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Abstract.  The intelligent Data Delivery Service (iDDS) has been developed 

to cope with the huge increase of computing and storage resource usage in the 

coming LHC data taking. It has been designed to intelligently orchestrate 

workflows and data management systems, decoupling data pre-processing, 

delivery, and primary processing in large scale workflows. It is an experiment-

agnostic service that has been deployed to serve data carousel (orchestrating 

efficient processing of tape-resident data), machine learning hyperparameter 

optimization, active learning, and other complex multi-stage workflows 

defined via DAG (Directed Acyclic Graph), CWL (Common Workflow 

Language) and other descriptions, including a growing number of analysis 

workflows. We will at first introduce some deployed use cases in a summary. 

Then we will focus on new improvements and use cases under developments 

in ATLAS, Rubin Observatory and sPHENIX, together with future efforts. 

 

1 Introduction 
 

The iDDS is a project developed for intelligent granular data delivery and orchestration which 

supports complex workflows to efficiently use resources such as storages, networks, processing 

CPUs and so on. It’s an experiment-agnostic service which has been employed by LHC ATLAS 

[1][2], Vera Rubin Observatory (LSST) [3][4] and sPHENIX at RHIC [5][6]. It has been 

successfully deployed for different use cases: 

• Fine-grained Data Carousel for LHC ATLAS [7][8]: The iDDS enables grouping 

processing in proper granularities to efficiently use disk storages. It has added the 

capability to the WorkFlow Management system (WFM system) [9][10] to work with 

fine-grained file-level data. Input data is incrementally processed based on more 

detailed knowledge on the status of input data, to reduce the overhead and get rid of 

redundant data transfers and caching. Processed data is released from the cache 

promptly with similarly fine granularity, such that the full workflow minimizes the 

input data footprint on disk. iDDS has been integrated with the ATLAS computing 

system since mid 2020 and has been used for bulk data reprocessing campaigns. 

 
* Email: wen.guan@cern.ch 

@Copyright [2020] CERN for the benefit of the ATLAS Collaboration. Reproduction of this article or parts of it is 
allowed as specified in the CC-BY-4.0 license 

mailto:wen.guan@cern.ch


2 
 

• Scalable Hyperparameter Optimization (HPO) service [7][8]: It’s a scalable Machine 

Learning (ML) service to efficiently distribute hyperparameter optimization tasks 

and other ML workflows to distributed CPU/GPU resources. The iDDS has provided 

a fully automated platform for HPO on top of geographically distributed     CPU/GPU 

resources among the Grid, HPC, and clouds, such that large scale resources can be 

applied for large HPO tasks. Meanwhile, the same architecture has been adapted to 

more and more use cases, such as the Monte Carlo Toy based confidence limits 

workflow. 

• DAG (Directed Acyclic Graph) workflow [7][8]: The iDDS has implemented a DAG 

workflow support for the Rubin Observatory exercise, in which a single workflow 

can consist of a hundred thousand jobs forming the vertexes of a DAG. iDDS allows 

jobs to be incrementally released based on a messaging service, to avoid long waiting 

time in each Work. 

The iDDS continues its efforts on the current use cases to improve the user experience and 

efficiency. At the same time, new developments have been enhancing and extending its usage 

in different experiments. In this paper, we will present the improvements in iDDS, with also 

improvements and developments in current use cases and new use cases. 
 

 

2 Enriched Workflow Management 
 

The iDDS has implemented a high-level workflow engine to automate complex production and analysis 

workflows. It interacts with workload management systems such as PanDA, to drive workload 

scheduling. 

 

 
 
 

The high-level workflow engine in iDDS works to manage task chains and job chains. In the 

task level, the iDDS has implemented the DG (Directed Graph) workflow management which 

not only supports DAG (Directed Acyclic Graph), but also supports graphs with cycles. It has 

implemented templates for DAG workflows and Loop workflows, in which pre-defined 

conditions and custom conditions can be used to control how to select different branches to 

be executed. In the job level, DAG has been implemented to manage the dependencies 

between different jobs. The iDDS automatically evaluates the dependencies to release jobs in 

an incremental mode. 

