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Abstract

The measurement of ϒ(1S), ϒ(2S), and ϒ(3S) yields as a function of the charged-particle multi-
plicity density, dNch/dη , using the ALICE experiment at the LHC, is reported in pp collisions at√

s = 13 TeV. The ϒ meson yields are measured at forward rapidity (2.5 < y < 4) in the dimuon
decay channel, whereas the charged-particle multiplicity is defined at central rapidity (|η |< 1). Both
quantities are divided by their average value in minimum bias events to compute the self-normalized
quantities. The increase of the self-normalized ϒ(1S), ϒ(2S), and ϒ(3S) yields is found to be com-
patible with a linear scaling with the self-normalized dNch/dη , within the uncertainties. The self-
normalized yield ratios of excited-to-ground ϒ states are compatible with unity within uncertainties.
Similarly, the measured double ratio of the self-normalized ϒ(1S) to the self-normalized J/ψ yields,
both measured at forward rapidity, is compatible with unity for self-normalized charged-particle mul-
tiplicities beyond one. The measurements are compared with theoretical predictions incorporating
initial or final state effects.

*See Appendix C for the list of collaboration members
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1 Introduction

At the Large Hadron Collider (LHC) energies, our understanding of hadronic collisions has been chal-
lenged by the observation that a large class of phenomena, traditionally associated with the presence of a
deconfined medium, shows a smooth evolution from small colliding systems such as proton–proton (pp)
and proton–lead (p–Pb) to large systems like lead–lead (Pb–Pb) [1, 2]. It is still actively debated whether
these phenomena could be ascribed to the formation of a hot and dense medium (i.e. the quark–gluon
plasma, QGP) in small systems, or to other collective effects or specific QCD processes at play in high
charged-particle multiplicity events, possibly associated to a peculiar initial state of the collision.

Any attempt to build a coherent framework linking the observations from small to large collision systems
must then include a proper characterization of the initial state of hadronic collisions, and of the mecha-
nisms responsible for the existence of high charged-particle multiplicity density events. Here and in the
rest of this paper, “charged-particle multiplicity density” is defined as the number of charged particles
produced per unit of pseudorapidity η , where the pseudorapidity is defined as η =− ln tan(θ/2), θ be-
ing the polar angle of a particle momentum with respect to the beam axis. One such mechanism is the
multiparton interaction (MPI), which allows the simultaneous occurrence of several incoherent binary
partonic interactions in a single nucleon–nucleon collision [3]. MPIs play a significant role in describing
the soft component of the hadronic interactions, as confirmed by the measured charged-particle multi-
plicity distributions in pp collisions at center-of-mass energies

√
s = 0.9–8 TeV [4]. Based on this, event

generators such as PYTHIA 8 [5, 6] and EPOS [7] currently highlight the importance of MPIs in building
the charged-particle multiplicity distributions in hadronic interactions [8].

The production of heavy flavor hadrons is usually computed in a factorization approach, where the per-
turbative treatment of the early-stage hard-parton scattering processes, described by perturbative QCD
(pQCD), is followed by the subsequent, soft-scale, hadronization of the scattered partons resulting in
their binding into color-neutral states. For the production of quarkonium states, charmonia or bottomo-
nia, several descriptions are available for the hadronization stage (e.g. the color singlet and color octet
ones) [9, 10]. Bottomonium states, such as the particles of the ϒ family, are of particular interest as
a probe of the QGP and are considered a tool to characterize the QGP properties. The interaction of
the ϒ(nS) states with the hot and dense medium is expected to result in a sequential dissociation of the
states, with the more tightly bound ones being dissociated at higher temperatures [10–12]. The measure-
ments in central heavy–ion collisions support this scenario, where the dissociation of the quarkonium
states is partly compensated by the recombination of the bound states, expected to be more relevant
for charmonium than for bottomonium states (see Refs.[13–24] and references therein). The results
in proton–nucleus collisions evidence a suppression of J/ψ yields at forward (central) rapidity at the
LHC (RHIC) energies, with respect to binary-collision-scaled yields pp collisions, described by sev-
eral models, see Refs. [25–31]. The excited ψ(2S) state presents a stronger suppression than J/ψ in
proton–lead collisions at backward rapidity (lead-going direction) suggesting a non-negligible influence
of final-state effects [32–39]. In the bottomonium sector, there is an indication of ϒ(nS) suppression in
proton–nucleus data with respect to binary-scaled pp collisions, with a hint of a larger suppression for
the excited states [40–43]. These results also advocate for final-state effects at play in proton–nucleus
collisions, such as those implemented in the comover models [39, 44] and/or the possible formation of
a hot and dense medium (QGP) [45]. It is essential to perform precise measurements to elucidate and
quantify the mechanisms at play.

