
CERN-TH-2022-195

Efficient quantum implementation of 2+1 U(1) lattice gauge theories
with Gauss law constraints

Christopher Kane,1, ∗ Dorota M. Grabowska,2, 3, † Benjamin Nachman,4, ‡ and Christian W. Bauer4, §

1Department of Physics, University of Arizona, Tucson, AZ 85719, USA
2InQubator for Quantum Simulation (IQuS), Department of Physics, University of Washington, Seattle, WA 98195

3Theoretical Physics Department, CERN, 1211 Geneva 23, Switzerland
4Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

(Dated: November 22, 2022)

The study of real-time evolution of lattice quantum field theories using classical computers is
known to scale exponentially with the number of lattice sites. Due to a fundamentally different
computational strategy, quantum computers hold the promise of allowing for detailed studies of
these dynamics from first principles. However, much like with classical computations, it is important
that quantum algorithms do not have a cost that scales exponentially with the volume. Recently, it
was shown how to break the exponential scaling of a naive implementation of a U(1) gauge theory
in two spatial dimensions through an operator redefinition. In this work, we describe modifications
to how operators must be sampled in the new operator basis to keep digitization errors small. We
compare the precision of the energies and plaquette expectation value between the two operator
bases and find they are comparable. Additionally, we provide an explicit circuit construction for
the Suzuki-Trotter implementation of the theory using the Walsh function formalism. The gate
count scaling is studied as a function of the lattice volume, for both exact circuits and approximate
circuits where rotation gates with small arguments have been dropped. We study the errors from
finite Suzuki-Trotter time-step, circuit approximation, and quantum noise in a calculation of an
explicit observable using IBMQ superconducting qubit hardware. We find the gate count scaling for
the approximate circuits can be further reduced by up to a power of the volume without introducing
larger errors.
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I. INTRODUCTION

With a fundamentally different computational strat-
egy than their classical counterparts, quantum computers
hold the promise of allowing first-principles calculations
of real-time evolution in quantum systems. Of particular
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interest are a class of quantum field theories, known as
gauge theories, which appear in many areas of physics,
including condensed matter physics, materials physics,
and particle physics. Specifically, the Standard Model of
Particle Physics, which encapsulates the majority of our
understanding of the fundamental nature of the universe,
is formulated in terms of three gauge theories, namely
U(1), SU(2), and SU(3). The process of developing a
quantum circuit for simulation of gauge theories is highly
non-trivial, and further developments are imperative to
keep up with rapid developments in hardware.

One of the necessary steps is to discretize the theory by
putting it on a finite lattice. Many choices are possible,
and recent work formulating the gauge theories using im-
proved Hamiltonians which have reduced discretization
errors has been done in Ref. [1].

A second necessary step when implementing gauge the-
ories onto a quantum computer is the development of
Hamiltonian formulations of their interactions. Gauge
theories naturally contain gauge redundancies, which can
lead to a significant increase in qubit cost, due to an en-
larged Hilbert space. Formulations have been developed
that impose gauge invariance both while still including
these unphysical states [2–14], and removing them a pri-
ori [15–17]. Reviews of the many different approaches,
both analogue and digital, can be found in Refs. [18–25].

Finally, one must digitize the theory to make the
Hilbert space finite. It is important that the chosen digi-
tization scheme matches the undigitized theory to a suf-
ficient accuracy and has quantifiable errors.

Much work has been done developing various meth-
ods, including loop string hadron formulations [26–32],
discrete subgroups and group space decimation [33–38],
mesh digitization [39], light-front formulations [40, 41],
orbifold lattice methods [42, 43], and magnetic and dual
formulations [15–17, 44, 45]. Different experimental re-
alizations can be found in Refs. [46–51].

Another important choice is which algorithm is used
to perform the time evolution. A number of methods ex-
ist, including Suzuki-Trotter methods [52], QDRIFT [53],
qubitization [54, 55], implementing a truncated Taylor
series [56], quantum walks [57], and variational methods
[58].

Previous studies quantifying gate count requirements
have looked at time evolution in effective quantum elec-
trodynamics (QED) [59] and 1 + 1 dimensional QED
[60, 61]. There has also been work on minimizing the
gate count for variational methods, as applied to a 2 + 1
U(1) gauge theory [62]. Detailed gate counts required for
implementing 1+1 SU(N) gauge theories were presented
in Ref. [63], and an implementation of 1+1 SU(3) was
done in Ref. [64]. In Ref. [65], a general procedure for
simulating gauge theories was presented and applied to
an SU(2) gauge theory. A general study of gate counts
required for implementing the Kogut-Susskind formula-
tion [66] of U(1), SU(2), and SU(3) gauge theories in d
dimensions was done in Ref. [67].

In this work, we construct explicit quantum circuits

for Suzuki-Trotter time evolution of a formulation of a
U(1) gauge theory in two spatial dimensions developed
in Ref. [17]. We choose to focus on Suzuki-Trotter time-
evolution for several reasons. The first is that it has been
shown in a 1 + 1 U(1) gauge theory that Suzuki-Trotter
methods scale linearly in the electric field cutoff com-
pared to qubitization, truncated Taylor series methods,
and QDRIFT, which all scale quadratically [61]. The sec-
ond is that Suzuki-Trotter methods require no ancillary
qubits, potentially making them better suited for noisy
intermediate-scale quantum (NISQ) [68] calculations.

As explained in Sec. IV, this formulation requires cir-
cuits to efficiently implement the Fourier transform as-
sociated with a U(1) gauge theory, as well as diagonal
matrices. The Fourier transform for a U(1) theory is
the usual quantum Fourier transform (QFT) and can be
done efficiently [69]. To implement the diagonal matri-
ces, we use the Walsh function formalism [70], which is
an efficient quantum algorithm for implementing diago-
nal matrices without using acillary qubits. This method
involves approximating the quantum circuit by dropping
single qubit rotation gates with small arguments, and
then removing CNOT gates using circuit identities. This
method is therefore relevant for NISQ calculations. More
importantly, because the number of T-gates required to
implement a fault-tolerant rotation gate increases with
precision [71], the Walsh formalism for dropping gates
with small angles is important to limit the number of
T-gates required in a fault-tolerant calculation.

It was shown in Ref. [72] that enforcing magnetic
Gauss’ law introduces a term that naively requires a
number of gates that scales exponentially in the volume.
While the Walsh function formalism can in principle be
used to break this exponential quantum cost, one caveat
of this method is that, for a particular class of matrices,
there is a classical computing cost, associated with con-
structing the desired efficient quantum circuit, that scales
exponentially in the volume. We will demonstrate that,
for a particular term in the magnetic Hamiltonian, this
classical cost will be prohibitively expensive for realistic
lattice sizes.

In Ref. [72], it was shown that the exponential volume
scaling in the gate count can be reduced to polynomial
by performing a carefully chosen operator basis change.
More importantly, this operator basis change also breaks
the exponential volume scaling in the classical compu-
tational cost associated with constructing the quantum
circuit. Note that this gate count reduction is for an ex-
act implementation, and that using the Walsh function
formalism to approximate the circuit will further reduce
the required gate count. In this work we will implement
this approach explicitly, which will allow us to study the
required quantum resources in more detail.

This paper is organized as follows. In Sec. II A we
provide a brief overview of the U(1) formulation con-
structed in Ref. [17]. In Sec. II B we then review the
operator change of basis method presented in Ref. [72]
and discuss modifications required to minimized digiti-
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zation errors. From there, in Sec. II C, we perform a
numerical study of the digitization errors for both the
original basis and weaved basis. In Sec. III we review the
Walsh function formalism and how it is used to construct
diagonal matrices. We then discuss in detail the scaling
of the number of gates, as well as the classical comput-
ing overhead, required to implement the time evolution
of a 2+1 dimensional compact U(1) gauge theory in the
original basis. In Sec. IV B we show that in the new
operator basis both the quantum gate count and the as-
sociated classical computing overhead scale polynomially
with the volume. We then implement the quantum cir-
cuits using the Walsh function formalism and show how
the gate counts can be further reduced by approximat-
ing the circuit. After some numerical studies, including
a simulation on an IBMQ quantum devices, we present
our conclusions.

II. U(1) FORMULATIONS USED IN THIS
PAPER

In this section we start by reviewing the formulation
of a compact U(1) gauge theory with a Hilbert space
that has been constrained to satisfy Gauss’ law. We also
review the representation of the magnetic and electric
operators introduced in Ref. [17], which can be used at
all values of the coupling. Next, we review the operator
basis change method in Ref. [72] and discuss the changes
in the digitization scheme necessary to keep an efficient
representation in this new operator basis. We conclude
by performing numerical tests comparing the precision of
the weaved basis to the original basis, and find they are
comparable.

A. Standard rotor formulation

The Hamiltonian considered in Ref. [17] is formulated
in terms of electric rotor and magnetic plaquette opera-
tors, given by R̂(x) and B̂(x), respectively. These oper-
ators satisfy [

B̂(x), R̂(y)
]

= i δ3(x− y) . (1)

The discretized version of the theory we consider intro-
duces a periodic lattice of Nx and Ny evenly spaced lat-
tice points in the x̂ and ŷ dimensions with a lattice spac-
ing a. The lattice version of the continuum Hamiltonian
is defined in terms of operators, R̂p and B̂p, with the in-
dex p denoting a specific plaquette in the lattice volume.
The Hamiltonian can be written in terms of an electric
and magnetic component

Ĥ = ĤE + ĤB , (2)

with the electric Hamiltonian given by

ĤE =
g2

2a

Nx·Ny∑
p=1

(~∇× R̂p)2 . (3)

The magnetic Hamiltonian can be written in one of two
ways. The first is the ‘non-compact’ formulation, given
by

Ĥ
(NC)
B =

1

2a g2

Nx·Ny∑
p=1

(B̂p)
2 , (4)

while the second formulation, called the ‘compact’ for-
mulation, is given by

Ĥ
(C)
B =

1

a g2

Nx·Ny∑
p=1

(1− cos B̂p). (5)

Note that the true continuum limit of these two formu-
lations is not necessarily the same and in fact, the con-
tinuum limit of the compact formulation is not unique or
universal. However, the compact theory shares several in-
teresting features with more complicated gauge theories,
which is why its study is illuminating in its own right.
Second, in non-Abelian gauge theories the gauge field
is necessarily compact, providing another reason why a
compact U(1) theory is often studied in detail.

We will call the bases where the operators ĤE and
ĤB are diagonal the electric and magnetic basis, respec-
tively. Furthermore, we denote operators in the electric
and magnetic basis with superscripts (e) and (m), re-

spectively. Because R̂p and B̂p are conjugate operators,
the electric and magnetic basis are related by a Fourier
transformation.

The magnetic Gauss’ law gives rise to one additional
constraint, namely

R̂Nx·Ny = 0 , B̂Nx·Ny = −
Nx·Ny−1∑
p=1

B̂p . (6)

The number of independent plaquettes is therefore Np ≡
NxNy − 1. Taking this constraint into account, the com-
pact magnetic Hamiltonian in Eq. (5) becomes (up to an
overall constant)

Ĥ
(C)
B = − 1

a g2

 Np∑
p=1

cos B̂p + cos

 Np∑
p=1

B̂p

 . (7)

Notice that the cos
(∑

p B̂p

)
term couples the entire lat-

tice together. As explained in Ref. [72], this fact, com-
bined with the non-polynomial functional form, is the
source of the exponential volume scaling in the circuit
depth. We show in Sec. IV A that this term is also the
source of the classical computing overhead that scales ex-
ponentially in the lattice volume when building the time
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evolution operator. While it may be possible to perform
time evolution without enforcing magnetic Gauss’ law a
priori, we focus in this work on implementations that do
enforce all gauge constraints.

