
A
TL

-D
A

Q
-P

R
O

C
-2

02
2-

00
6

21
/1

1/
20

22

IEEE TRANSACTIONS ON NUCLEAR SCIENCE 1

Abstract— The new Muon-Central-Trigger-Processor Interface
(MUCTPI) is part of the Phase-I upgrade of the ATLAS Level-1
trigger system for Run 3 of the Large Hadron Collider at CERN.
The new MUCTPI has three high-end FPGAs and one System-on-
Chip (SoC). The FPGAs receive and process muon candidate
information arriving on 208 high-speed optical serial links.
Processed trigger information and summary data are sent to other
parts of the trigger and the data acquisition. The SoC controls,
configures and monitors the hardware and the operation of the
MUCTPI. The FPGA part of the SoC provides communication
with the processing FPGAs, while the processor system runs
software for communication with the run control system of the
ATLAS experiment. All software necessary to run the MUCTPI,
including operating system and run control software is being built
using continuous integration. CentOS Linux, cross-compilation
and the existing framework for building of the ATLAS trigger and
data acquisition (TDAQ) software are being used in order to
deploy the TDAQ software directly on the SoC. After the
successful use of continuous integration of the software, also the
firmware is being built using that scheme. This paper describes the
advantages of the use of continuous integration, our experience, as
well as the difficulties that needed to be overcome.

Index Terms— Continuous Integration, System-on-Chip.

I. INTRODUCTION

TLAS [1] is a general-purpose experiment at the Large
Hadron Collider (LHC) at CERN, which observes proton-

proton collisions at a center-of-mass energy of almost 14 TeV
at a bunch crossing rate of 40 MHz. Up to 52 pile-up collisions
are expected for Run 3, which started in 2022. This results in
more than 109 interactions per second and requires the use of a
trigger system in order to select the events most interesting for
physics studies within the constraints on the maximum event
rate that can be recorded.

The ATLAS trigger and data acquisition (TDAQ) system [2],
see Figure 1, consists of a first-level trigger based on custom
electronics and firmware, and a high-level trigger based on
custom-off-the-shelf hardware and processing software. The
first level trigger uses information from the calorimeters and the
muon trigger detectors, Resistive Plate Chambers (RPC) in the
barrel and Thin-Gap Chambers (TGC), as well as Micromegas
(MM) and small-strip Thin-Gap Chambers (sTGC) from the
New Small Wheels in the endcap. The Muon-Central-Trigger-

 Manuscript submitted August 4, 2022, revised November 20, 2022.
All authors are with CERN, Switzerland (e-mail: Ralf.Spiwoks@cern.ch).
Copyright 2022 CERN for the benefit of the ATLAS Collaboration.

Processor Interface (MUCTPI) receives muon candidate
information from all muon sectors, and calculates multiplicities,
i.e. counts of muon candidates, avoiding double counting of
single muons that are detected by more than one muon sector
due to the geometrical overlap of the chambers and the
trajectory of the muons in the magnetic field; this is called
overlap handling. The MUCTPI further calculates muon trigger
object information and sends it to the Topological Trigger
Processor, which combines it with trigger objects from the
calorimeters. The muon multiplicity information is sent to the
Central Trigger Processor (CTP), which combines it with the
trigger information from the calorimeters and the topological
trigger to form the final first-level decision.

Fig. 1. Schematic of the ATLAS TDAQ system.

II. THE NEW MUCTPI
Compared to the MUCTPI used in Run 1 and Run 2 [4], the

new MUCTPI [5] receives more trigger candidates with more
detailed data using optical links instead of electrical ones. It
improves the overlap handling by taking into account overlap
between octants, which was previously impossible. It sends full
precision information to the topological trigger processor using
optical links, while previously it was sending coarse
information over electrical cables. The new MUCTPI is built as

Reproduction of this article or parts of it is allowed as specified in the CC-
BY-4.0 license.