Understanding the correlation between the soft and hard components of high-multiplicity events in small
collision systems like pp is fundamental to disentangle initial and final-state effects affecting particle
production, in particular in the heavy flavor sector. The ALICE collaboration has already contributed
to these studies by measuring quarkonium and open heavy-flavor self-normalized yields as a function
of the self-normalized charged-particle multiplicity density for center-of-mass energies of 5.02, 7 and
13 TeV [46–50]. The self-normalization is defined as the ratio of a given quantity to its average value:
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dNch/dη/⟨dNch/dη⟩. Both the yields and the charged-particle multiplicity can be measured by ALICE
in the central and forward rapidity regions, leading to measurements with different kinematic config-
urations. In particular, one can choose to measure both quantities in approximately the same rapidity
region, or to measure one at mid- and the other one at forward rapidity, introducing a gap in rapidity
between the measurements of the quarkonium yield and of the charged-particle multiplicity density. In
the charm sector, when the hard process is measured in the central rapidity region, a faster than lin-
ear increase with respect to the charged-particle multiplicity density is observed for D mesons [47] and
J/ψ [48, 49], independently of the rapidity range of the multiplicity measurement. A qualitatively sim-
ilar increase is also reported by the STAR collaboration for J/ψ in events reaching up to ∼ 4 times the
mean charged-particle multiplicity, in pp collisions at a lower energy (

√
s = 200 GeV), with the quarko-

nium yields and the charged-particle multiplicity measured in the same rapidity region [51]. In contrast,
charmonium (J/ψ and ψ(2S)) yields at forward rapidity revealed an approximately linear increase of the
yields with the charged-particle multiplicity density at midrapidity in pp data [46, 48, 50]. These results
are described by several model calculations considering initial and final-state effects. The ψ(2S)-to-J/ψ

production ratio shows no significant multiplicity dependence when the multiplicity and charmonium
yields are measured in different rapidity ranges [50, 52]. Instead, a decreasing trend with multiplicity of
the ψ(2S)-to-J/ψ production ratio is observed when there is an overlap between the rapidity intervals in
which the multiplicity and charmonium yields are measured [52].

In the beauty sector, the CMS collaboration investigated the event-activity dependence of ϒ(nS) pro-
duction at central rapidity in pp collisions at

√
s = 2.76 [53] and 7 TeV [54] and in p–Pb collisions at√

sNN = 5.02 TeV [53]. When the event activity is estimated in the range |η track|< 2.4, a significant de-
crease of the excited-to-ground state ratios with increasing charged-particle multiplicity is reported, with
no dependence on the azimuthal angle separation between the charged particles and the ϒ momentum
direction. However, these ratios are found to be nearly independent of charged-particle multiplicity for
jet-like events [54].

Measurements of bottomonium production at both central and forward rapidities in various collision
systems are essential to better characterize the initial and final-state effects affecting particle production
and their evolution with the charged-particle multiplicity density.

In this paper, the measurements of the ϒ(1S), ϒ(2S), and ϒ(3S) yields, and excited-to-ground state ratios,
performed with the ALICE detector, are reported as a function of charged-particle multiplicity density
in pp collisions at

√
s = 13 TeV. ϒ(nS) states are reconstructed in the dimuon decay channel at forward

rapidity, whereas the charged-particle multiplicity density is measured at central rapidity. This con-
figuration enables a gap in rapidity between the measurements of the ϒ yield and the charged-particle
multiplicity density. To determine the charged-particle multiplicity density, the number of reconstructed
tracklets is converted into a number of charged-particles by correcting for detector effects. This con-
version procedure enables a direct comparison with theoretical calculations. Section 2 outlines the ex-
perimental apparatus and the data sample used in the analysis. Section 3 is devoted to the analysis.
Section 4 presents and discusses the results in the current experimental and theoretical contexts. Finally,
a summary and an outlook are given in Section 5.

2 Experimental apparatus and data sample

The ALICE apparatus is described in details in Refs. [55, 56]. This analysis exploits three detectors:
the V0 for triggering and event selection; the Silicon Pixel Detector (SPD) for the measurement of the
primary vertex position and the charged-particle multiplicity at central rapidity; the Muon Spectrometer
(MS) for the measurement of the ϒ signal in the µ+µ− decay channel at forward rapidity.

The V0 detector consists of two scintillator hodoscopes located on each side of the interaction point
(2.8 < η < 5.1 and −3.7 < η <−1.7). It provides the minimum-bias (MB) trigger, requiring coincident
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signals in both hodoscopes. The SPD consists of two cylindrical layers, located at a radius r = 3.9 cm
and r = 7.6 cm from the beam axis, and covering the pseudorapidity ranges |η | < 2 and |η | < 1.4,
respectively. The number of SPD tracklets (Ntrk) is used for the estimation of the charged-particle mul-
tiplicity at central rapidity. Tracklets are defined as reconstructed line segments combining hits in the
two SPD layers and pointing to the primary vertex. Muons originating from ϒ decays are detected in the
MS, covering the pseudorapidity range −4 < η < −2.5. Starting from the interaction point, the MS is
made of five tracking stations composed of two planes of cathode pad chambers, the third one installed
within the gap of a dipole magnet providing a 3 T·m integrated magnetic field, and two trigger stations
composed of two planes of resistive plate chambers. A front absorber of ∼ 10 interaction lengths (λint)
is placed between the interaction point and the first tracking station of the MS, to filter hadrons, which
are further suppressed by a 7.2 λint thick iron wall installed between the tracking and trigger stations. A
low-angle conical absorber shields the MS from the secondary particles produced by the interaction of
primary particles with the beam pipe.