Various representations for the operators R̂p and B̂p
are possible, and different choices result in differing lev-
els of efficiency (in both the number of qubits and the
number of gates required), as well as faithfulness in the
representation of the low-lying eigenstates. Most rep-
resentations are typically optimized for either weak or
strong couplings, where either the magnetic or electric
Hamiltonian dominate. In Ref. [17] a representation was
developed that is precise at both weak and strong cou-
pling that works in the magnetic basis. That representa-
tion depends on a maximum value bmax for the magnetic
field, which is chosen to optimize the representation and
depends on the number of digitized states (for details,
see Ref. [17]). Note that the standard choice of bmax = π
recovers the full range of possible magnetic field values in
the compact theory. However, as explained in Ref. [17]
smaller values of bmax should be used to obtain an ef-
ficient representation at small coupling. The procedure
for choosing bmax is explained later in this section.

The basis states of this representation are labeled by a
set of integers 0 ≤ lp ≤ N − 1 for each plaquette, where

N = 2nq , (8)

and nq is the number of qubits used to represent each
lattice site. The dimension of the Hilbert space is there-
fore

dimH = 2nqNp . (9)

The magnetic field operator in the magnetic basis is di-
agonal and defined as

B̂(m)
p

∣∣∣b(p)l 〉 = (−bmax + lp δb)
∣∣∣b(p)l 〉 , (10)

where δb = 2bmax/N . As previously mentioned, because

R̂p is conjugate to B̂p, the rotor operator in the magnetic
basis can be written as

R̂(m)
p = F̂T

−1
R̂(e)
p F̂T, (11)

R̂(e)
p

∣∣∣r(p)l

〉
= (−rmax + lp δr)

∣∣∣r(p)l

〉
,

where F̂T denotes the usual quantum Fourier transform
(QFT) and

rmax =
πN

2bmax
, δr =

π

bmax
; (12)

note that the choice of eigenvalues of B̂p coincide with a
choice of twisted boundary conditions. This representa-
tion does not rely on writing either the electric or mag-
netic operators as raising or lowering operators as most
representations use. We set a = 1 for the remainder of
the paper.

Before discussing the weaved basis, it will be useful

to review the prescription for choosing b
(i)
max for the pla-

quette i in the original basis, as presented in Ref. [17].
For the non-compact formulation, the optimal choice was
shown to be [17]

b(i),NC
max = g

2nq

2

√√√√β
(i)
R

β
(i)
B

√√
8π

2nq
, (13)

where bNC
max indicates the operator B̂i in the non-compact

theory is sampled in the range [−bNC
max, b

NC
max]. The vari-

ables β
(i)
R and β

(i)
B are found by matching the non-

compact magnetic Hamiltonian to a Hamiltonian, in-
spired by the quantum harmonic oscillator, of the form

HQHO =
g2

2
(β

(i)
R )2R̂2

i +
1

2g2
(β

(i)
B )2B̂2

i , (14)

and ignoring the cross-terms. As the operator B̂i is al-
lowed to take on any value in R, this optimal value works
well for all values of the gauge couplings. Note that this
result is found by replacing 2l+1 in the results of Ref. [17]
with 2nq .

For the compact formulation, the choice of bmax is more
complicated. For small values of g, the wavefunction in
the magnetic basis is sharply peaked around b = 0 and
so choosing a width according to the non-compact the-
ory will sample the wavefunction efficiently in the region
where it has support; another way to understand this
result is that the compact Hamiltonian reduces to the
non-compact Hamiltonian in the limit of weak coupling
(though this has to be treated carefully). As the gauge
coupling is increased, the region where the wavefunction
has support increases. Eventually, the wavefunction has
support over the entire interval [−π, π] and bmax cannot

become any larger. The upper limit of the value of b
(i)
max

is chosen such that the Fourier transform of (1− cos B̂i)
is the discrete version of a second order derivative with
periodic boundary conditions, which can also be written
in terms of raising operators, lowering operators and the
identity matrix. This choice of bmax in the large g limit
is motivated by the formulation of Ref. [17] needing to
match onto the Kogut-Susskind formulation [66] at large
coupling. Therefore, for the compact formulation we use

b(i),Cmax = min
(
b(i),NC
max , π

)
, (15)

where b
(i),NC
max is given in Eq. (13).

This prescription for b
(i),C
max in the large g limit as-

sumes that the coefficient of a magnetic field operator
B̂i is unity anywhere it appears in the compact mag-
netic Hamiltonian; for any operator basis where this is
not true, it must be modified. We discuss the modified
procedure in the next section.
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B. Weaved basis

The method presented in Ref. [72] that breaks the pre-
viously mentioned exponential volume scaling in the gate
count involves performing an operator change of basis of
the form

B̂p →Wpp′B̂p′

R̂p →Wpp′R̂p′ , (16)

where W is a carefully chosen orthogonal matrix. We
will refer to the operator redefinition as the weaved ba-
sis. Specifically, it was shown that, for any value of Np,
there exists a choice of W that reduces the scaling from
exponential to polynomial in Np [72]. We will not review
the weaved basis here, since all required details can be
found in the original paper.

In this weaved basis, if one chooses to represent the
B̂p and R̂p operators as in Ref. [17], the procedure for
choosing bmax must be changed in order to keep digitiza-
tion errors comparable to the original basis. While this
was mentioned briefly in Ref. [72], we will provide more
details in the following paragraphs.

As already mentioned in Sec. II A, this prescription for

b
(i),C
max in the large g limit assumes that the coefficient of a

magnetic field operator B̂i is unity anywhere it appears in
the compact magnetic Hamiltonian. In the weaved basis,
this will in general no longer be true, with some operators
having coefficients smaller than one. Consequently, even

if b
(i),C
max = π, an operator B̂i inside a given cosine will

not get sampled between the full range of [−π, π]. To
fix this problem, we propose scaling the upper limit for

each b
(i),C
max by the smallest coefficient of the operator B̂i

anywhere it appears in the Hamiltonian. As a simple
example demonstrating this method, we work through
the Np = 3 case. The rotation matrix used is

W =
1√
6

 √2 −2 0√
2 1 −

√
3√

2 1
√

3

 , (17)

which leads to the following Hamiltonian

ĤC,w
B = − 1

g2

(
cos
[√

3B̂1

]
+ cos

[
B̂1 −

√
2B̂2√

3

]

+ cos

[√
2B̂1 + B̂2 −

√
3B̂3√

6

]

+ cos

[√
2B̂1 + B̂2 +

√
3B̂3√

6

])
. (18)

As already mentioned, in order to ensure that the each B̂i
gets sampled between [−π, π] in all of the cosine terms,

we must scale the upper limit for each b
(i),C
max . In this

example one would choose b
(i),C
max values according to

b(1),Cmax = min
(
b(1),NC
max ,

√
3π
)

b(2),Cmax = min
(
b(2),NC
max ,

√
6π
)

b(3),Cmax = min
(
b(3),NC
max ,

√
2π
)
. (19)

With this choice, the arguments of certain terms will ex-

ceed π; for example,
√

2/3 times the upper limit for b
(2),C
max

will be greater than π. Because the wavefunction is pe-
riodic, these values still provide information about the
wavefunction, but they likely sample B̂i at non-optimal
values, which can lead to larger digitization errors for a
given number of qubits per lattice site. Note that even
though one is only performing an operator basis change
in this case, the numerical results can still differ due to
the presence of the cutoff bmax. We study the digitization
effects of both basis in the next section.

C. Precision comparison

In this section we compare the precision of the weaved
basis to the original basis for the 2 × 2 site lattice with
Np = 3 for three quantities, namely the energies of the
non-compact Hamiltonian, the energies of the compact
Hamiltonian, and the expectation value of the plaquette.

We start by comparing the precision of the digitized
energies of the two bases in the non-compact case for
Np = 3. Specifically, we compare the digitized energies
to the analytically known energies of the non-compact
Hamiltonian. Note that the eigenvalues in the non-
compact formulation are independent of the coupling
g. Figure 1 shows the relative error on the lowest 10
non-compact eigenvalues for both the original basis and
weaved basis for different values of nq. The weaved ma-
trix used is given in Eq. (17). We notice that the errors
are comparable, and for nq = 3, 4, 5 the original basis is
generally slightly more precise. One possibility for this
behavior is the previously mentioned fact that our dig-
itization scheme in the weaved basis likely samples the
magnetic field operators at non-optimal values. However,
for nq ≥ 3 the difference in precision between the weaved
and original basis will not be relevant unless a precision
of 0.1% is required for the quantum computation.

Next, we compare the energies of the two bases in the
compact formulation using a gauge coupling of g = 0.2.
Because the eigenvalues are not known analytically in
the compact case, we choose the original basis eigenval-
ues with nq = 5 as the “exact” values to compare against.
Figure 2 shows the relative error of the lowest 10 eigen-
values for both bases. For nq = 2, the weaved basis is
generally slightly more precise. For nq = 3 the original
and weaved basis have similar precision and nq = 4 the
original basis is more precise (however, both basis have
precision below 1 part in 104). As with the non-compact
case, for nq ≥ 3 the differences in precision between the
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FIG. 1. The relative error between the lowest 10 exactly
known eigenvalues in the non-compact theory to the nu-
merically calculated eigenvalues in the digitized theory using
Np = 3. The different colored lines indicate different values
of nq. The solid (dashed) lines indicate the original (weaved)
basis.
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FIG. 2. The relative error in the compact theory between the
“exact” eigenvalues and numerically calculated eigenvalues in
the digitized theory for Np = 3 and g = 0.2. The different col-
ored lines indicate different values of nq. The solid (dashed)
lines indicate the original (weaved) basis. The “exact” eigen-
values were taken to be the original basis with nq = 5.

two bases will not be relevant unless a precision of ∼ 0.1%
or greater is required. This difference in precision will
not be important for calculations done using NISQ hard-
ware due to noise in the quantum device. Even if one
uses fault-tolerant quantum computers, many physically
relevant calculations will not require a sub-percent preci-
sion to provide phenomenologically useful results and so
the difference in precision will not be important for these
cases either.

Lastly, we compare the expectation value of the pla-

quette in the compact theory, defined as

〈�〉 = 1 +
g2

Np + 1
〈Ψ0| Ĥ(C),(w)

B |Ψ0〉 , (20)

where |Ψ0〉 is the ground state of the full Hamiltonian
and Np = 3. To understand the expected behavior for
extreme values of g, it is sufficient to set bmax = π and
work in the original basis (assuming nq can be taken
large to remove digitization effects). In this case, at small
g, the Hamiltonian tends towards a harmonic oscillator
Hamiltonian and so the ground state is a Gaussian cen-

tered at b
(p)
lp

= 0 with a width ∼ g. As g approaches

zero, the contribution from b
(p)
lp

= 0 dominates. Look-

ing at Eq. (7) and plugging in b
(p)
lp

= 0, we see that

〈Ψ0| Ĥ(C)
B |Ψ0〉 = −(Np + 1)/g2 which implies that the

plaquette expectation value is zero at small g. At large
g, the electric Hamiltonian dominates and |Ψ0〉 is the

ground state of ĤE . If the rotors are sampled accord-
ing to Eq. (12), the ground state is degenerate, and can

be written as |r(1)l1 , . . . r
(Np)
lNp
〉. The canonical commuta-

tion relations between R̂p and B̂p imply that eiB̂p is
a lowering operator on rotor eigenstates. Writing each

cos B̂p = (eiB̂p + e−iB̂p)/2, we see that Ĥ
(C)
B applied to

the electric ground state will be orthogonal to the electric
ground state, and therefore the expectation value of the
plaquette at large g is one.