Continuous Integration for the Software and the
Firmware of the New ATLAS Muon-Central-

Trigger-Processor Interface (MUCTPI)
R. Spiwoks, Y. Afik, P. Czodrowski, S. Haas, A. Koulouris, A. Kulinska, A. Marzin, T. Pauly,

O. Penc, S. Perrella, V. Ryjov, L. Sanfilippo, R. Simoniello, P. Vichoudis, T. Wengler, M.Wyzlinski
on behalf of the ATLAS Collaboration

A



IEEE TRANSACTIONS ON NUCLEAR SCIENCE 2

a single ATCA blade, see Figure 2. It uses two Muon Sector
Processors (MSPs), one Trigger and Readout Processor (TRP),
and a System-on-Chip (SoC), see Figure 3. The MSPs are
implemented using Xilinx Virtex Ultrascale+ FPGAs [6]. They
receive trigger muon information from the 208 muon sectors,
implement the overlap handling, and send trigger objects to the
topological trigger system.

Fig. 2. Photograph of the new MUCTPI.

The TRP is implemented using a Xilinx Kintex Ultrascale
FPGA [6]. It combines the muon trigger information, and sends
muon trigger multiplicities to the CTP and trigger data to the
DAQ. The SoC is a Xilinx Zynq Ultrascale+ MPSoC [6]. It is
used for control, configuration, and monitoring of the hardware
and of the operation of the MUCTPI.

Fig. 3. Architecture of the new MUCTPI showing where Firmware (blue) and
Software (red) are used.

The SoC consists of two different elements: programmable
logic (PL) and a processor system (PS). The PL is like an FPGA
and is being used, among other things, to provide read and write
access to registers and memories implemented in the other
processing FPGAs. The PS runs an operating system, and
configures and controls the hardware of the MUCTPI using
standard interfaces; it further has two Gigabit Ethernet

connections, which are used for the communication with the
ATLAS run control system [7].

Three versions of prototypes of the MUCTPI were
successively built with different hardware components: while
the latest version, V3, contains the components described
above, the previous versions, V1 and V2, are using a Xilinx
Zynq 7000 SoC [6], and version V1 is using Xilinx Virtex
Ultrascale FPGA [6]. All versions are fully functional and are
fully supported for use in the experiment, as well as in the test
labs for continuous development.

III. THE FIRMWARE AND SOFTWARE STACK

In order to operate the MUCTPI, a number of firmware and
software components need to be built and run on the
corresponding hardware: the firmware for the MSPs, the TRP,
and the SoC PL, as well as the software for booting the SoC PS,
the root file system, the cross compiler and the user application
software.

A. Firmware
The firmware for the MUCTPI MSPs and TRP FPGAs is

primarily based on VHDL design files and some Xilinx
Intellectual Property (IP) cores. Block diagram design entry is
used for the SoC PL part as well as for the interface to the AXI
bus infrastructure in the processing FPGAs. The registers and
memories of the FPGAs are described in XML files. Using a
custom code generator the XML files are used to generate some
of the VHDL code. The same files are also used by the user
application software to generate the access functions, see Figure
4. This guarantees consistency between the firmware
implementation and the low-level software used to access the
hardware.

Fig. 4. Common XML files used for Firmware (blue) and Software (red)
Development.

The firmware is implemented using the Xilinx Vivado design
suite [6]; a Tcl script is used within Xilinx Vivado to generate
the necessary IPs, build the firmware, and generate the
programming files.
The firmware source code is stored in several Git
repositories [8]. The project is organized in eight top-level
repositories for the two types of processing FPGAs and the
SoC, considering the three MUCTPI prototype versions. In
addition, code common to a given type of FPGA or SoC as well
as code common to all designs is stored in separate Git
repositories. In order to avoid code duplication, the top-level
repositories make use of Git submodules to include the relevant
code.



IEEE TRANSACTIONS ON NUCLEAR SCIENCE 3

B. Boot Software
The Xilinx Vivado design suite produces a hardware

description file for the SoC. That file is imported by the Xilinx
PetaLinux tools [6] for building the first-stage boot loader
(FSBL), which initializes the SoC hardware, the U-Boot system
loader, which loads the operating system, as well as the Linux
kernel, a custom kernel module for DMA, and the device tree.
It could also be used to build a root file system, but CentOS is
being used instead as described below.