The results reported in this paper are obtained using the data collected in pp collisions at
√

s = 13 TeV,
recorded by ALICE during the LHC Run 2. The charged-particle multiplicity is measured for events in
the INEL> 0 event class, which are defined as inelastic collisions for which at least one charged-particle
track is detected in |η |< 1. The data used for the signal extraction were collected using a dimuon trigger,
defined as the coincidence of a MB trigger and at least a pair of opposite-sign charge track segments
reconstructed in the muon trigger system. The muon trigger system is configured to select muon tracks
with a transverse momentum pµ

T ≳ 0.5 GeV/c. Because of the design of the muon trigger system, the
selection on the muon transverse momentum does not correspond to a sharp threshold value. The reported
value is the one for which the trigger efficiency is ∼ 50 %. The number of MB- and dimuon-triggered
events used for this analysis are about 125 millions and 367 millions, respectively. These correspond to
an integrated luminosity of about 2 nb−1 and 16 pb−1, respectively. At the maximum interaction rate,
the probability of more than one pp collision occurring in the same bunch crossing was about 5×10−3.

3 Analysis

The production of ϒ at forward rapidity (2.5 < y < 4.0) is studied as a function of the charged-particle
multiplicity measured at central rapidity (|η |< 1). The ϒ yield (dNϒ/dy) and the pseudorapidity charged-
particle multiplicity density (dNch/dη) are both measured for INEL> 0 events.

Beam–gas events are rejected using timing cuts on the signals of the two V0 hodoscopes and the correla-
tion between the number of clusters and track segments reconstructed in the SPD. Only events satisfying
specific quality criteria for the primary vertex determination are selected. In particular, the precision of
the vertex reconstructed with the SPD is required to be better than 0.25 cm along the z axis; the longitu-
dinal interaction point position is required to be within |zvtx|< 10 cm in order to minimize the variation
of acceptance of the SPD when counting the tracklets in the region |η | < 1. Pileup in the SPD integra-
tion time (≃ 300 ns) is reduced to a negligible contamination by removing events with multiple SPD
vertices [46, 57].

The charged-particle multiplicity, dNch/dη , is estimated by counting the number of SPD tracklets in
|η | < 1. To take into account the SPD acceptance variation with time and with the vertex position zvtx
in the data sample considered, a data-driven event-by-event correction method is applied, similar to the
one described in Ref. [48]. This method consists in equalizing the measured ⟨Ntrk⟩(zvtx) profile to its
maximum value (⟨Ntrk⟩max = 11.73), where the correction term is smeared with a Poissonian distribution
to mimic the event-by-event fluctuations. In the following, the tracklet multiplicity after the equalization
procedure is referred to as the “corrected” tracklet multiplicity, Ncorr

trk . In the analysis discussed in this
paper, the events are grouped in Ncorr

trk classes: the resulting values of the self-normalized multiplicity for
the considered event classes (where only events with Ncorr

trk > 1 are used) are summarized in Table 1.
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Table 1: List of the event classes considered in the analysis, defined in terms of the Ncorr
trk measured in the SPD

(|η |< 1). For each event class, the average self-normalized charged-particle multiplicity is indicated together with
its systematic uncertainty (statistical uncertainties are negligible). The Ncorr

trk class interval 21−33 is only used for
ϒ(3S).

Ncorr
trk

dNch/dη

⟨dNch/dη⟩
1−8 0.38±0.03

9−14 0.99±0.02
15−20 1.51±0.04
21−25 1.99±0.04
21−33 2.24±0.04
26−33 2.51±0.04
34−41 3.16±0.07
42−50 3.8±0.1
51−60 4.5±0.2
61−80 5.5±0.3

The production of secondary particles, either coming from the decay of primary particles or their inter-
action with the detector volumes, leads to a difference between the number of reconstructed tracklets and
the number of primary charged particles Nch [49]. Using Monte Carlo (MC) simulations based on the
PYTHIA 8.2 [58] and EPOS-LHC [7] event generators, the correlation between Ncorr

trk , and the number of
generated primary charged particles Nch is determined [49]. The propagation of the simulated particles in
the detector apparatus is done with GEANT 3 [59], followed by the same reconstruction procedure as for
data. An ad-hoc polynomial function f , described in appendix A, is used to parametrize the correlation
between Ncorr

trk and Nch in the full Ncorr
trk range. Finally, the self-normalized multiplicity is defined as the

ratio of the average charged-particle multiplicity density in the analyzed multiplicity interval i, dNi
ch/dη ,

to the average one:

dNi
ch/dη

⟨dNch/dη⟩INEL>0
=

f (Ncorr, i
trk )

∆η ×⟨dNch/dη⟩INEL>0
, (1)

where ∆η = 2 is the full pseudorapidity coverage considered for the measurement of the charged-
particle multiplicity. The value of ⟨dNch/dη⟩, averaged over all events with INEL > 0, is measured
as 7.02±0.11 (syst.) for pp collisions at

√
s = 13 TeV [60].