 

3 Use Cases 
 

3.1 DAG management for Rubin Observatory 
The Rubin Observatory exercise employs PanDA as both a workflow and workload 

management system. The iDDS is integrated as a workflow manager to manage the DAG 

dependencies in the task level and job level. In the job level, iDDS optimizes for managing 

Fig. 1. Task level workflows/sub workflows. 

 
Fig. 2. Job level DAG 
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DAG dependencies of jobs in and between tasks. When a job terminates, a trigger system in 

iDDS will be triggered to evaluate corresponding child jobs and release jobs. In the task level, 

iDDS optimizes for triggering the finalizing tasks, such as the merging tasks. It has been in 

production since the summer of 2021. In the first half year of 2022, the DP0.2 (Phase 2 of Data 

Preview 0) campaign has been successfully processed. After that, an even bigger processing 

campaign, the HSC (Hyper Suprime-Cam) processing, has been decided to use PanDA and 

iDDS to process the camera data, which is still ongoing currently. Until the presentation, iDDS-

PanDA has processed more than 11000 tasks, where many tasks have more than10K jobs, as 

shown in Figure 3. The Figure 4 shows the task dependency map of an example workflow. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Since late 2021 in Rubin Observatory, iDDS-PanDA within the LSST framework has processed 

more than 11000 tasks, where many tasks have more than 10K jobs. 
 

 

 

 

 

 
 

Fig. 4. The DAG monitor shows the relationship between different tasks in a workflow. 
 

3.2 Task Chains for sPHENIX 

 
Fig. 5. The iDDS for sPHENIX 

 

The sPHENIX experiment at RHIC adopted PanDA/iDDS at about the same timeline as Rubin 

Observatory. The iDDS is adopted for task chain management and PanDA is adopted for task 

management. In sPHENIX, the task chain is defined with Common Workflow Language (CWL) 

[11], which is transformed into internal workflow objects. The iDDS works to manage the 

internal workflow objects and triggers to execute tasks in the chain, as shown in Figure 5. 
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3.3 LHC ATLAS Analysis 
 

3.3.1 Multiple-Steps Task Chain 

 
 

Fig. 6. Multiple-steps processing: The domain space is redefined for the next iteration based on 

previous iterations. In this way, the previous results can improve the efficiency of next iterations. 
 

In LHC ATLAS, with more and more data, it requires more and more computing resources to 

process it. At the same time, to explore the physics potentials, physicists work hard to dig the 

data in more details, which also increases the requirements of computing resources. To reduce 

the reliance on computing resources, advanced complex workflows are designed. In the new 

workflow, the domain space is redefined for the next iteration based on previous iterations, to 

make sure the next iteration can only focus on a potential area, instead of scanning all areas 

blindly. 

The iDDS workflow engine works to automate the multiple-step processing. It parses the 

results of previous tasks, triggers an optimization step to calculate the new domain space for 

the next step, and then schedules new processing steps based on the new domain space, as 

shown in Figure 6. The support of loop workflows in iDDS makes it possible. Currently it’s 

already integrated with PanDA and REANA [12]. It has successfully been tested with a mono-

Hbb analysis. We are working on optimizing and simplifying the workflow for production 

usages. 
 

 

3.3.2 MC Toy Based Confidence Limits  

 
Fig. 7. Multiple-steps Monte Carlo Toy based confidence limits calculations and aggregations. 
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An efficient Monte Carlo Toy based confidence limits workflow requires multiple steps of grid 

scans, where current steps depend on previous steps. The iDDS automates this workflow of the 

toy limits calculations and aggregations. In this workflow, Points of Interest (POI) are 

generated based on the search space. Then the toy calculations are scheduled to distributed 

computing resources through PanDA. At the end of one loop, the results are aggregated to 

generate new search spaces. In the workflow, iDDS triggers to aggregate results and then to 

schedule new steps, as shown in Figure 7. 

 

4 Summary and Outlook 
 

iDDS has been developed to support various emerging use cases in ATLAS and other 

experiments. It has already been in production in ATLAS and Rubin Observatory (LSST) 

experiment and is under integration for sPHENIX. We will continue to support and improve 

the user experience and efficiency for the current use cases. At the same time, we also plan to 

put more efforts in distributed machine learning for advanced complex workflows in the 

future. 
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