User-specific files in the PetaLinux project-specific meta-
user layer are used to modify the U-Boot, so that it can
communicate with the ATCA IPMC module [9] of the
MUCTPI in order to get information about the ATCA shelf it is
running in. In addition, the boot sequence is modified in order
to download an environment file from the host PC. This enables
us to have full flexibility on the kernel, device tree and root file
system to be booted.

C. Root File System
The root file system used on the SoC is CentOS Linux [10].

This choice is driven by the fact that the same root file system
is being used in the majority of sub-detectors of the ATLAS
experiment, including other modules of the Level-1 central
trigger system. The team developing software for the MUCTPI
and the other modules of the Level-1 central trigger system thus
works on a common basis.

Although CentOS is being used with different CPU
architectures, i.e. x86_64 and arm, the configuration issues are
the same and this makes it easier to support it. We further think
that the security certification, which is necessary for being on
the strictly controlled technical network of the experiment, will
be possible in the future only if the same operating system for
the whole experiment will be used.

Both variants of CentOS required to run on the two types of
SoC for the different prototypes of the MUCTPI, i.e. armv7 (for
the Zynq 7000) and aarch64 (for the Zynq Ultrascale+ MPSoC),
are built using cross installation with the DNF package manager
[11]. The root files systems are mounted on the SoC using the
Network File System (NFS) from a host PC.

We are using CentOS 7 to be fully in line with the ATLAS
policy, and we will follow the strategy chosen by ATLAS when
CentOS 7 will come to its end of life, which is planned for 2024.

D. Cross Compiler
In order to build all the user application software, cross

compilation is used with the gcc compiler [12] for armv7 and
for aarch64. While the armv7 version is built from source code,
the aarch64 version is used directly from the Worldwide LHC
Computing Grid (WLCG) [13].

E. User Application Software
The MSP and TRP firmware provides register and memory

descriptions provided in XML files. With the help of a custom
code generator those files are compiled to C++ code, which
provides access to the registers and memories. The code makes
use of the device file mappings provided in the Xilinx Linux
kernel, and which correspond to the AXI Chip2Chip

connections in the firmware [6]. This enables us to access to the
MSP and TRP firmware features directly from the SoC.

In addition, the user application software uses the run control
software provided by ATLAS TDAQ [7], which is cross
compiled in order to run on the SoC. Run control applications
running on the SoC allow full integration of the MUCTPI into
the ATLAS run control system.

IV. CONTINUOUS INTEGRATION

Continuous integration (CI) is the practice of automating the
integration of code changes from multiple developers into a
common software project, see [14]. It allows early
identification of changes, which possibly break the building of
the software, and other bugs. The scripts used for CI provide
documentation of the build process and allow one to adapt more
easily to new or changing requirements and changing software.
At the same time, CI also provides a basis for continuous
deployment (CD).

The firmware and software of the MUCTPI are stored in Git
projects on the central GitLab [15] services provided at CERN.
For that reason it was natural to use GitLab CI for continuous
integration.

A GitLab CI [16] project uses a YAML file, which describes
the build process as a pipeline that is made from individual jobs
which are executed in ordered stages. GitLab runners execute
pipelines on PCs reserved for CI. The GitLab runners are
selected by using tags, which indicate their features, e.g.
running Xilinx Vivado or the cross compiler. A pipeline can be
triggered by a Git action, e.g. Git commit, interactively from the
web browser, by other pipelines, by using the HTTP API, or by
using a schedule, e.g. every night at a given time. For each job,
conditions when to execute it can be configured freely using
GitLab provided environment variables, which gives great
flexibility when designing the build process. Common
considerations are the aforementioned trigger conditions of the
overall pipeline, the source or target branch or particular file
changes.