The systematic uncertainty on the self-normalized charged-particle multiplicity dNi
ch/dη/⟨dNch/dη⟩

contains four contributions, detailed in Table 2: the calculation of ⟨Nch⟩ for each multiplicity interval;
the fitting functions used to parametrize the correlations between the tracklets and the charged-particle
multiplicities, referred to as “Ncorr

trk vs. Nch non-linearity”; the charged-particle multiplicity averaged over
all INEL > 0 events (⟨dNch/dη⟩) and a correction to account for the MB trigger selection, affecting only
the first multiplicity bin, ε1

INEL>0, ⟨Nch⟩.

The systematic uncertainties for the calculation of the ⟨Nch⟩ come from the residual dependence of ⟨Nch⟩
on zvtx, the dependence on the specific MC simulations, and the data-driven correction to the input
profiles. The systematic uncertainty on the correlation encoded in the function f , introduced in Eq. 1,
is estimated by varying the zvtx range for the considered MC events ([−10, −5], [−5, 0], [0, 5], [5, 10]
and [−10, 10] cm ranges were considered) and the event generators (PYTHIA 8.2 (Monash 2013) and
EPOS-LHC). The reference profile of the number of tracklets as a function of zvtx is also varied in the
equalization procedure, considering both the profile obtained from the data and the one from the MC
(PYTHIA 8.2 or EPOS-LHC). The multiplicity ⟨Nch⟩ is calculated as the average, and its systematic
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uncertainty as the standard deviation, of the distribution of the Nch values obtained with the variations
described above. The resulting systematic uncertainty on ⟨Nch⟩ ranges within 0.4–2%, depending on the
multiplicity class.

The correlation between the tracklets and the charged-particle multiplicity is also studied replacing the
polynomial approach described above with a linear fit function (Nch = α ×Ncorr

trk ), both globally (for the
whole multiplicity range) and in the considered multiplicity intervals. The α factors and their uncertain-
ties are computed by applying the same procedure as for the polynomial fit. In each multiplicity class,
the difference originating from using either the global or the bin-by-bin α factor, and the two approaches
for the fit function (linear and polynomial), is considered as an additional systematic uncertainty on the
self-normalized multiplicity, “Ncorr

trk vs Nch non-linearity” in Table 2, amounting to 0−7%, depending on
the multiplicity class.

⟨dNch/dη⟩INEL>0 represents the charged-particle multiplicity averaged over all INEL > 0 events. The
value and its systematic uncertainty (1.6%) are taken from an independent analysis [60].

In addition, the lowest multiplicity class is affected by MB trigger selection, which removes very-low-
multiplicity events. This effect is accounted for by dividing the ⟨Nch⟩ value extracted for the first multi-
plicity interval by a correction factor ε1

INEL>0, ⟨Nch⟩ (1.039), introducing an associated systematic uncer-
tainty of 0.3%. The efficiency of the trigger selection, for any multiplicity class other than the lowest
one is close to unity, and has negligible uncertainty. All the aforementioned systematic uncertainties are
added in quadrature and summarized in Table 2. Whenever the source has a dependence on multiplicity,
the minimum and maximum uncertainties are indicated.

Table 2: Summary of the systematic uncertainty sources in percentage on the self-normalized multiplicity. When
the systematic uncertainty depends on the multiplicity class, the corresponding range is given. The quantity la-
beled with ∗ is taken from an independent analysis [60]. All the mentioned systematic uncertainties are added in
quadrature to the self-normalized multiplicity.

Source %
⟨Nch⟩ 0.4−2

Ncorr
trk vs. Nch non-linearity 0−7

⟨dNch/dη⟩∗INEL>0 1.6
ε1

INEL>0, ⟨Nch⟩ 0.3
dNch/dη/⟨dNch/dη⟩INEL>0 1.7−7

The ϒ mesons are reconstructed in their dimuon decay channel. The muon track selection is identical to
that used in Ref. [61]. The reconstructed dimuons are selected within the rapidity range 2.5 < y < 4.0.
The number of ϒ mesons is extracted from a log-likelihood binned fit to the invariant mass (mµ+µ−)
distribution. The fit is performed modeling the three ϒ(nS) peaks with a Double Crystal Ball (DCB)
function each [62], and the underlying background with an ad hoc parametrization. Three functions
are considered for the background, namely a variable-width Gaussian (VWG), a double-exponential
function, and the product of an exponential and a power-law function, all described in appendix B. When
fitting the multiplicity-integrated sample, the ϒ(1S) mass peak position and width are left free, while the
DCB tail parameters are fixed to the values obtained from MC simulations.