The top plot in Fig. 3 shows the value of the plaquette
calculated for both the original and weaved basis using
nq = 3 which corresponds to sampling an operator 8
times per lattice site. In Ref. [17], using l = 3, the pla-
quette expectation value for the original basis was within
0.1% of the value calculated using l = 6 for the compact
formulation 1 and so we take the expectation value calcu-
lated using the original basis with nq = 3 as the correct
value. The middle plot in Fig. 3 shows the ratio of the
plaquette expectation value in the weaved basis to the
original basis. We see that the prescription works well
for values all values of g except 0.6 . g . 3.0 where the
largest deviation is 7.5%.

By scanning for the optimal values of b
(i)
max we were able

to get the plaquette expectation value in the weaved basis
to be equal to the original basis. A plot of the ratio of the

values of b
(i)
max calculated using Eq. (19) to the scanned

values is shown in the bottom plot of Fig. 3. The scanned
values of bmax are slightly different than the prescription
we provide, with values varying more dramatically near
g ∼ 1. The values approach a constant because for large
g, the values of bmax reach their upper limit given in
Eq. (19). It is possible that one will have to perform
some kind of scan to get the optimal values of bmax in

1 In Ref. [17], the number of samplings for an operator was given
by 2`+ 1
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FIG. 3. Top: Expectation value of the plaquette as a function
of the coupling g for Np = 3 and nq = 3. The solid blue line
is the original basis, and the red cross marks are the weaved
basis. Middle: Ratio of the expectation value of the plaquette
for the weaved basis to the original basis as a function of the
coupling g. Bottom: Relative difference of bmax resulting from
a scan which makes the weaved plaquette expectation value
equal to the original plaquette expectation value and the value
of bmax used to calculate the plaquette expectation value in
the weaved basis using Eq. 19 as a function of g.

this basis when working in the coupling regime g ∼ 1.
A similar procedure for tuning the action parameters is
required in modern lattice QCD methods when using ef-
fective actions, see e.g. Refs. [73–78]. Alternatively, one
could use larger values of nq to reduce the digitization
errors.

III. WALSH FUNCTION IMPLEMENTATION
OF DIAGONAL MATRICES

As will be discussed in more detail in Sec. IV, efficiently
implementing time evolution via Susuki-Trotter meth-
ods of this formulation of a U(1) gauge theory reduces
to being able to efficiently implement diagonal matrices.
In this section, we review the Walsh function formalism
[70], which is an efficient algorithm for constructing di-
agonal unitary operators without ancillary qubits. We

first review how to construct an arbitrary m qubit diag-
onal operator exactly, which in general requires O(2m)
gates. Then we review how this algorithm can be modi-
fied to implement arbitrary m qubit diagonal matrices to
a precision ε using poly(m, 1/ε) gates, where poly(m, 1/ε)
is some polynomial function of m and 1/ε. We con-
clude by discussing a class of matrices where the classical
computing cost associated with constructing the efficient
quantum circuit scales exponentially with the size of the
circuit, and how this will be prohibitively expensive for
large diagonal matrices. As will be discussed, the Walsh
function implementation will result in circuits contain-
ing rotation matrices Rz(θi) sandwiched between CNOT
gates, where the rotation angles are determined by the
values of the diagonal matrix to be implemented. As we
will see, for many matrices some of these rotation angles
can turn out to be quite small. An exact implementation
will include all of the rotations, while an approximation
can be obtained where rotations with angles below a cer-
tain cutoff θmin are dropped. We will analyze the two
different implementations in the following sections.

A. Exact implementation (with θmin = 0)

Because arbitrary diagonal matrices acting on n qubits
in general have 2n independent entries, we can expect
that the construction of such a matrix on a quantum
computer requires an exponential number of gates. In-
deed, it was shown in Ref. [79] that the asymptotically
optimal gate count scaling for constructing arbitrary n
qubit diagonal matrices is O(2n). The Walsh function
formalism provides an algorithm for implementing arbi-
trary n qubit diagonal unitary matrices without ancillary
qubits using 2n − 2 CNOT gates and 2n − 1 single qubit
Rz rotation gates [70], which matches the asymptotically
optimal scaling. In addition, because Walsh functions are
analogous to the Fourier series, they share the beneficial
properties with regards to systematically approximating
functions to a desired precision. This property can be
leveraged to efficiently implement 2n × 2n diagonal uni-
tary matrices to a precision ε using O (poly(n, 1/ε)) gates
[70]. A more complete introduction to the Walsh func-
tion formalism can be found in Ref. [70]. We also provide
the necessary details for implementing the Walsh func-
tion formalism in Appendix D.

The task is to construct a 2n × 2n diagonal unitary

matrix Û = eiĤ . The N = 2n real phases are stored in
the matrix Ĥ. On a quantum computer, Walsh operators
are diagonal operators with values ±1 on the diagonal
and form a basis for real diagonal matrices. The j’th
Paley-ordered Walsh operator for an n qubit system is
given by

ŵj =

n⊗
i=1

(σzi )ji , (21)

acting on a state representing a dyadic binary representa-
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q1

q2

q3

q4 Rz(−2a13)

FIG. 4. The quantum circuit corresponding to the operator
eia13ŵ13 = exp(ia13σz ⊗ 1⊗ σz ⊗ σz).

tion of the integer k where, ji is the i’th bit of the binary
expansion of the integer j, σzi is the Pauli matrix acting
on the i’th qubit, and j ∈ [0, N − 1]. These operators
satisfy the orthogonality relation

Tr[ŵjŵk] = Nδjk . (22)

The phases on the diagonal of Û can be written as

Ĥ =
N−1∑
j=0

ajŵj , (23)

where the Walsh coefficients aj can be calculated by

aj =
1

N
Tr
[
Ĥŵj

]
. (24)

Note that the Walsh coefficients can be calculated us-
ing the fast-Walsh-transform which requires O(N log2N)
floating point operations [80].

Many quantum algorithms (those involving time evo-
lution for example) require the exponentiation of Walsh
operators in the form exp(iajŵj). They are constructed
by placing an Rz(θj) gate between two sets of CNOT
gates. The controls and targets of the CNOT gates are
determined from the index j. The rotation angle of the
Rz(θj) is given by θj = −2aj . As an example, the cir-
cuit for exp(ia13w13) is shown in Fig. 4. The diagonal
unitary operator with the phases on the diagonal given
by Ĥ =

∑n
i=1 aiŵi is implemented as a product of expo-

nentials of Walsh operators, Û = eiĤ =
∏N−1
j=0 eiajŵj .

Note that because the Walsh operators are diagonal,
the terms in the product commute and one is free to
choose an order that minimizes the number of CNOT
gates in the circuit. This is achieved by ordering the
Walsh operators according to their Gray binary order-
ing, i.e. using sequency ordered Walsh operators [70].
For an n-qubit circuit, the optimal ordering requires
(2n− 1) Rz gates and (2n− 2) CNOT gates for a total of
(2n+1−3) gates, which, as stated previously, is asymptot-
ically optimal [79]. A nice worked-through example for
constructing the optimal three qubit circuit can be found
in Ref. [70]. The resulting optimal three qubit circuit is
shown in the top circuit of Fig. 5. Larger circuits follow
the same general pattern of alternating CNOT and Rz
gates.

When implementing diagonal unitary matrices where
the phases on the diagonal are written as sums of different

diagonal matrices, an extra step must be performed to
produce the shortest depth circuit. For example, consider

a Hamiltonian that contains the term cos
(
B̂1 + B̂2

)
and

another term cos
(
B̂2 + B̂3

)
. Implementing each term

independently requires 2 ×
(
22n+1 − 3

)
gates. However,

the sum of these two terms can be written in terms of
Walsh operators as

cos
(
B̂1 + B̂2

)
+ cos

(
B̂2 + B̂3

)
=

2n−1∑
i,j=0

aiajŵi ⊗ ŵj ⊗ 1

+

2n−1∑
k,l=0

bkbl1⊗ ŵk ⊗ ŵl. (25)

Because ŵ0 = 1, the Walsh operators in the sums with
i = 0 and l = 0 will be the same and we can group
common Walsh operators as

cos
(
B̂1 + B̂2

)
+ cos

(
B̂2 + B̂3

)
=

2n−1∑
m=0

(a0am + bmb0)1⊗ ŵm ⊗ 1

+

2n−1∑
i=1,j=0

aiajŵi ⊗ ŵj ⊗ 1

+

2n−1∑
k=0,l=1

bkbl1⊗ ŵk ⊗ ŵl. (26)

Instead of implementing the common Walsh operators
separately, they can be implemented once as long as one
uses a Walsh coefficient given by the sum of the individual
Walsh coefficients. Taking into account that these two
terms share 2n Walsh operators will result in a gate count
less than 2(22n+1 − 3).

It is known that certain classes of diagonal unitary ma-
trices can be implemented in less than (2n+1 − 3) gates,
see e.g. Ref. [81]. To see how this simplification occurs
using the Walsh function formalism, consider construct-
ing the operator eix̂ using nq qubits, where x̂ is a diag-
onal matrix with evenly spaced entries on the diagonal.
As pointed out in Ref. [81], such an operator x̂ can be
written as x̂ = xmax

2nq−1
∑nq
j=1 2jσzj . We immediately see

that this operator is a sum of only nq Walsh functions,
as opposed to the 2nq required for an arbitrary diago-
nal unitary. The complex exponential of this operator
can therefore be implemented in O(nq) gates. From this,
one can also see that any product of two such operators,
e.g. x̂2, x̂1 ⊗ x̂2, is a sum of O(n2q) Walsh functions and

exponentiation requires O(n2q) gates. This simplification
will be important for reducing the cost of implement-
ing exponentials of both the electric Hamiltonian and
the non-compact magnetic Hamiltonian, which are lin-
ear combinations of such bilinear terms. The scaling for
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a general arbitrary unitary can be found by writing the
desired phases in terms of the operator x̂.

B. Efficient implementation (with non-zero θmin)

We now review a modification to this algorithm, orig-
inally described in Ref. [70], that leads to an efficient al-
gorithm for building arbitrary diagonal unitary matrices.
It is intuitively clear that if some of the rotation angles
θi = −2ai get very small, they can be dropped from the
circuit without introducing large errors. Doing so also re-
duces the number of CNOT gates required, making this
an important method for NISQ era devices. Further-
more, for fault-tolerant devices, Rz gates with high preci-
sion are expensive to implement, requiring 1.15 log2(1/ε)
T-gates [71], where ε is the precision which the gate is
implemented. Dropping rotation gates with angles less
than some threshold θmin is equivalent to rounding to
some fixed point accuracy [82] and therefore imposes a
limit to the precision ε. This in turn limits the number of
T-gates required to implement a given fault-tolerant ro-
tation gate, and therefoer this method is also important
for fault-tolerant devices.