The first Git projects of the MUCTPI using CI were those of
the user application software, followed by the root file system
and the cross compiler, and then the boot software. In the end,
the CI methodology was also extended to the building of the
MUCTPI firmware. However, in this article the different uses
will be presented in the following sections in their logical order
from firmware to software, adding deployment as a final stage
and a CI script.

Our goal for using CI and CD for the firmware and the
software of the MUCTPI was to integrate code changes into the
master branch, to provide build checking and automatic
deployment to all the host systems, which the developers are
working on locally. This is possible because the team of
developers is rather small with less than ten people. In-depth
verification of the produced firmware and software was not
intended, at least not to start with when detailed test programs
do not yet exist and the focus is on development. The testing is
rather performed by the developers themselves, although ideas
and plans for such an extension of the CI/CD exist, see
sections V and VI.



IEEE TRANSACTIONS ON NUCLEAR SCIENCE 4

A. CI for Firmware
For the CI of the firmware, YAML files and GitLab variables

were added to each Git project for building a given type of an
FPGA and the version of the MUCTPI prototype, so that the
firmware can be built by the developer working on it, by
triggering the pipeline from the GitLab GUI. In addition, a new
Git project was created with a YAML file and several GitLab
variables that enable calling each combination of FPGA and
MUCTPI prototype version in a child pipeline. Both firmware
projects, for the MSP and the TRP, in all three variants of the
prototypes are rebuilt every night, so that up-to-date firmware
versions are always available for testing by all developers in the
next morning.

B. CI for Boot Software
The building of the boot software depends on the use of

Xilinx PetaLinux, which is free for use, but which needs
registration of the user. This was implemented by downloading
the Xilinx PetaLinux software and installing it in a docker
image, which is made available only to people of the Level-1
central trigger project, who are registered with Xilinx. The
docker image is then used by a GitLab runner for executing a
job. The job by defintion downloads the Git project files, copies
user-specific files for the U-Boot modifications and the DMA
kernel module into the meta-user directory of the PetaLinux
project, and makes several petalinux calls for configuring and
building the project. The resulting files for booting the SoC, i.e.
the FSBl, the U-Boot, the Linux kernel, the DMA kernel
module, and the device tree, are stored in a common file system.

C. CI for Root File System
The CentOS operating system is built using a docker image:

starting from a CentOS7/x86_64 docker image, the CentOS7
armv7 and aarch64 variants were cross installed using DNF
[11]. The installation starts with a minimal installation, and
additional packages are installed that are needed later for
runtime, e.g. networking tools and the python scripting
language. The selection of those packages is provided in a file
and can be modified to include further packages.

In addition, the DMA kernel module produced by PetaLinux
is copied into the root file system, as well as a number of
systemd modules [18], which are to be called at boot time and
which will set up the MUCTPI SoC in the network and with the
services required to work in the experiment.

D. CI for Cross Compiler
The docker images with the CentOS operating systems are

further used to install the gcc cross compiler for armv7 by
building it from scratch. The same was done for other pre-
dependencies of the ATLAS TDAQ and MUCTPI-specific
software, e.g. Boost [19] and TBB [20]. For aarch64 the cross
compiler and the other dependencies are taken from WLCG
using a distributed file system. The docker images with the
CentOS root file system and the cross compiler are the main
workhorses for the building of the user application software.

E. CI User Application Software
The user application software consists of a part of the

ATLAS TDAQ software and MUCTPI-specific software. The
building of the ATLAS TDAQ software itself is based on
CMake and fully supports cross compilation. A script is
provided in the ATLAS TDAQ software to build any number
of ATLAS TDAQ projects, which are included as Git
submodules.

The building of the MUCTPI-specific software follows the
ATLAS TDAQ scheme and also uses CMake. All necessary Git
projects are included as Git submodules and are built using the
same script provided by the ATLAS TDAQ software.

The YAML file for building the software determines the
particular architecture as well as which parts of the software
build to execute by evaluating dedicated CI variables set at job
creation.