The peak position and the width of the ϒ(2S) and ϒ(3S) signals are linked to the ϒ(1S) ones, through the
ratio of the corresponding mass values taken from the Particle Data Group (PDG) [63]. It was verified
in Monte Carlo that the ratio of the ϒ(nS) states peak width values evolves as the ratio of the PDG peak
mass values. The fit to the multiplicity-integrated sample is performed in three different mass ranges,
namely [6, 13], [5, 14], and [7, 12] GeV/c2, which results in nine different fit configurations. Due to
the limited size of the available sample, in the individual multiplicity classes the ϒ(1S) peak position
and width are fixed to the values obtained in the multiplicity-integrated sample, or to the same values
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varied by +- 1 sigma. Hence, for each combination of fit range and background function in the integrated
sample, 81 different combinations of fit range, background function, ϒ(1S) mass, and ϒ(1S) width were
tested, for each multiplicity class, resulting in 729 different fit configurations.

Considering the significance condition (S/
√

S+B > 3) for each ϒ state in the selected multiplicity class,
the highest Ncorr

trk intervals in which the measurement is significant are [61,80] for ϒ(1S) and ϒ(2S) and
[21,33] for ϒ(3S), corresponding to a self-normalized multiplicity of 5.5± 0.3 (syst.) and 2.24± 0.04
(syst.), respectively, as reported in Table 1. Figure 1 shows example fits to the dimuon invariant mass
distributions for low- and high-multiplicity pp collisions.
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Figure 1: Dimuon invariant mass distribution for low-multiplicity pp collisions, corresponding to the Ncorr
trk interval

bin [1,8] (left) and for high-multiplicity pp collisions, corresponding to the Ncorr
trk interval bin [42,50] (right). The

ϒ(1S) peak position and width are fixed to the values obtained in the multiplicity-integrated sample. Significances
(S/

√
S+B) are evaluated in a 3 standard deviation (3σ ) window around the mean value of the peak.

The self-normalized yield of ϒ, i.e. the yield in a given multiplicity interval i normalized to the multiplicity-
integrated value, is evaluated as

dNi
ϒ
/dy

⟨dNϒ/dy⟩
=

Ni
ϒ

Nϒ

×
Neq

MB

Neq,i
MB

× (A× ε)ϒ

(A× ε)i
ϒ

×
ε i

MB
εMB

× εϒ

ε i
ϒ

, (2)

where Nϒ and Neq
MB are the number of reconstructed ϒ candidates and the equivalent number of MB

events for the dimuon-triggered sample analyzed, respectively. The ratio Neq,i
MB/Neq

MB is the fraction of the
MB cross section corresponding to multiplicity class i, and is calculated from the MB-triggered sample,
as Ni

MB/NMB.

The A×ε correction for Nϒ is independent of multiplicity in the measured intervals, therefore, this factor
cancels for the self-normalized yield measurement. The 1/εMB and 1/εϒ represent correction factors
applied on the number of MB selected events and number of reconstructed ϒ candidates, respectively,
which are meant to account for the possible event and signal losses due to the event selections. These cor-
rections include contributions from the efficiency of the MB trigger for events satisfying the INEL > 0
selection (ε1

INEL>0, yield and εINEL>0, yield), vertex quality selection (εϒ(nS)
vtx, QA and εMB

vtx, QA), and pileup re-
jection (εpu), same as in Ref. [46]. Finally, it is worth noting that the integrated number of MB events
includes events with zero tracklets (INEL = 0 events): to remove this contamination, a specific correc-
tion factor (εINEL=0) is applied, as estimated from MC simulations. The values of all efficiency correction
factors for the multiplicity-integrated case, as well as for the lowest multiplicity interval, are summarized
in Table 3.

The systematic uncertainty on the ϒ signal extraction is estimated by varying the fit configuration as
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Table 3: Summary of the efficiency factors which are applied to calculate the self-normalized yield of ϒ(nS) along
with their statistical uncertainties. The values quoted without uncertainty have negligible statistical uncertainty.

Efficiency Value
ε1

INEL>0, yield 0.91
εINEL>0, yield 0.95

εINEL=0 0.98
εMB

vtx, QA 0.94
ε

ϒ(1S)
vtx, QA 0.97±0.02

ε
ϒ(2S)
vtx, QA 0.98±0.06

ε
ϒ(3S)
vtx, QA 0.95±0.12

described above. The yield ratio Ni
ϒ
/Nϒ in multiplicity class i is computed for each of the 729 considered

configurations, then the results are averaged and their r.m.s. is taken as the signal extraction systematic
uncertainty. When double ratios are computed for the ϒ measurement, the ϒ(nS)/ϒ(1S) yield ratio is ex-
tracted for each fit configuration, then results are averaged and the r.m.s. taken as systematic uncertainty,
so that correlated contributions to the signal extraction systematic uncertainty cancel. The uncertainty
on the MB trigger efficiency (εINEL>0, yield) is propagated to the ϒ yields of the lowest and the integrated
multiplicity classes, resulting in a systematic uncertainty of 1% (ε1

INEL>0, yield) and 0.5% (εINEL>0, yield),
respectively. The contamination efficiency factor εINEL=0, mentioned before, is characterized by an as-
sociated systematic uncertainty of 2%, while the systematic uncertainty for the vertex quality correction
and the pileup rejection (εpu) are both found to be negligible. As a further test, the ratio Neq,i

MB/Neq
MB

is evaluated using the number of dimuon triggers and the trigger rejection factors in each multiplicity
class, as detailed in Ref. [46], resulting in a negligible difference (0.02%) with respect to the approach
considered in the present analysis.