We follow Ref. [70] and define the error between an

exact time evolution operator Û(t) = eiĤt and an ap-

proximate time evolution operator Ûε(t) = eiĤεt as

||Ûε(t)− Û(t)||, where ||Â|| = max|ψ〉|Â |ψ〉 | is the spec-

tral norm of operator Â, and |ψ〉 is any vector satisfying
〈ψ|ψ〉 = 1. The condition

||Ûε(t)− Û(t)|| ≤ ε (27)

is satisfied iff

|Ĥε(x)− Ĥ(x)| ≤ ε

t
,∀x . (28)

In Ref. [70], it is shown that it is possible to approxi-
mate an arbitrary diagonal unitary operator represented
by n qubits with some error ε using O(poly(n, 1/ε)) gates
and in that sense this method is “efficient”. The approxi-
mate operator Ûε(t) is constructed by keeping only Walsh
operators with Rz rotation angles with absolute value
above some cutoff θmin, referred to as threshold sampling.
While other methods exist for choosing the partial Walsh
series used to represent Ĥε(x), it was shown in Ref. [82]
that threshold sampling generally produces the shortest
length series for the smallest error, with the caveat that
error analysis is difficult to perform. A different method
was presented in Ref. [82] that, at the cost of a larger
partial Walsh series, allows for easier error estimation. It
will be interesting to compare these two methods, which
we leave for future work.

Suppose one places cutoffs θEmin and θBmin on the small-
est allowed rotation angle when implementing the unitary

operators e−iĤEδt and e−iĤBδt. As shown in Appendix F,
assuming a first order Suzuki-Trotter method, the total

error is bounded by

||Ûε(t)− Û(t)|| ≤ α t δt+ cEθ
E
mint+ cBθ

B
mint , (29)

where α = ||[ĤE , ĤB ]|| [70] and cE and cB are constants
that depend on the particular details of the approximate
Walsh series used. Because threshold sampling is equiv-
alent to rounding to some fixed point precision [82], this
upper bound assumes the error from dropping each Walsh
operator adds coherently. However, because the individ-
ual errors will not in general always add coherently, the
actual error from using cutoffs θEmin and θBmin will likely
be better than the upper bound in Eq. (29).

Note, however, that when using Suzuki-Trotter meth-
ods for time evolution, the desired precision ε is not equal
to the cutoff θmin placed on the rotation angles. Since the
Hamiltonians are scaled by δt, the Walsh coefficients are
given by

aj =
δt

2n
Tr
[
Ĥŵj

]
, (30)

and also scale with δt. Therefore, in order for the circuit
depth to stay constant as one changes δt, the minimum
angle has to scale with δt as well. This also ensures that
the overall error in the time evolution (29) scales with δt.

Note that, when using higher order Suzuki-Trotter
methods, one will have to choose θmin to scale with higher
powers of δt to ensure the truncation error is on the same
order of magnitude as the Suzuki-Trotter error. For ex-
ample, using a second order Suzuki-Trotter method, one
will have to choose θmin ∼ δt2 and the gate count will
not be constant for different choices of δt.

We follow the procedure given in Ref. [70] for con-
structing the circuit of a general approximate time evo-
lution operator Ûε(t). As in the case of creating the exact
circuit, Walsh operators are placed in sequency order, but
because some have been dropped, the number of CNOT
gates between each Rz gate can in general be more than
one. As this procedure will not in general produce the
circuit with the minimal number of CNOT gates, circuit
optimization techniques can be used to reduce the CNOT
gate count; the Rz gate count is fixed for a given θmin and
cannot be reduced with circuit optimization techniques.
While these O(1) − O(10) optimizations will be impor-
tant in an actual calculation, they will not change the
scaling arguments we present in the following section.

As in the exact Walsh function implementation re-
viewed in Sec. III A, it is important to combine Walsh
coefficients that are common between different terms in
the Hamiltonian in order to reduce the circuit depth. Ad-
ditionally, when using this approximation method, one
must be sure to do so before deciding to drop them
from the circuit. This removes the possibility that e.g.
two Walsh coefficients are independently below the cutoff
θmin, but their sum is not. Dropping the two Walsh oper-
ators from the circuit would be equivalent to dropping a
single Walsh operator with a Walsh coefficient above the
chosen threshold θmin, possibly resulting in larger errors
than the bound in Eq. (29).
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As a simple example of how the CNOT gate count
can be reduced, consider the construction of a diag-
onal unitary operator using three qubits with Paley-
ordered Walsh coefficients (a0, . . . a7) and Rz rotation an-
gles θj = −2aj . The top circuit in Fig. 5 shows the exact
implementation of the operator (the a0 Walsh operator
corresponds to a global phase and is not included). If we
choose a cutoff θmin such that the three angles θ3, θ5, θ7
are below the cutoff, we get the second circuit in Fig. 5.
After dropping the Rz gates, four CNOT gates can be
removed using circuit identities, resulting in the simpler
circuit shown in the bottom of Fig. 5.

C. Class of matrices with classical exponential
volume scaling overhead

One caveat with this method is that one must first cal-
culate all of the Walsh coefficients in order to know if they
are below the cutoff and therefore should be dropped.
Using the fast Walsh transform, the number of floating
point operations required to calculate 2n Walsh coeffi-
cients scales as O(n2n). In our case n = nqNp and for
realistic lattice sizes, the number of plaquettes will be
Np & 1000 and the Walsh coefficients will be impossible
to calculate classically for any value of nq. One proposed
method for breaking this classical exponential scaling is
through the use of decision tree learning algorithms to
find the best k term Walsh series that approximates a
function to a given precision [83]. Note that this method
is only valid for functions whose L1 norm of their Walsh
coefficients, i.e. the sum of the absolute value of the
Walsh coefficients, is not exponential in n. As we will
discuss further in Sec. IV A, the L1 norm of the Walsh
coefficients of the maximally coupled term in the compact
magnetic Hamiltonian is observed to scale exponentially
with the volume and therefore decision tree learning algo-
rithms cannot be used to break this exponential classical
cost. While this drawback will make simulations in the
original operator basis prohibitively expensive, we study
how imposing a lower limit on the Walsh coefficients af-
fects the gate counts required in an implementation in
Appendix E.

We conclude by pointing out that, once the Walsh coef-
ficients that will be included in the circuit are known, the
classical resources required to create said circuit scales
with the number of Walsh coefficients. Because any cir-
cuit implemented on realistic lattice sizes will only con-
tain a polynomial number of Walsh operators, this clas-
sical cost is also polynomial in the volume.

IV. RESOURCE STUDY

In this section, we focus on implementing time evo-
lution via Suzuki-Trotter methods and study the gate
counts needed to create the time evolution operators

Û
(m)
E (t) = exp

(
iĤ

(m)
E t

)
and Û

(m)
B (t) = exp

(
iĤ

(m)
B t

)

separately. We work in the magnetic basis and there-

fore Ĥ
(m)
B is diagonal, and Ĥ

(m)
E is diagonalized by a

QFT, which can be implemented efficiently on quantum

computers. For this reason, we will construct Û
(m)
E (t) by

first rotating to the electric basis, constructing the diag-

onal operator Û
(e)
E (t), and then rotating back. Because

both Û
(e)
E (t) and Û

(m)
B (t) are diagonal, the task of time

evolution reduces to the efficient construction of unitary
diagonal matrices.

We begin by discussing the gates required to imple-
ment time evolution in the original basis as a function
of the volume. We show that, while the Walsh function
formalism can in principle break the exponential volume
gate count scaling, doing so requires an exponential vol-
ume classical computing cost, which will be prohibitively
expensive for realistic lattice sizes. Then, we show that
the weaved basis breaks the exponential volume scaling
in both the quantum and classical cost. We construct the

quantum circuits for implementing Û
(m)
B (t) for different

values of Np and study how imposing a cutoff θmin re-
duces further the gate count. From there we study how
the gate count scales as a function of nq for different val-
ues of the cutoff θmin. We then study of the gate count
scaling as a function of the coupling g and conclude by
studying how the gate count scales with the cutoff θmin.

Before discussing exact gate counts, we point out that
in a realistic calculation one would take a continuum
limit. Because the lattice spacing a and the value of
the bare coupling g are related through renormalization,
understanding the dependence on the lattice spacing re-
quires performing the calculation at many values of g.
Methods for determining the lattice spacing a for vari-
ous gauge theories have been proposed in Refs. [84–86].
Additionally, in order to understand the Suzuki-Trotter
error, one would have to perform the calculation at dif-
ferent values of the Suzuki-Trotter step size δt or using
higher order methods. Because the Walsh coefficients
will in general be different in these different calculations,
the specific gate count will depend on the precise values
chosen.

A. Volume dependence of classical resources and
quantum gate count in original basis

The electric Hamiltonian is a sum of products of two
rotor operators, either R̂2 or R̂i ⊗ R̂j , where i and j la-
bel neighboring plaquettes on the lattice. These rotors
in the electric basis are diagonal matrices with evenly
spaced entries on the diagonal. As previously discussed
in Sec. III A, each of these products can be exponentiated
in O(n2q) gates. In Ref. [16] it was shown that the num-

ber of terms in ĤE is O(Np). This, combined with the
O(Npn

2
q) gates required to perform a quantum Fourier

transform at each lattice site, means that the electric
Hamiltonian in the magnetic basis can be exponentiated
in O(Npn

2
q) gates, which is linear in the lattice volume;
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q1 Rz,1

q2 Rz,3 Rz,2

q3 Rz,6 Rz,7 Rz,5 Rz,4y
drop gates Rz,3, Rz,7, Rz,5y

q1 Rz,1

q2 Rz,2

q3 Rz,6 Rz,4y
simplify CNOT gatesy

q1 Rz,1

q2 Rz,2

q3 Rz,6 Rz,4

FIG. 5. The top circuit shows the implementation of an arbitrary diagonal unitary matrix using three qubits. The middle
circuit is obtained from the top by dropping the gates Rz,3, Rz,7, Rz,5. The bottom circuit is obtained from the middle by
removing CNOT gates using circuit identities. We use the notation Rz,j ≡ Rz(−2aj).

here and throughout this manuscript, we drop overall
O(1) pre-factors.

Similarly, the magnetic Hamiltonian in the non-
compact theory, shown in Eq. (4) and subject to the con-
straint (6), is a sum of O(N2

p ) two-body operators with
linearly spaced entries on the diagonal. While enforcing
magnetic Gauss’ law introduces non-local interactions,
the non-compact magnetic Hamiltonian can still be ex-
ponentiated using O(N2

pn
2
q) gates, which is quadratic in

the lattice volume.
The compact magnetic Hamiltonian contains cosines of

operators with evenly spaced values on the diagonal as
shown in Eq. (7). There are two types of terms appearing,

the cosine of a single B̂i operator, and the cosine of the
sum of all B̂i operators. We will investigate the resources
needed to implement these operators separately.

To find the gate count required to exponentiate cos B̂i,
we write the cosine using the Taylor series as

cos
(
B̂i

)
=

∞∑
k=0

(−1)k

(2k)!
(B̂i)

2k. (31)

We discussed in Sec. II A that B̂i is a diagonal operator
with evenly spaced entries on the diagonal. As previ-
ously discussed in Sec. III A, each (B̂i)

2k term will require
O(22k) terms to exponentiate (note that if 22k ≥ 2nq ,
the number of gates will be O(2nq )). From this we see

that each cos B̂i operator is composed of 2nq Walsh co-

efficients and therefore exponentiation of all Np terms
requires O(Np2

nq ) gates to implement.