F. CD of Firmware and Software
The deployment of the nightly builds and the release builds

was constantly extended to provide bitfiles and software
directly on a number of hosts for the different prototypes of the
MUCTPI. While this works in the lab, it does not work for the
experiment which is protected behind a network gateway.
Another CI job was added to provide all software in a tarball
for deployment at the experiment. The pipeline for the building
of the MUCTPI-specific software, the deployment on the host
systems, as well as the providing of a tarball for the experiment
is shown in Figure 5.

Fig. 5. Pipeline for the building and deployment of the user application software
for the MUCTPI.

In addition to a regular building and deployment of the
bitfiles and software, we want to be able to develop and debug
software using local development. This mode of operation
requires the additional installation of the cross compiler on the
local host, while the root file is already installed there, because
the host provides it to the MUCTPI using NFS. The NFS
exportation is then extended to the local user directory, which
is mounted on the SoC. This allows one to develop software on
the PC and to test it on the MUCTPI, and if found working well,
to check it into Git; the nightly or release build will then pick it
up, build it and deploy it on all host systems.

G. CI/CD Script
A python script was written to manage the building of all the

software of the MUCTPI using the HTTP API of GitLab. By
the help of this script one can select which of the two different
architectures, armv7 and aarch64, and which version of the
software needs to be built. It is also possible to select which part



IEEE TRANSACTIONS ON NUCLEAR SCIENCE 5

of the build is to be made, so that some parts do not need to be
rebuild constantly, e.g. the operating system or the boot
software. Intermediate results of the pipeline are stored on a
common file system. The script was further extended to cover
the deployment of the software in different forms to different
host systems. In summary, by this script any part of the software
or all of it can be rebuilt on request.

V. WORKFLOW WITH CONTINUOUS OPERATION

Having described the elements of the CI for the MUCTPI, we
now show how they are being used in the workflow for the
MUCTPI, which has three steps, see Figure 6:
1) Local build: This step does not include any CI. The

developers work on a branch of the Git project. Firmware
and software are built and tested locally. Firmware and
software are consistent because they are using the same
XML files. Tests are carried out by the developer on the
local system. When found satisfactory, the local Git branch
is pushed and merged into master.

2) Nightly build: This step makes use of the CI/CD. The
firmware and software are rebuilt every night. The master
branches of all projects are taken to pick up all the latest
changes of all developers. Since firmware and software are
using the same XML files, consistency at this level is
guaranteed. If any changes made during the day break the
building of the firmware or the software, then the
developers go back the next day and check what went
wrong. If the building works, all resulting bitfiles of the
firmware and all software are deployed to all host systems,
and can be used from the next day on for new local building
and testing.

3) Release build: This step makes use of the CI/CD. When all
people involved in the development decide, e.g. the
ATLAS TDAQ software changes, a new release is built,
and the software deployed to all hosts. The release becomes
the new base for the deployment in the experiment.

Fig. 6. Workflow with Continuous Integration for the MUCTPI.

VI. OBSERVATIONS AND ISSUES

One of the difficulties of running CI is using it for multiple
projects. This is where Git submodules play an essential role.
One of the first things we had to do was to create new super
projects for the firmware and for the software, which include all
the other modules as submodules. Right now we have not yet
combined the firmware and the software super projects, since
we are using nightly builds to pick up the changes made to the
common XML files the firmware and software are based on.

Another difficulty was to provide for different variants of the
hardware of the different prototype version or the different CPU
architectures of the SoC. This is where GitLab variables are
essential: they allow one to parametrize a common YAML file
or other build scripts for different variants.

Another GitLab CI feature we found very useful is that a
pipeline does not always have to run completely, when writing
the YAML file with rules for each job, one can decide which
part of the pipeline is run by selecting the jobs using GitLab
variables. This reduces run time, and leaves out the parts that
only very rarely change, e.g. the boot software and the root file
system and cross compiler.