All the aforementioned systematic uncertainties are added in quadrature and are reported in the bottom
part of Table 4 as the total systematic uncertainty for each ϒ state; whenever the source implies a depen-
dence on multiplicity, the minimum and maximum uncertainties are indicated. Systematic uncertainties
related to muon triggering and reconstruction (trigger efficiency, tracking efficiency and matching effi-
ciency) cancel when computing the self-normalized ϒ yields.

Table 4: Summary of the systematic uncertainties for the self-normalized ϒ yields. The total systematic uncer-
tainty for each self-normalized ϒ state, shown in the bottom three lines, is computed as the quadratic sum of the
contributions listed in the first part of the table. When the systematic uncertainty depends on the multiplicity class,
the corresponding range is given.

Source %
ϒ(1S) signal extraction 1−6
ϒ(2S) signal extraction 3−7
ϒ(3S) signal extraction 7−13

ε1
INEL>0, yield 1

εINEL>0, yield 0.5
εINEL=0 2

dNϒ(1S)/dy/⟨dNϒ(1S)/dy⟩ 3−6
dNϒ(2S)/dy/⟨dNϒ(2S)/dy⟩ 4−7
dNϒ(3S)/dy/⟨dNϒ(3S)/dy⟩ 7−13

4 Results and discussion

The self-normalized yields, dNϒ/dy/⟨dNϒ/dy⟩, as a function of the self-normalized charged-particle
multiplicity density, dNch/dη/⟨dNch/dη⟩, for the ϒ(1S), ϒ(2S), and ϒ(3S) states, measured for pT > 0,
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in pp collisions at
√

s = 13 TeV, are shown in Fig. 2. The bottom panel of Fig. 2 shows the double ratio
of the self-normalized ϒ yields to the self-normalized multiplicity. The self-normalized yields increase
with the self-normalized charged-particle multiplicity. The scaling is compatible with a linear trend for
the three states. It results in a flat trend of the double ratios for the different states, within the uncertain-
ties. The measurements are compared with the available theoretical models in Fig. 3. All calculations
shown were performed in the same kinematic configuration as the measurement, for both the multiplic-
ity and the ϒ(nS) yields. At multiplicities up to 4 times the mean multiplicity, no relevant difference
is observed between the PYTHIA 8.2 configurations, including feed-down from heavier states, with or
without color reconnection (CR), which fairly describe the observed linear scaling. The implementation
of the MPI mechanism corresponds to the simple scaling NMPI ∝ Nhard process ∝ Nch. The PYTHIA color
reconnection scenario is a final-state effect at play with MPI, where strings are merged based on a QCD
full color flow calculation with a loose modeling of dynamical effects via a global saturation [64]. CR
is expected to have an impact both on the charged-particle multiplicity and the hard probe. At larger
multiplicities, PYTHIA computations for the ϒ(1S) deviate from the linear scaling, suggesting a weak-
ening of the correlation. Computations from coherent particle production (CPP) [65] are also displayed:
in this framework, high-multiplicity hadronic collisions are parameterized on equal footing regardless of
the specific pp, p–A, or A–A system, allowing one to take into account features associated with nuclear
effects. This is done by a phenomenological parametrization for mean multiplicities of light hadrons and
quarkonia, assuming a linear dependence with the number of binary nucleon–nucleon interactions in p–
A collisions. This model also takes into account the possible mutual boosting of the gluon densities and
saturation scales in the colliding protons, induced by MPIs in a high-multiplicity environment, affecting
the hard process (prompt production) [66]. The model is defined for dNch/dη/⟨dNch/dη⟩ > 1, corre-
sponding to at least one nucleon–nucleon collision. Its uncertainties are inherited from the experimental
uncertainties of the p–A measurements used to extract the model parameters. The CPP computations
qualitatively describe the observed behavior within the current large theoretical and experimental uncer-
tainties. In the computation with the CGC approach of Ref. [67], the probability to produce charmonia
and bottomonia increases via a sizeable contribution of the multipomeron mechanism and especially the
3-pomeron term. It is enhanced, at high energy, thanks to additional t-channel gluons due to the increased
gluon densities. The 3-pomeron CGC computation overestimates the measured dependence of ϒ(1S) for
the highest multiplicities reached, while no firm conclusion can be established for the excited states due
to the large experimental uncertainties. It has to be noted that, despite the recent progress in the simulta-
neous computation and modeling of the soft and the hard components of hadronic interactions, there is
a lack of predictions for bottomonia, except the PYTHIA 8.2, CPP and CGC in the 3-pomeron approach
computations considered in this paper. Computations from CPP are not available for the ϒ(3S) due to a
lack of experimental measurements needed to extract the model parameters.