This is only exponential in nq, but linear in Np. Thus,
if the desired precision of the calculation can be achieved
while keeping nq relatively small, these terms will not
be prohibitively expensive. The digitization errors for
the non-compact formulation of a U(1) gauge theory was
studied in Ref. [17] for the 2×2 site lattice. It was found
that the low-lying spectrum could be reproduced to per-
mille level accuracy while only sampling the operators a
relatively small number of times, corresponding to using
nq = 3. In general, the convergence to the undigitized
result in the weak-coupling limit is exponential in nq [87,
88].

We now turn our attention to the term which is the
cosine of a sum of all B̂i operators. Because this term
couples the entire lattice together, the number of gates
required to implement this term scales exponentially with
the volume, which corresponds to the total number of
qubits utilized in the simulation. When bmax = π, a
symmetry in this term causes certain Walsh coefficients
to be zero. We observe numerically the gate count scales
roughly as O(2Np(nq−1)). For bmax < π, this symmetry is
broken and the gate count scales as O(2Npnq ). Because
calculations will need to be done at different values of g,
and therefore values of bmax < π, to take the continuum
limit, we proceed assuming the worse scaling. Even if
nq is small, this term will be impossible to implement
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exactly at lattice sizes needed for realistic calculations.
For example, even for a very small lattices of 3 × 3, 4 ×
4, and 5 × 5, with only two qubits per plaquette, this
naive implementation would require O(104),O(109) and
O(1014) gates per Suzuki-Trotter step, respectively.

While the exponential volume scaling in the gate count
can be broken using the truncation method described in
Sec. III B, the Walsh coefficients have to be calculated
classically and so there is also an exponential classical
computing cost. In particular, using the Fast-Walsh-
Transform, this step requires O(Npnq2

Npnq ) classical
floating point operations. As mentioned in Sec. III B, im-
plementing a decision tree learning algorithm could break
this classical exponential cost, but only if the L1 norm
of the Walsh coefficients of the maximally coupled term
is not exponential in the volume. In Appendix A, we
show the L1 norm of the Walsh coefficients of the max-
imally non-local term actually does scales exponentially
in the volume of the system. This finding indicates that a
completely different method is required to be able to im-
plement the maximally non-local cosine term in the com-
pact theory of U(1) gauge theories using Susuki-Trotter
methods. In the next section, we review the operator ba-
sis change method in Ref. [72], and show that it breaks
the exponential volume scaling in both the quantum and
classical computational costs.

B. Volume dependence of classical resources and
quantum gate count in weaved basis

In this section, we start by providing a more detailed
review of the change of basis originally given in Ref. [72]
and how it breaks the exponential cost associated with
simulating the maximally coupled term in the compact
formulation of U(1) gauge theories. We then study the
gate counts of the magnetic Hamiltonian after perform-
ing the operator basis change using the Walsh function
formalism.

As discussed in Sec. IV A, implementing the exponen-
tial of the maximally coupled component of the mag-
netic Hamiltonian, the cosine of the sum of all magnetic
plaquettes, requires a circuit whose depth scales expo-
nentially with the lattice volume. On the other hand,
implementing the cosine of a single magnetic plaquette is
only exponential in the number of qubits per lattice site,
which is typically manageable.

A redefinition that reduces the total number of mag-
netic field operators included in the maximally coupled
term is possible, but at the cost of increasing the number
of magnetic field operators in the previously completely
local terms. Choosing a redefinition which balances these
two effects such that each term in the Hamiltonian has no
more than O(log2Np) magnetic field operators appear-
ing in a single cosine would break the exponential scaling
in the total circuit size. It was shown in Ref. [72] that
for any lattice volume, there is always a choice ofW that
achieves this, where W is the orthogonal matrix that ro-

tates from the original to the weaved basis. In particular,
it was shown in Ref. [72] that for any Np, it is always pos-
sible to choose aW such that the number of gates needed
to implement the compact magnetic Hamiltonian for this
specific basis is

O
(
Nnq
p +Np

(
Np

log2Np

)nq)
, (32)

which scales polynomially with the volume where the ex-
ponent of the largest polynomial is given by nq.

Note that this redefinition does introduce more two-
body terms in ĤE , up to a maximum of O(N2

p ) terms.
However, as was discussed in Sec. II A, each of these
terms is possible to implement using O(n2q) gates, lead-

ing to an upper limit of O(n2qN
2
p ) gates required to im-

plement ĤE in the weaved basis. This quadratic volume
scaling is more than made up for by the breaking of the
previously exponential volume scaling.

Note that using this weaved Hamiltonian would also
reduce the resources necessary for implementing a varia-
tional approach to simulating this theory. In the rest of
the manuscript, unless otherwise stated, all gate counts of
weaved Hamiltonians were calculated using weaved ma-
trices W that minimize the gate count.

Before accepting this method as successfully trans-
forming the exponential volume scaling to polynomial, it
is important to also consider the classical computing cost
required to calculate the necessary Walsh coefficients.
Recall from Sec. IV A that we deemed the truncation
method inefficient since, while it resulted in a quantum
circuit depth that scaled polynomially in the volume,
there was a corresponding classical computational cost
that scaled exponentially in the volume. For the weaved
method, this is no longer true. As the dimensions of
all the unitary matrices in the magnetic Hamiltonian are
now O(N

nq
p ), the number of classical floating point op-

erations required to calculate all the Walsh coefficients is
O(nqN

nq
p log2Np). Additionally, the method for gener-

ating the weaved matrices themselves and carrying out
the change of operator basis was found to scale roughly
linearly with the volume with a small coefficient due to
the sparse nature of the weaved matrices [72].

To get a sense of the full scope of the gate count re-
duction from the operator redefinition, we have imple-
mented this new basis using the Walsh function method.
Recall that a single Suzuki-Trotter step for the com-
pact magnetic Hamiltonian in the original basis using
two qubits per lattice site required O(104),O(109) and
O(1014) gates for a 3× 3, 4× 4, and 5× 5 lattice, respec-
tively. In the rotated basis, the same term for both the
3×3 and 4×4 lattices can be implemented using O(102)
gates, and 5×5 lattice can be implemented using O(103)
gates.

A truncated Walsh series can be used to further im-
prove the gate requirements. We choose to study the gate
count considering choosing θmin assuming a 1st and 2nd

order Susuki-Trotter implementation, which can be found
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in Figs. 6a and 6b, respectively. Assuming a 1st order
method, we see that for values of 1/8 < θmin/δt < 4 the

scaling is between O(N
nq−1
p ) and O(N

nq
p ). The scaling

assuming a 2nd order method for 1/2 ≤ θmin/(δt)
2 < 4

is also between O(N
nq−1
p ) and O(N

nq
p ), which indicates

a 2nd order method could offer significant gate count re-
ductions by allowing one to use a larger Suzuki-Trotter
step δt.

C. Gate count dependence on qubits per lattice
site in weaved basis

While the change of operator basis discussed in
Sec. IV B breaks the exponential scaling with Np, it does
not break the exponential scaling with nq (even though
the scaling has been reduced from (2Np)nq to N

nq
p , the

scaling is still exponential). This is perhaps expected be-
cause 2nq is the number of times the operators of the
theory are sampled. Looking at this scaling from this
point of view, we see that the gate count in the weaved
basis actually scales better than linearly with the number
of times we sample the operators, and therefore it may
not a problem that the gate count scales exponentially
with nq as well. On the other hand, because nq must
take integer values, increasing nq by the smallest incre-
ment possible (one) will dramatically change the cost of
the quantum computation. Therefore, it may be that
this ‘exponential’ scaling must also be overcome.

In this section we study the scaling in nq using the
truncation method for the weaved basis. The scaling
for the original basis can be found in Appendix E. The
Hamiltonian we study is the weaved compact magnetic
Hamiltonian with Np = 3 and g = 0.1. Our results
for several values of θmin in a 1st and 2nd order Suzuki-
Trotter method can be found in Figs. 7a and 7b, re-
spectively. Considering a 1st order method, we see that
for values 1/4 ≤ θmin/δt ≤ 4, the scaling is between
quadratic and cubic in nq. Assuming a 2nd order method,
the scaling increases slightly. For values 1 ≤ θmin/δt ≤ 4
the scaling is between O(n2q) and O(n3q) and for values

1/4 ≤ θmin/δt < 1 the scaling is between O(n3q) and

O(n4q). In all cases, the scaling is polynomial, and the
exponential scaling has been broken. In addition, as with
the scaling with the number of plaquettes Np, the scaling
between considering 1st and 2nd order methods is com-
parable and it is possible that using a 2nd order method
could offer reduced gate counts.

D. Gate count dependence on coupling strength

Because the value of the lattice spacing depends on
the choice of lattice coupling, any continuum extrapola-
tion requires performing calculations for many values of
the coupling g. Figure 8 shows the number of CNOT

gates required to implement eiδtĤB in the weaved basis

for Np = 5 and nq = 2 as a function of the coupling for
different values of θmin. For small values of g the gate
count is constant. As g increases, because ĤB ∼ 1/g2,
the Walsh coefficients get smaller in magnitude and more
gates are dropped from the circuit. Once all Walsh co-
efficients are below the cutoff θmin, the gate count drops
to zero. This implies that the magnetic Hamiltonian can
be neglected given the desired precision, and in that case
it is more efficient to work directly in the electric basis.

Another interesting feature in Fig. 8 is that the number
CNOT gates for θmin = 0 is not constant as g varies. As
explained in Sec. II A, for small g, the wavefunction in
magnetic field space is highly localized and bmax < π.
As g increases, eventually bmax reaches its upper limit,
which restores a symmetry of the magnetic Hamiltonian
causing some Walsh coefficients to be zero. Because there
are three different values of bmax each with different upper
limits, there are three such drops in the gate count for
θmin = 0 as a function of g.

E. Gate count dependence on cutoff θmin

Another important scaling to study is the number of
gates as a function of the cutoff θmin. Figure 9 shows
the ratio of the number of CNOT gates required to im-
plement a single Suzuki-Trotter step between the trun-
cated weaved basis and the exact untruncated weaved
basis for Np = 5 and nq = 2. The quantum Fourier
transform circuit is implemented exactly. The same θmin

was used for Ĥ
(e)
E and Ĥ

(m)
B . We see that, for all val-

ues of g, the number of gates drops by a factor of two
when 0.05 . θmin/δt . 0.5. For values of θmin/δt & 0.5,
the number of CNOT gates can be reduced by a factor
of four or more. The most dramatic reductions in gate
count occur when choosing a cutoff θmin ∼ δt.

V. ERROR ANALYSIS OF EXPLICIT
OBSERVABLE

In the gate count studies in Sec. IV, we found that us-
ing a cutoff θmin on the same order as the Suzuki-Trotter
step size significantly reduces the gate count for a single
Suzuki-Trotter step. This choice in turn requires a sys-
tematic study of the errors introduced by the truncation
of the Walsh series to test how they compare with the
Suzuki-Trotter error. In this section we perform a simple
error analysis for a particular observable by calculating
its expectation value on a noiseless quantum simulator.
We then performing the same calculation on a (noisy)
quantum computer and study how imperfect hardware
affects the precision of the calculation.