One of the biggest difficulties we encountered, was to pass
some of the artifacts, like the root file system, between the
different stages of the pipelines and for the local development
due to the size and structure of the artifact. While we wanted to
use EOS [21] in the beginning, this turned out to be very
unpractical, in particular, for the large root file system with its
many small files. Copying the root file system was extremely
slow and took several hours. Also using a squashfs file
system [22] did not work because we explicitly wanted to write
to the root file system several times between different jobs, e.g.
to add the kernel module for DMA or to add a number of
systemd modules. We reverted to using AFS [23], which is still
widely used although it is not supposed to be supported for
much longer and new disk quota are not provided or existing
quota extended. Since we are using the file system for sharing
within the Level-1 central trigger team, within the same
institute, NFS could be another good solution, in particular for
the local development. We are also discussing other solutions
with our colleagues from the ATLAS TDAQ software.

The difficulty that some file systems can only be accessed
using the right credentials, e.g. AFS, was solved by using a
service account and providing the password in a masked GitLab
variable.

When building the software fails due to an error, those errors
can usually be easily found by looking at the GitLab logs.
However, for the building of firmware this is not necessarily so
easy. Scripts parsing the results of the firmware build will need
to be developed in order to check if and how well the building
worked. Checking if all timing constraints were met can be
achieved using simple parsing, and we are planning to include
those checks in the near future.

The fact that we are deploying on a number of host systems
can also be solved by using GitLab variables. In addition, a
script to set up on the local host PC is being used to set up the
right values for booting the SoC, and for running the local
development.

GitLab documentation proved to be generally well written,
in particular, in comparison to other software packages. It was
relatively easy to find solutions to the features we needed. There
also is a lively discussion forum [24].

We installed GitLab runners for running the CI pipelines on
a number of dedicated PCs under our control. The nightly build
for the firmware takes about 6 hours on two PCs, and the
software (only MUCTPI-specific software) about 20 minutes
on a third PC. This is sufficient for the time being, but with the



IEEE TRANSACTIONS ON NUCLEAR SCIENCE 6

extension of CI increasing, more PCs might need to be added.
Of course, using our own PCs for the CI, requires some system
administration work, and so a centrally organized alternative
could be something to be investigated.

VII. RESULTS AND OUTLOOK

Using CI greatly improved collaborative development of the
firmware and the software of the MUCTPI during its
development, as well as during the exploitation phase we are
now moving into. CI provides us with the latest files for
firmware and software on all host systems; it helps to find errors
early. It provides documentation on the build method itself. We
have constantly increased the use of CI from the user
application software to the firmware, as well as to the
deployment.

We will need to understand how CI will work with migrating
to newer versions of the proprietary tools, i.e. migrating from
Xilinx Vivado to Vitis [6], or to a newer version of Xilinx
PetaLinux, in particular, for the project-specific files that we are
adding the U-Boot building, and the hooks that PetaLinux
provides for customization.

We have not yet used CI for automatic testing. This could
also further enhance the quality of the firmware and software,
if adequate tests and a dedicated test system can be found to be
used by the CI.

VIII. ACKNOWLEDGMENTS

We would like to thank all our colleagues from the SoC
interest group for the many enriching discussions on all
firmware and software related issues around the use of
SoC [25]. During the second CERN SoC Workshop organized
by the SoC interest group several presentations showed the use
of CI and CD, in particular [27] and [28].

REFERENCES

[1] ATLAS Collaboration, “The ATLAS Experiment at the CERN Large
Hadron Collider”, J. Instr., vol. 3, Aug. 2008, Art. no. S08003.

[2] ATLAS Collaboration, “Technical Design Report for the Phase-I
Upgrade of the ATLAS TDAQ System”, CERN/LHCC/2013-018, 2013.
[Online]. Available: https://cds.cern.ch/record/1602235. Accessed on:
July 7, 2022.

[3] ATLAS Collaboration, “Technical Design Report for the Phase-II
Upgrade of the ATLAS TDAQ System”, CERN/LHCC/2017-020, 2017.
[Online]. Available: https:cds.cern.ch/record/2285584. Accessed on:
March 3, 2021.