Figure 4 presents the ϒ excited-to-ground state self-normalized yield ratios as a function of the self-
normalized charged-particle multiplicity. A large fraction of the systematic uncertainties affecting the
self-normalized yield of ϒ(nS) states, dominated by signal extraction, cancels out in the excited-to-
ground state ratios. The excited-to-ground state ratio of ϒ(2S) to ϒ(1S), shown in Fig. 4 (top panel),
is compatible with unity within the uncertainties up to six times the mean charged-particle multiplicity.
The measurement is compared with computations from PYTHIA 8.2, predicting a ratio close to unity
at high multiplicity, independently of the considered color reconnection scenario, suggesting that final-
state effects do not play a dominant role on the excited-to-ground ϒ state yield ratio in pp collisions. The
calculation from 3-pomeron CGC is also compatible with a ratio close to unity. A similar behavior can
be observed in the CPP calculation, within large uncertainties. The measurement is also compared with
computations from the comover model. In this model, which only provides predictions for the relative
production rates of different states, quarkonia are dissociated by interactions with final-state comoving
particles [39, 44]. The dissociation rate is linked to the binding energy of the considered quarkonium
state, and to the comover density. This last parameter also determines the uncertainties of the model.
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Figure 2: Self-normalized yield of ϒ(nS) states as a function of self-normalized charged-particle multiplicity,
pT-integrated. The vertical error bars represent the statistical uncertainty on the ϒ yields, while the systematic
uncertainties on dNϒ/dy/⟨dNϒ/dy⟩ and dNch/dη / ⟨dNch/dη⟩ are depicted as boxes. The dashed line shown in the
top panel represents a linear function with the slope equal to unity.
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Figure 3: Self-normalized yield of ϒ(nS) states as a function of self-normalized charged-particle multiplicity,
pT-integrated, compared to 3-pomeron CGC approach [67], PYTHIA 8.2 [5] and CPP [65]. The vertical error
bars represent the statistical uncertainty, while the systematic uncertainties are depicted as boxes. The dashed line
represents a linear function with the slope equal to unity.
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Feed-down contributions are taken into account in the computation. A decrease by 20% to 40% over
the covered multiplicity range is predicted by this approach for the ϒ(2S)-to-ϒ(1S) ratio. It is worth
noting that the CMS experiment reports a decrease of the ϒ(2S)-to-ϒ(1S) yield ratio as a function of
the number of tracks when both quantities are measured in the central rapidity region in pp collisions at√

s = 2.76 TeV [53] and 7 TeV [54]. On the contrary, when the measurement is performed with a gap
in rapidity between the ϒ(nS) states (|y|< 1.93) and the transverse energy measurement as an estimator
of event activity (|η | > 4), a less pronounced decrease is observed in the ratio between the production
yields of the two states [53]. The results presented in this paper are qualitatively compatible with the
measurements reported by the CMS collaboration, regardless of whether these are given in terms of the
forward or the midrapidity event activity. Figure 4 (bottom panel) shows the excited-to-ground state
ratio of ϒ(3S)-to-ϒ(1S) yields. The measurement is compatible with unity within the large uncertainties,
and with the almost flat trend predicted by PYTHIA 8.2, regardless of the considered color reconnection
scenario, and by 3-pomeron CGC computations. It is interesting to note that, on the contrary, the comover
scenario predicts a dissociation of ϒ(3S) states leading to a large suppression at high charged-particle
multiplicity (∼ 6 times the mean multiplicity). For the ϒ(2S) and ϒ(3S) states, the discrepancy between
data and the predictions of the comover model amounts to 1.8 and 1.7 sigmas, at most. Firm conclusions
on the presence or absence of a final state ϒ dissociation due to comoving particles would require further
investigation based on larger data samples. These results convey a message consistent with the analogous
measurements of the excited-to-ground state ratios in the charmonium sector [50, 52], described in the
Introduction.

Figure 5 (top panel) presents the results discussed in this paper for the ϒ(1S), ϒ(2S), and ϒ(3S), com-
pared with analogous ALICE J/ψ measurements in the forward rapidity region at

√
s = 5.02 TeV [46],

7 TeV [48], and 13 TeV [46], exploiting the same multiplicity estimator as in the present analysis.

The ϒ(1S) self-normalized production yield presents a similar scaling with the self-normalized charged-
particle multiplicity density as the J/ψ , independently of the collision energy at which the J/ψ mea-
surement is performed. This is further investigated, at