The system we consider is a 2×3 lattice with Np = 5 in
the weaved basis. To keep the system size small enough
to study using quantum computers, we choose nq = 1.

The observable we choose to calculate is |〈Û(t)〉|2 ≡
|〈ΨE

0 |Û(t)|ΨE
0 〉|2 for some fixed value of t as a function of
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FIG. 6. CNOT gate count to implement the complex exponential of the weaved compact magnetic Hamiltonian as a function
of the number of plaquettes Np using g = 0.1 and nq = 3. The values of bmax were chosen to match the original basis values.
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FIG. 7. CNOT gate count to implement the complex exponential of the weaved compact magnetic Hamiltonian as a function
of the number of qubits per plaquette nq for fixed Np = 3 with g = 0.1. The values of bmax were chosen using the procedure in
Sec. II B. The gray lines show the functions n2

q, n
3
q, and n4

q for reference.

the coupling g, where Û(t) is the time evolution operator,
|ΨE

0 〉 is the ground state of the electric Hamiltonian, and
t = 0.2. Before comparing the various errors in the cal-
culation, we argue how |〈Û(t)〉|2 scales with g, which is

done by studying how ĤE and ĤB scale as a function of g.
The electric Hamiltonian goes as ĤE ∼ g2R̂2 and the ro-
tor operator goes as R̂ ∼ rmax. As discussed in Sec. II A,
the formulation we use chooses rmax ∼ 1/bmax. Since at
small values of g one has bmax ∼ 1/g, the magnitude of
the electric Hamiltonian in that region is roughly inde-

pendent of g at small g. The compact magnetic Hamil-

tonian at small g scales as Ĥ
(C)
B ∼ B̂2/g2 and because

B̂ ∼ g, Ĥ
(C)
B is also roughly independent of g. Thus, at

small g the Hamiltonian becomes independent of g and
the observable tends to some constant between 0 and 1.
At large g, Ĥ

(C)
B ∼ 1/g2. We therefore expect the elec-

tric Hamiltonian to dominate in that region, such that
the operator Û(t) is only adding a phase to the state

|ΨE〉. This finally implies that 〈Û(t)〉 will approach one
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and nq = 2. The different lines show different values of the
cutoff θmin.
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FIG. 9. Ratio of the number of CNOT gates required, for a
single Suzuki-Trotter step, between the truncated weaved op-
erator basis and the exact untruncated weaved operator basis
as a function of the cutoff relative to the Suzuki-Trotter step-
size θmin/δt. CNOT gate counts were calculated for Np = 5
and nq = 2. The different lines show different values of the
coupling g.

at large g.

Figure 10a shows |〈Û(t = 0.2)〉|2 as a function of g,
calculated using two values of the Suzuki-Trotter step
size δt = {10−3, 0.2} and two values of the cutoff θmin =
{0, 2δt} using a simulator. The first observation is that
all four combinations studied exhibit the expected qual-
itative behavior, starting at some intermediate value at
low g and approaching one as g is increased. The features
that are quantitatively different are the value at low g,
and the steepness of the approach to one as g is increased.
The solid gray line was calculated using δt = 10−3 and

with θmin = 0, and is considered the “exact” curve for
our comparison.

We first study the effects of using a using a non-zero
cutoff θmin. The blue cross marks in Fig. 10a were calcu-
lated using δt = 10−3 and θmin = 2δt. We observe that
value at small g is lower by ∼ 10%, and the transition to
one at large g is steeper.

We now study the effects of using a larger Suzuki-
Trotter step-size δt. The orange diamonds in Fig. 10a
were calculated using θmin = 0 for a single Suzuki-Trotter
step with δt = 0.2. Looking at small g, the Suzuki-
Trotter error results in a value that is lower by ∼ 20%,
which is a larger difference than only using a non-zero
cutoff θmin. As g is increased, we observe that the be-
havior matches the exact curve more closely.

We are now in a position to study the effect of per-
forming a calculation with both Suzuki-Trotter and fi-
nite cutoff errors. The dashed black curve in Fig. 10a
was calculated using a single Suzuki-Trotter step with
δt = 0.2 and using a cutoff θmin = 2δt. Looking first at
the small g region, we see that the combined error is al-
most identical to only the Suzuki-Trotter error. In other
words, imposing the cutoff θmin = 2δt on top of using
a larger Suzuki-Trotter step size of δt = 0.2 introduces
no additional errors for small g. Similarly for g ∼ 1,
the combined error in the steepness is similar to only the
cutoff error from a non-zero θmin. To summarize, our
numerical results show that the error from using a larger
Suzuki-Trotter step in addition to using a cutoff is only
as bad as the worse of the two individual errors.

The final component of our error analysis is to study
how errors from performing the calculation on NISQ
hardware change the result in addition to Suzuki-Trotter
and finite cutoff errors. The dashed black line in Fig. 10b
is the result of a noiseless quantum simulation imple-
mented in Qiskit [89] using δt = 0.2 and θmin = 2δt (this
data is the same as the black dashed line in Fig. 10a).

The rest of the markers in Fig. 10b correspond
to runs on IBMQ superconducting qubit quantum
hardware using δt = 0.2 and θmin = 2δt. We
use a number of quantum computers: ibm_hanoi,
ibmq_montreal, ibmq_guadalupe, ibmq_jakarta,
ibm_cairo, ibm_auckland, and ibm_washington.
These machines range from 7 qubits to 127 qubits, with
most machines operating with 27 qubits and the Falcon
processer. Readout and gate errors are about 1%, with
readout errors typically slightly higher than gate errors.
The circuit requires 5 logical qubits and the routing onto
physical qubits is performed using Qiskit (transpile,
optimization level 3).

As NISQ devices, the errors on these computers are
significant, which leads the raw output (red up arrows
in Fig. 10b) of the computer to deviate significantly
from the expectations. We apply rudimentary gate and
readout error mitigation techniques. Gate error mitiga-
tion is performed using zero noise extrapolation with the
fixed identity insertion method using one identity inser-
tion [90–92]. Readout error mitigation is performed using
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FIG. 10. Value of |Û(t)|2 ≡ |〈ΨE
0 |Û(t)|ΨE

0 〉|2 calculated as a function of the coupling g for t = 0.2. Figure 10a shows |Û(t)|2
calculated using a simulator, where different lines and data points correspond to different combinations of Suzuki-Trotter step-
sizes δt and cutoffs θmin. In Fig. 10b, the blue (red) points show the raw (corrected) output of |Û(t)|2 resulting from a quantum
calculation using IBMQ superconducting qubit hardware with δt = 0.2 and θmin = 2δt. The black dashed line in Fig. 10b is
the same quantity calculated using a simulator, and is the same as the black dashed line in Fig. 10a.

Lucy-Richardson deconvolution (sometimes called Itera-
tive Bayesian Unfolding in high energy physics [93]) with
20 iterations [94–96]. With these corrections, blue down
arrow data points in Fig. 10b track the expected depen-
dence on the coupling through g ∼ 1, after which there
is a 10% deviation from the fact that the correct an-
swer is all contained in one state so any errors move the
answer away from the correct result. Furthermore, the
entangling gate count increases from a few below g ∼ 1
to O(10) for g & 1. It will be interesting to explore
larger system sizes in the future and to combine the re-
sults with additional error mitigation schemes to further
improve the precision (see e.g. Ref. [97, 98]).

VI. SUMMARY AND CONCLUSION

In this work, we presented an explicit circuit imple-
mentation for Suzuki-Trotter time-evolution of a 2 + 1
dimensional, gauge redundancy free, U(1) gauge theory,
with a gate count that scales polynomially in the lattice
volume.

We implemented the formulation given in Ref. [17],
which enforces Gauss’ law at the level of the Hamilto-
nian. This, combined with the fact that we enforce mag-
netic Gauss’ law a priori, leads to a gauge-redundancy
free formulation. The non-compact formulation, in which
the Hamiltonian only contains bilinear terms, can be im-
plemented exactly using the Walsh function formalism
with a number of gates that scales quadratically in the
volume. The compact formulation on the other hand re-
quires a number of gates that scales exponentially with
the volume, the source of which is the maximally cou-

pled term in the magnetic Hamiltonian, the cosine of the
sum of all plaquette terms. While it is possible to break
this exponential scaling in the quantum circuit gate count
by dropping Walsh operators with small arguments, it is
first necessary to classically calculate exponentially many
Walsh coefficients, which is unrealistic even for small lat-
tice volumes.

As a solution to both the quantum and classical ex-
ponential volume scaling, we instead apply an operator
basis change, put forth in Ref. [72], that reduces the max-
imum number of magnetic field operators in a given co-
sine in the magnetic Hamiltonian to be logarithmic in
the volume. This in turn reduces the number of Walsh
coefficients, and therefore the circuit depth, to scale poly-
nomially with the lattice volume; additionally, the poly-
nomial number of Walsh coefficients can be calculated in
a reasonable amount of time, even for large lattice vol-
umes. Therefore, this method breaks both the classical
and quantum exponential scaling. This polynomial gate
count scaling can be further reduced by approximating
the circuit using the Walsh function formalism.

In addition to performing gate count studies, we ex-
panded on the work in Ref. [72] by providing a modified
procedure for choosing bmax in the weaved basis required
to maintain comparable precision to the original basis.
We performed several numerical tests for the 2 × 2 site
lattice and found that, using this new procedure, the pre-
cision of the weaved basis was comparable to the original
basis for equal qubits per lattice site in both the non-
compact and compact formulations.

It is important to note that if only the change of basis
procedure is implemented, there remains an exponential
scaling with the number of qubits per plaquettes, nq.
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We argue that the exponential scaling in nq is not too
problematic as the number of times the operators are
sampled, and thus the digitization errors, also scale ex-
ponentially with nq. However, because simulations will
have to be carried out at multiple values of nq to under-
stand the digitization errors, breaking this exponential
scaling may prove to be important. As was demonstrated
in Sec. IV C, if the change of basis procedure is combined
with the truncation method, then both the exponential
scaling with Np and nq is reduced to polynomial.

Additionally, we studied the gate count as a function
of g. We found that for large g, the magnetic Hamilto-
nian in the weaved basis can be completely neglected for
choices of θmin ∼ δt, indicating that it might be more
efficient to work in the electric basis for large g. Look-
ing at the gate count as a function of θmin indicated that
significant gate count reductions occur when θmin ∼ δt.
We then carried out an error analysis of an explicit ob-
servable comparing the Suzuki-Trotter error and cutoff
error, including performing the simulation on real quan-
tum hardware to see how noise from imperfect hardware
contributes to the overall error.

While we applied the Walsh function formalism to
time-evolution of a particular formulation of a U(1) gauge
theory in 2+1 dimensions, it can be applied to any prob-
lem where one needs to construct diagonal matrices ef-
ficiently. The fact that this algorithm does not require
ancillary qubits, combined with the reduction in CNOT
gate count, makes it useful for NISQ era computations.
Additionally, it provides a formalism for dropping Rz
gates with small arguments, which will be useful for fault-
tolerant computations. The Walsh function formalism

therefore has potential applications to state preparation,
higher dimensional generalizations of U(1) gauge theo-
ries, and non-abelian gauge theories, using both NISQ
and fault-tolerant devices.
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FIG. 11. L1 norm of the Walsh coefficients, ||~a||1, of the cosine of a sum of Np plaquettes as a function of nqNp. Fig. 11a shows
||~a||1 for fixed nq = 3. The different colored lines show different choices of bmax chosen relative to the upper limit for bmax given

by π. The black dashed line shows the function 2(Npnq−5)/(4nq) for reference. Fig. 11b shows ||~a||1 for fixed bmax = (0.5)π. The

different colored lines show different values of nq. The black dashed line shows the function 2(Npnq−5)/4 for reference.

