c^{ℓ} , calculated using the $t\bar{t}W$ SHERPA [10] MC simulation. Taken from Ref. [7].

Summary 4

These proceedings present a search for the leptonic charge asymmetry in $t\bar{t}W$ production using pp collision data at $\sqrt{s} = 13$ TeV with the full Run 2 dataset collected by the ATLAS detector at the LHC. The charge asymmetry at reconstruction level is found to be

$$A_c^{\ell}(t\bar{t}W) = -0.123 \pm 0.136 \,(\text{stat.}) \pm 0.051 \,(\text{syst.}).$$

An unfolding procedure is used to obtain the charge asymmetry at particle level in a specific fiducial volume. The charge asymmetry at particle level yields

$$A_c^{\ell} (t\bar{t}W)^{\rm PL} = -0.112 \pm 0.170 \,(\text{stat.}) \pm 0.055 \,(\text{syst.}).$$

Both are found to be compatible with the SM expectation calculated using the nominal $t\bar{t}W$ SHERPA MC generator. The most relevant systematic uncertainties affecting this search can be attributed to the $\Delta \eta^{\pm}$ dependency of the fit, as well as the modelling uncertainties of the $t\bar{t}W$ and $t\bar{t}Z$ MC processes in the 3ℓ channel. However, both the reconstructed and particle level results are severely limited by the statistical uncertainties of the data. These results are collected in Ref. [7].

References

- [1] A. Broggio, A. Ferroglia, R. Frederix, D. Pagani, B. D. Pecjak and I. Tsinikos, JHEP 08, 039 (2019) doi:10.1007/JHEP08(2019)039 [arXiv:1907.04343 [hepph]].
- [2] ATLAS Collaboration, JINST 3, S08003 (2008) doi:10.1088/1748-0221/3/08/S08003
- [3] F. Maltoni, M. L. Mangano, I. Tsinikos and M. Zaro, Phys. Lett. B 736, 252-260 (2014) doi:10.1016/j.physletb.2014.07.033 [arXiv:1406.3262 [hep-ph]].
- [4] G. Bevilacqua, H. Y. Bi, H. B. Hartanto, M. Kraus, J. Nasufi and M. Worek, Eur. Phys. J. C 81, 675 (2021) doi:10.1140/epjc/s10052-021-09478-x [arXiv:2012.01363 [hep-ph]].
- [5] C. Degrande, N. Greiner, W. Kilian, O. Mattelaer, H. Mebane, T. Stelzer, S. Willenbrock and C. Zhang, Annals Phys. 335, 21-32 (2013) doi:10.1016/j.aop.2013.04.016 [arXiv:1205.4231 [hep-ph]].
- [6] I. Brivio and M. Trott, Phys. Rept. **793**, 1-98 (2019) doi:10.1016/j.physrep.2018.11.002 [arXiv:1706.08945 [hep-ph]].
- [7] ATLAS Collaboration, ATLAS-CONF-2022-062 http://cds.cern.ch/record/ 2827435
- [8] ATLAS Collaboration, Phys. Rev. D **99**, 072009 (2019) doi:10.1103/PhysRevD.99.072009 [arXiv:1901.03584 [hep-ex]].
- [9] CMS Collaboration, [arXiv:2208.06485 [hep-ex]].
- [10] Sherpa Collaboration, SciPost Phys. **7**, 034 (2019) doi:10.21468/SciPostPhys.7.3.034 [arXiv:1905.09127 [hep-ph]].