√
s = 13 TeV, in Fig. 5 (bottom panel), by pre-

senting the double ratio of ϒ(1S)-to-J/ψ self-normalized yields. The double ratio is close to unity for
dNch/dη/⟨dNch/dη⟩ > 1, indicating no modification of the correlation with respect to mass and quark
content up to six times the mean multiplicity. The ratio is also compared to the various available models,
namely PYTHIA 8.2 with and without CR [5], the comover model [39, 44], the model by CPP [65],
and the calculation of the 3-pomeron contribution in the CGC approach [67]. The considered models,
except for 3-pomeron CGC, expect the double ratio to be close to unity over the whole charged-particle
multiplicity range considered, suggesting that both initial and final-state effects act on ϒ(1S) and J/ψ in
a similar way. The first data point in Fig. 5 (bottom panel) is below unity by about two standard devia-
tions. A possible mechanism explaining this behavior invokes an event activity bias: events containing
ϒ(1S) are, on average, biased towards higher event activities than events containing J/ψ , and this behav-
ior is expected to be driven by the mass difference of the two particles. The same mechanism could be
expected when going from ϒ(1S) to ϒ(2S), and ϒ(3S) states, currently not visible due to the relatively
small mass difference between the three states, and the limited statistical significance of the higher-state
measurements. In the 3-pomeron CGC computation, the increase of the ϒ(1S) yield as a function of
charged-particle multiplicity is expected to be faster than for J/ψ due to small mass-dependent higher
twist effects, mainly visible at high multiplicities.

The results reported here for ϒ(nS) yields in pp collisions at forward rapidity are consistent with pub-
lished ϒ(nS) measurements at central rapidity [53, 54]. These results follow a similar trend to that
observed in charmonium measurements with analogous kinematic configurations [46, 48, 50], within
uncertainties.
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5 Conclusions

The measurement of ϒ(1S), ϒ(2S), and ϒ(3S) production as a function of the charged-particle multiplicity
density in pp collisions at

√
s = 13 TeV, performed with the ALICE apparatus, is presented in this paper.

The ϒ(nS) states are measured in the dimuon decay channel in the forward rapidity region 2.5 < y <
4.0, while the charged-particle multiplicity measurement is performed at central rapidity |η | < 1. In
this rapidity configuration, the correlation between the self-normalized ϒ yields and the self-normalized
charged-particle multiplicity density is compatible with a linear trend, with a slope consistent with unity
within the uncertainties, in agreement with the expectations based on a naive MPI scenario. This behavior
is qualitatively reproduced by PYTHIA 8.2 up to four times the mean multiplicity, regardless of the
considered color reconnection scenario, as well as by computations from CPP and the 3-pomeron CGC
approach.

The double ratios of the self-normalized yields of ϒ(2S) and ϒ(3S) to ϒ(1S) are compatible with unity in
the explored multiplicity range within uncertainties, and in agreement with the predictions of PYTHIA 8.2,
CPP and 3-pomeron CGC, as well as with the comover model calculations. With their current precision,
these results can neither confirm nor exclude whether final-state effects are at play on ϒ(2S) and ϒ(3S)
production at high multiplicity. The self-normalized double yield ratio of ϒ(1S)-to-J/ψ as a function
of self-normalized charged-particle multiplicity is close to unity for dNch/dη/⟨dNch/dη⟩ > 1, and is
described both by computations involving initial state effects (CPP and PYTHIA 8.2 without color re-
connection), and final state effects, such as the comovers model and PYTHIA 8.2 calculations with color
reconnection. The 3-pomeron CGC approach is disfavored.

The ϒ(nS) measurements reported here in pp collisions at forward rapidity are consistent with published
ϒ(nS) results at central rapidity [53, 54]. These measurements follow the same pattern observed in
the charmonium sector [46, 48, 50, 52], within uncertainties. Further measurements with the upgraded
ALICE detector during the LHC Run 3 and Run 4 [68], allowing for an improved statistical precision
of the measurements of excited bottomonium states, will be essential to elucidate and quantify possible
final-state effects at play in the bottomonium sector.
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A Polynomial function

An ad-hoc polynomial fitting function f is used to describe the relation between the number of SPD
tracklets and charged-particle multiplicity, namely:

f (x) = axc +b for x < x0 (A.1)

f (x) = a2xc2 +b2 for x ≥ x0 (A.2)

where x0 allow a better modeling of the shape with two different regions in x. x0 is optimized by the fit and

a2 = (ac
c2
)xc−c2

0 , b2 = (ac2−ac
c2

)xc
0 +b

⟨Ni
ch⟩=

∑N j × f (Ncorr
trk, j)

∑N j
(A.3)

where, N j is the number of events in each Ncorr
trk bin taken from data.

B Background function

The Variable Width Gaussian (VWG) function is defined as

f (x;N, x̄,A,B) = N × exp[−(x− x̄)2

2σ2
VWG

] (B.1)

where,

σVWG = A+B× x− x̄
x̄

A product of an exponential and a power-law function is defined as

f (x; p0, p1, p2, p3) = (p1 + p2x+ p3x2)exp(p0x) (B.2)

A double exponential function is defined as

f (x;N0,N1, p0, p1) = N0 × exp(p0x)+N1 × exp(p1x) (B.3)
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