Appendix A: Numerical study of L1 norm of Walsh coefficients of maximally coupled term

In this section we present numerical studies of the L1 norm of the Walsh coefficients of the maximally coupled term
in the compact magnetic Hamiltonian. Specifically, the function we study is

f̂ = cos

 Np∑
i=1

B̂i

 . (A1)

Each lattice site is represented with nq qubits and so the dimension of the operator is N ≡ 2Npnq . The Walsh
coefficients ~a = (a0, . . . , aN−1) are given by

aj =
1

N
Tr
[
f̂ ŵj

]
. (A2)

The L1 norm of these Walsh coefficients is given by

||~a||1 =

N−1∑
j=0

|aj |. (A3)

Calculating all of the Walsh coefficients using the fast Walsh transform requires O(nqNp2
nqNp) floating point op-

erations. Due to limited computational resources, we limit our numerical study to Npnq ≤ 21. Figure 11a shows
||~a||1 as a function of Npnq for several choices of bmax for fixed nq = 3. We see that for 6 ≤ Npnq ≤ 21, the scaling

is exponential, with each choice of bmax growing faster than 2Np(nq−5)/(4nq). We find similar results for nq = 2, 4.
Figure 11a shows ||~a||1 for the choice of bmax = (0.5)π for different values of nq. For the entire range of Npnq studied

and for each nq, the value of ||~a||1 grows at least as fast as 2(Npnq−5)/4. While we were unable to show that ||~a||1
will grow exponentially analytically, we expect the exponential growth to continue for values of Npnq required for
realistic calculations. Because the decision tree algorithm in Ref. [83] requires that ||~a||1 ≤ poly(Npnq), our numerical
studies indicate that this method cannot be used to break the classical exponential scaling required to compute the
exponentially many Walsh coefficients.

Appendix B: Single cosine Walsh coefficients

Raising and lowering operators are ubiquitous throughout physics. Because Hamiltonian operators must be hermi-
tian, sums of raising(lowering) operators are always accompanied by lowering(raising) operators. The sum of a raising
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FIG. 12. Number of CNOT gates required to implement exp
(
i cos

(
B̂
))

as a function of the number of qubits used to represent

the operator nq. The different colored lines indicate different values of the cutoff θmin.

and lowering operator (assuming periodic boundary conditions on the states) is diagonalized by a Fourier transfor-
mation. The resulting diagonal matrix is twice the cosine of evenly spaced entries on the diagonal. Understanding
how the Walsh coefficients scale for a single cosine operator is therefore of interest. Figure 12 shows the CNOT gate

count required to implement such a term, in the notation of the main text exp
(
i cos

(
B̂
))

, as a function of nq. The

construction of the B̂ operator follows the same procedure as outlined in Sec. II A. We notice that for a given value of
θmin the gate count levels off. This behavior occurs because as one increases the number of qubits used to represent
the cosine, the additional Walsh coefficients are all below the cutoff θmin/2 and dropped from the circuit. Any unused
qubits could be dropped from the calculation.

Appendix C: Analytic gate count scaling of repeated products of functions

In this part of the appendix we derive the scaling of implementing a diagonal unitary operator given by

exp
(
i
⊗N

i=1 f(x̂)
)

as a function of N , where f(x̂) is an arbitrary function of the diagonal operator x̂ which has

evenly spaced entries on the diagonal.
Each operator f(x̂) is represented by n qubits and can be decomposed into Walsh functions as

f(x̂) =

2n−1∑
j=0

ajŵj , (C1)

where aj and ŵj are the jth Walsh coefficient and Walsh function. We denote the nth largest magnitude Walsh
coefficient of the functin f(x̂) as An. So A1 and A2 are the largest and second largest magnitude Walsh coefficients,
respectively. The tensor product of two of these terms is given by

f(x̂)⊗ f(x̂) =

2n−1∑
j,k=0

ajakŵj ⊗ ŵk

≡
2n−1∑
j,k=0

ajkŵjk,

(C2)

where we have introduced the notation ajk ≡ ajak and ŵjk ≡ ŵj ⊗ ŵk. For a product of N terms we have

N⊗
i=1

f(x̂) =

2n−1∑
j1,j2,...jNp=0

aj1...jNp ŵj1...jN . (C3)
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where, similarly, aj1j2...jN ≡ aj1aj2 . . . ajN , and ŵj1j2...jN ≡ ŵj1 ⊗ ŵj2 ⊗· · ·⊗ ŵjN . Note that coefficients aj1j2...jN with
the same values of ji are equal regardless of the order of the indices ji due to the commutativity of multiplication of
real numbers. The same is not true for the tensor product of different operators. We want to understand how many
Walsh coefficients are larger than some threshold θmin/2 as a function of θmin/2 (we divide by 2 because the Rz gate
angle is twice the magnitude of the Walsh coefficient). In order to show this, we break up the sum according to the
number of common indices each term has. For example, with N = 2 we would write

2⊗
i=1

f(x̂) =

2n−1∑
j1,j2=0

aj1j2ŵj1j2

=

2n−1∑
j=0

a2j ŵjj +
∑
k>l

akal

(
ŵkl + ŵlk

)

= A2
1

[
2n−1∑
j=0

(
aj
A1

)2

ŵjj +
A2

A1

∑
k>l

akal
A1A2

(
ŵkl + ŵlk

)]
(C4)

where going to the last line we have factored out A2
1. Notice that because A1 is the largest magnitude Walsh coefficient,

for all j we have (aj/A1)2 ≤ 1. Similar arguments can be used to show for all k, l that |(akal)/(A1A2)| ≤ 1. This
implies that, in general, each term in the sum over k, l is suppressed by a factor of A2/A1 relative to terms in the sum
over j. For N = 4 we would write

4⊗
i=1

f(x̂) = A4
1

[
2n−1∑
j=0

(
aj
A1

)4

ŵjjjj +
A2

A1

∑
j>k

(
aj
A1

)3
ak
A2

(
ŵjjjk + ŵjjkj + ŵjkjj + ŵkjjj

)
+

(
A2

A1

)2 ∑
k,l=0
j>k,l

(
aj
A1

)2
ak
A2

al
A2

(
ŵjjkl + ŵjkjl + ŵjklj + ŵkjjl + ŵkjlj + ŵkljj

)

+
A2

A1

A3

A1

A4

A1

∑
j>k>l>m

ajakal
A1A2A3A4

(
ŵjklm + all other permutations

)]
.

(C5)

Notice that the sum over j, k, l in the second line is done such that k can equal l, but j can never equal k or l. This
organization means that there is always one pair of repeated indices, and when k = l there are two pairs of repeated
indices. To account for the scenario when k = l, we factor out two factors of A2. This guarantees |a2jakal/(A2

1A
2
2)| ≤ 1

for all j, k, l being summed over. The sum on the last line is done such that there are no repeated indices, and we
therefore pull out one factor of A2, A3 and A4. Making similar arguments as for the N = 2 example, terms with three
repeated indices are suppressed by a factor of A2/A1. Terms with at least one pair of repeated indices are suppressed
by a factor of (A2/A1)2. Terms with no repeated indices are more greatly suppressed, with a factor of (A2A3A4)/A3

1

suppression. This pattern holds for general N , as seen by

N⊗
i=1

f(x̂) = AN1

[ 2nq terms︷ ︸︸ ︷
2n−1∑
j=0

(
aj
A1

)N
ŵj...j

+
A2

A1

2n−1∑
j1>j2

(
aj1
A1

)N−1
aj2
A2

N terms︷ ︸︸ ︷(
ŵj1j1...j1j2 + ŵj1j1...j2j1 + · · ·+ ŵj2j1...j1

)

+

(
A2

A1

)2 2n−1∑
j2,j3=0
j1>j2,j3

(
aj1
A1

)N−2
aj2
A2

aj3
A2

N(N−1)/2 terms︷ ︸︸ ︷(
ŵj1j1...j1j2j3 + all other permutations

)
+ . . .

+
A2A3 . . . AN

AN1

∑
j1>j2>···>jN

aj1aj2 . . . ajN
(A2)N

N ! terms︷ ︸︸ ︷(
all permutations

)]
.

(C6)
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In other words, terms in a given sum with at least one set of r repeated indices are suppressed by a factor of
(A2/A1)r. If there is a large gap between the first and second largest magnitude Walsh coefficients, i.e. |A2/A1| � 1,

the gap between the maximum coefficient in each sum will be large. This implies that choosing θmin/2 > AN−r1 Ar2
ensures that every term in each sum with O(Nr+1) or greater number of terms will be dropped completely (except for
when r = 0, when terms are suppressed by a factor of A2A3 . . . AN/A

N
1 ). The resulting CNOT scaling for this choice

of θmin/2 will then be O(Nr). One complication is that the scaling is being studied as a function of N and so each
gate count will have a different N . This makes the specific choice of N when choosing θmin somewhat challenging.

As an example, consider the function

f(B̂) = cos
(
B̂
)

(C7)

where B̂ is the magnetic field operator represented by nq qubits. The diagonal B̂ operator is sampled using a bmax

value associated with the choice of coupling g = 0.1. The product of Np of these terms is given by

Np⊗
i=1

f(B̂i) =

Np⊗
i=1

cos
(
B̂i

)
. (C8)

To understand the CNOT gate count scaling as a function of Np, we first calculate the Walsh coefficients for a single

cos
(
B̂
)

operator. The Paley-ordered Walsh coefficients for the operator cos
(
B̂
)

using nq = 2 are shown in Table I.

The first and second largest magnitude Walsh coefficients are A1 = 9.83 × 10−1, A2 = 1.10 × 10−2. In the following

nq a0 a1 a2 a3

2 9.83× 10−1 1.10× 10−2 −1.10× 10−2 5.48× 10−3

TABLE I. Paley-ordered Walsh coefficients for the operator cos
(
B̂
)

for nq = 2.

discussion we will use A1 = 1 for simplicity. Doing so avoids the problem of what value of Np to raise A1 to. The
cutoff where we expect O(Nr

p ) scaling to turn is then given by

θ
(r)
min ≈ 2 (A2)

r
. (C9)

To test this, we calculate the number of gates to implement exp
(
i
⊗Np

j=1 cos
(
B̂j

))
for values 1 ≤ Np ≤ 8. We do

so for all cutoff values between 2−36 ≤ θmin ≤ 1 spaced by factors of 1/2. Fits are then performed to the CNOT

gate count assuming a polynomial fit form g(Np) =
∑7
k=0 bkN

k
p . This fit form was chosen because it has enough

parameters to perfectly describe the data. Figure 13 shows the result of the fit parameters bk as a function of θmin.
For the largest choice of θmin, all fit parameters are zero except for b1, indicating the scaling is linear in Np. As θmin

is decreased, more fit parameters become non-zero, indicating the scaling has changed. The black vertical lines show

the values of θ
(r)
min for r = 1, 2, 3, 4, 5 predicted using Eq. C9. We see that the predicted values of θ

(r)
min line up with

the actual values determined by the fit. The slight deviations are likely caused by the issue of choosing what power
to raise A1 to.