[4] M. V. Silva Oliveira, S. Artz, B. Bauss, H. Boterenbrood, V. Buescher,
A. S. Cerqueira et al., "The ATLAS Level-1 Muon to Central Trigger
Processor Interface for Run 2 of the LHC", J. Instr., vol. 10, Feb. 2015,
Art. no. C02027.

[5] S. Perrella, Y. Afik, A. Armbruster, P Czodrowski, N. Ellis, S. Haas et
al., “Integration and Commissioning of the ATLAS Muon-to-Central-
Trigger-Processor Interface for Run 3”, J. Instr., vol. 17, Apr. 2022, Art.
no. C04006.

[6] Xilinx Inc. [Online]. Available: http://www.xilinx.com. Accessed on:
July 7, 2022.

[7] ATLAS Collaboration, “The ATLAS Data Acquisition and High Level
Trigger System”, J. Instr., vol. 11, Jun. 2016, Art. no. P06008.

[8] Version control system GIT. [Online]. Available: https://git-scm.com.
[9] J. Mendez, V. Bobillier, S. Haas, M. Joos, S. Mico, F. Vasey, “CERN-

IPMC Solution for AdvancedTCA Blades”, in TWEPP 2017, Santa
Cruz, CA, United States, 2018. [Online]. Available:
https://cds.cern.ch/record/2312397. Accessed on: November 20, 2022.

[10] The CentOS Project. [Online]. Available: http://www.centos.org.
Accessed on: June 29, 2022.

[11] Software package manager DNF. [Online]. Available:
http://fedoraproject.org/wiki/DNF. Accessed on: June 29, 2022.

[12] The GNU compiler collection GCC. [Online]. Available:
https://gcc.gnu.org. Accessed on: June 29, 2022.

[13] The Worldwide LHC Computing Grid. [Online]. Available:
https://wlcg.web.cern.ch. Accessed on: June 29, 2022.

[14] Atlassian Corporation Plc. [Online]. Available:
https://www.atlassian.com/continuous-delivery/continuous-integration.
Accessed on: June 29, 2022.

[15] GitLab Inc. [Online]. Available: https://about.gitlab.com. Accessed on:
June 29, 2022.

[16] GitLab Continuous Integration/Continuous Delivery. [Online].
Available: https://docs.gitlab.com/ee/ci. Accessed on: June 29, 2022.

[17] Docker Inc. [Online]. Available: https://docker.com. Accessed on: June
29, 2022.

[18] Systemd System and Service Manager. [Online]. Available:
https://systemd.io. Accessed on: June 29, 2022.

[19] Boost C++ LIbraries [Online]. Available: https://www.boost.org.
Accessed on: October 5, 2022.

[20] Intel oneAPI Threading Building Blocks [Online]. Available:
https://github.com/oneapi-src/oneTBB. Accessed on : October 5, 2022.

[21] EOS Open Storage [Online]. Available: https://eos-web.web.cern.ch.
[22] SquashFS File System. Available:

https://docs.kernel.org/filesystems/squashfs.html. Accessed on :
October 6, 2022.

[23] OpenAFS distributed file system. [Online]. Available:
https://www.openafs.org. Accessed on: June 29, 2022.

[24] GitLab discussion forum. [Online]. Available: https://forum.gitlab.com.
Accessed on: June 29, 2022.

[25] System-on-Chip interest group at CERN. E-mail: system-on-
chip@cern.ch. [Online]. Available:
https://twiki.cern.ch/twiki/bin/view/SystemOnChip. Accessed on: June
29, 2022.

[26] 2nd CERN SoC Workshop [Online]. Available:
https://indico.cern.ch/event/996093. Accessed at : October 6,
2022.

[27] M. Husejko, “Setting up basic GitLab CI and CD Environment for
Zynq-based Designs”, presented at the 2nd CERN SoC Workshop,
Geneva, Switzerland, Jun. 7-11, 2021.

[28] R. Spiwoks, “Software Framework for the System-on-Chip of the
ATLAS MUCTPI”, presented at the 2nd CERN SoC Workshop, Geneva,
Switzerland, Jun. 7-11, 2021.