Appendix D: Details of the Walsh Function Formalism

In this section we provide a procedure for using the Walsh function formalism to construct diagonal unitary matrices.
A more complete introduction can be found in Ref. [70].

The Walsh function formalism works as follows. Suppose we sample a function f(x) at N = 2n evenly spaced
discrete points xk = k/N on the interval xk ∈ [0, 1− 1/N ]. The Paley/dyadic-ordered Walsh functions are defined as

wj(xk) = (−1)
∑N
i=1 jiki , (D1)

where j = 0, 1, ..., N − 1, ji is the i’th bit in the binary expansion

j =

n∑
i=1

ji2
(i−1) , (D2)
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FIG. 13. Fit parameters as a function of θmin. The fit parameters were found fitting the CNOT gate count required to

implement exp
(
i
⊗Np

j=1 cos
(
B̂j
))

for Np = 1, . . . , 8 to the fit form g(Np) =
∑7
k=0 bkN

k
p . The different colored points indicate

different fit parameters bk. The vertical black lines indicate the value of θ
(r)
min given by Eq. (C9) for r = 1, . . . , 5.

and ki is the i’th bit in the dyadic binary expansion

k =

n∑
i=1

ki2
(n−i) . (D3)

Notice that for any integer, the dyadic binary string is simply the bit-reversed binary string. We use the convention
that all classes of binary strings are written as (jnjn−1 . . . j1). As an example, consider the integer 13. Using the
definitions and notation above, the binary string is (1101) and the dyadic binary string is (1011). Using these strings,
we find w13(x13) = (−1)2 = 1. Two other orderings of the Walsh functions are sequency ordered where ki is instead
the ith bit of the Gray binary expansion of k, and the Hadamard/natural ordered where ki is the ith bit of the binary
expansion of k.

Analogous to the discrete Fourier series, the Walsh functions form an orthogonal basis of discretely sampled func-
tions. They satisfy orthogonality relations

N∑
i=1

wj(xi)wk(xi) = Nδjk . (D4)

The function f can be written as

f(xk) =

N∑
j=1

ajwj(xk) , (D5)

where the Walsh coefficients can be calculated by

aj =
1

N

N∑
i=1

f(xi)wj(xi) . (D6)

As pointed out in the main text, the Walsh coefficients can be calculated using the fast-Walsh-transform which requires
O(N log2N) floating point operations [80].

The ability to represent discretely sampled functions makes Walsh functions useful in quantum computing where
one must always sample operators at discrete points, i.e. digitize any continuous theory. On a quantum computer,
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Walsh operators are diagonal operators with the Walsh function values on the diagonal. The Paley-ordered Walsh
operators for an n qubit system are given by

ŵj =

n⊗
i=1

(σzi )ji , (D7)

acting on a state representing a dyadic binary representation of the integer k where, again, ji is the ith bit of the
binary expansion of j, and σzi is the Pauli matrix acting on the ith qubit. These operators satisfy

ŵj |k〉 = wj(xk) |k〉 , (D8)

where the function wj(xk) is the Walsh function defined in (D1). The set of Walsh functions form a basis for real
diagonal operators.

Walsh operators can be exponentiated using the identity

exp(iajŵj) = cos(aj)1+ i sin(aj)ŵj . (D9)

Thus, this operator applies the phase eiaj if the number of 1’s in the dyadic binary representation of k is even and
e−iaj if it is odd, which can be implemented using a single rotation gate Rz(−2aj) and CNOT gates applied in the
following way:

1. Write the binary string (jnjn−1 . . . j1) such that j =
∑n
i=1 ji2

i−1

2. Identify the index imsb of the most significant bit (msb) with value 1

3. Place an Rz(θ) gate on qubit imsb with rotation angle θ = −2aj

4. For all other values of 1 in the binary string, place two CNOT gates, one on either side of the Rz gate, acting
on qubit imsb controlled the index of the 1-valued entry

As an example we show the four qubit circuit for j = 13, which in binary notation is j = 1101. We therefore
find imsb = 4, leading to the circuit for exp(ia13w13) shown in Fig. 4. The diagonal unitary operator with the

phases on the diagonal given by Ĥ =
∑n
i=1 aiŵi is implemented as a product of exponentials of Walsh operators,

Û = eiĤ =
∏N
j=1 e

iajŵj .
Note that because the Walsh operators are diagonal, the terms in the product commute and one is free to choose

an order that minimizes the number of CNOT gates in the circuit. To find the optimal ordering, we first recall that
the index imsb of a Walsh operator indicates on which qubit the CNOT gate targets. One can therefore simplify the
CNOT gates between adjacent Walsh operators with the same imsb using the property that CNOT gates targeted on
the same qubit commute. The controls of the simplified set of CNOT gates between the circuits for eiajŵj and eiakŵk

are therefore given by the locations of the 1-valued bits in the bit-wise exclusive or (XOR) of the binary expansion of
j and k. Therefore, to minimize the CNOT gate count we need to minimize the number of binary transitions between
indices of adjacent Walsh operators. This is achieved by ordering the Walsh operators according to their Gray binary
ordering, i.e. using sequency ordered Walsh operators. This procedure works for subsets of Walsh operators with the
same imsb. Before placing the first gate for a given imsb, a single CNOT gate is placed targeted on qubit imsb and
controlled on qubit imsb − 1. The CNOT gates to the left of Rz,3 and Rz,6 in Fig. 5 are examples of CNOT gates
that are placed between sets of different imsb. For an n-qubit circuit, the optimal ordering requires (2n − 1) Rz gates
and (2n− 2) CNOT gates for a total of (2n+1− 3) gates, which, as stated previously, was shown to be asymptotically
optimal in Ref. [79]. As already mentioned, a nice worked-through example for constructing the optimal three qubit
circuit can be found in Ref. [70].

We now review the procedure given in Ref. [70] for constructing the circuit of a general approximate time evolution
operator Uε(t) using a cutoff θmin. As explained in Sec. III B, Walsh operators are placed in sequency order, but
because some have been dropped, the number of binary transitions between the adjacent Walsh operators can be in
general more than one. As before, the control qubit of the CNOT gates placed between two adjacent Walsh operators
are the locations of the bits equal to one in the XOR of the Walsh operator indices. Similarly to the exact circuit
construction, this procedure works for subsets of Walsh operators with the same imsb. A single CNOT gate is still
placed targeted on qubit imsb and controlled on qubit imsb − 1 before placing the first gate for a given imsb. The
CNOT gate count for circuits constructed in this way can likely be reduced using circuit identities. The Rz gates on
the other hand are fixed for a certain choice of θmin.
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FIG. 14. CNOT gate count to implement the complex exponential of the the maximally coupled operator in the compact
magnetic Hamiltonian in the original basis as a function of the number of plaquettes Np using g = 0.1 and nq = 3. Figure 14a

show the gate count if θmin is chosen relative to δt; gray lines show the functions N
nq−1
p , N

nq
p and N

nq+1
p for reference. Figure 14b

shows gate count if θmin is chosen relative to δt2. Gray lines show the functions N
nq
p , N

nq+1
p and N

nq+2
p for reference.

Appendix E: CNOT gate count for the original basis

In order to test how well this truncation method can improve upon the exponential gate count scaling in the original
basis, we calculate the CNOT gate count needed to implement the cosine of a sum of Np magnetic field operators for
various values of θmin assuming both a 1st order and 2nd order Suzuki-Trotter implementation. Figure 14a shows the
gate count choosing θmin relative to δt, and Figure 14b shows the gate count choosing θmin relative to δt2 for a modest
choice of δt = 1/4. Both plots were made using g = 0.1 and nq = 3. We see that in both cases, imposing a cutoff does
break the exponential scaling. Looking first at Fig. 14a, for values of 1/8 ≤ θmin/δt < 1 the scaling appears to roughly

follow between O(N
nq
p ) and O(N

nq+1
p ). From Fig. 14b, we see that for values of 1/8 ≤ θmin/(δt)

2 < 1 the scaling

appears to roughly follow between O(N
nq
p ) and O(N

nq+2
p ). We observed similar gate count scaling for nq = 2, 4.

Appendix F: Upper bound on Walsh series truncation error (with non-zero θmin)

In this appendix we derive an upper bound on the error introduced by truncating the Walsh series using a cutoff
θmin in terms of the Suzuki-Trotter step-size δt.

We define the difference between two n-qubit operators as E(U1, U2) ≡ ||U1 − U2||, where ||A|| ≡ max|ψ〉|A |ψ〉 | is
the spectral norm of the operator A and |ψ〉 is any normalized vector. The error between the exact time evolution
operator for a single Suzuki-Trotter step U(δt) = eiHt and the approximate time evolution operator Uε(δt) = eiHεδt

is E(U(δt), Uε(δt)) ≤ ε. The approximate operator δtHε is calculated by dropping all Walsh operators with Walsh
coefficients |aj | < θmin/2. This approximation is equivalent to rounding some fixed point accuracy [82], and the upper
bound on the error assumes that the error from dropping each individual Walsh operator adds coherently. For a
general operator H the upper bound on the error is

E(H,Hε) ≤ Ndrop(θmin)θmin, (F1)

where Ndrop(θmin) is the number of Walsh operators dropped from the Walsh series used to calculate Hε. Note that
Ndrop(θmin) is a function of θmin (note that this upper bound is likely overly pessimistic, because errors from dropping
different Walsh operators will in general not always add coherently [82]).

Now suppose that one uses a cutoff θmin = β(δt)m, where β is a constant and m is the order of the Suzuki-Trotter
scheme being used. The upper bound on the error is now

E(H,Hε) ≤ βNdrop(δt)(δt)m. (F2)
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FIG. 15. CNOT gate count to implement the complex exponential of the maximally coupled operator in the compact magnetic
Hamiltonian in the original basis as a function of the number of qubits per plaquette nq for fixed Np = 3 with g = 0.1. The
values of bmax were chosen using the procedure in Sec. II B. In the left plot, the gray lines show the functions n2
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3
q, and n4
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for reference. In the right plot, the gray lines show the functions n3
q, n

4
q, and n5

q for reference.

Even though Ndrop(δt) is a complicated function of δt, we can, however, make some general arguments on how
Ndrop(δt) changes with δt. To do so, first recall that the Walsh coefficients are given by

aj =
δt

2n
Tr
[
Ĥŵj

]
. (F3)

A Walsh operator ŵj is dropped if |aj | < β(δt)m/2. Plugging in the expression for aj , we see that an equivalent
condition for dropping aj is if

1

2n

∣∣∣Tr [Hwj ]
∣∣∣ < β

2
(δt)m−1. (F4)

Because the left hand side of the above inequality is independent of δt, the number of Walsh operators dropped can
either stay the same or increase as δt is increased, but never decrease. Similarly, as δt is decreased, the number of
Walsh operators dropped can either stay the same or decrease, but never increase. This implies that Ndrop(δt) is a
monotonically non-decreasing function of δt. The error can therefore be bounded by

E(H,Hε) ≤ c (δtm) (F5)

where c is some constant (we have absorbed β into c). If we use an m order Suzuki-Trotter scheme, the error between
the exact and approximate time evolution operator is given by

E(U(t), Uε(t)) ≤ αm(δt)mt+ c (δt)mt, (F6)

where αm is the pre-factor of the Suzuki-Trotter error.
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