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ABSTRACT

We discuss the radiative corrections to the neutron decay rate at finite temperature
within the Braaten—Pisarski resurnmation scheme. The result is relevant for the

nucleosynthesis in the early universe. We find a positive but small contribution to
the primordial helium abundance.

1. Introduction

Abundances of light elements in the universe as inferred today reflect the pri-
mordial ones, which provide one of the important tests for the cosmological big-bang
model23, Furthermore, explanations of different problems of cosmology, e.g. the
missing dark matter problem?, require the knowledge of these abundances to high
accuracy as well. '

In the following we consider as the key quantity the fraction of neutrons as a
function of time during the evolution of the universe.

In the big-bang scenario the period relevant for nucleosynthesis® starts at ¢ ~
10~* sec (T =~ 100 MeV), with a heat bath of nucleons, electrons, neutrinos and
photons assumed to be in thermal (due to the strong and electromagnetic interactions)

and chemical (due to the weak processes) equilibrium. These weak processes are
(denoted by ”thermal neutron decay” in the following)

ve+nerpt+e eT+nopti nepte +0 (1)
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with any number of photons and ete™ pairs on both sides of the processes. The n/p
ratio is determined by thermal distributions; neglecting the small neutron and proton
momenta it is given by

n(T)/p(T) = exp(—~Am/T) : e)

where the neutron-proton mass difference Am = m, — m,, is introduced.
This ratio follows the cooling of the universe as long as the weak rate Aweak(n = p)
exceeds the expansion rate A..,. The freeze-out temperature is then determined by

Aweak(To) = Aez‘p(To)» (3)
or approximately
aae= [ ] " @
° 3 m?’lanck

where p is the total energy density. The number of neutrons is essentially fixed at this
temperature, T, ~ 0.7 MeV, since the processes (1) are no longer able to maintain
chemical equilibrium. After a period of pure decay, almost all neutrons are finally
captured into *He at T ~ 0.086 MeV (¢ =~ 180 sec) by reactions like

n+t+peaD+y D+DeT+p T+De*Hetn. (5)

The amount of *He is to a large extent determined by the Born approximation® to
the processes (1). However, because the primordial abundances are now extremely
well determined?, it is crucial to understand all possible theoretical uncertainties that

arise from different sources®.

Important are the radiative QED corrections to (1). The first calculations”™®
have been performed at fixed leading order in the fine-structure constant, i.e. at
O(c). With the recent developments of field theory at finite temperature®10:11:12:13,14,
especially using the methods for evaluating discontinuities of self-energy graphs!®16,
it became possible to show that collinear and infrared singularities'’1®1%2%%! cancel in
thermal rates. For the thermal neutron decay at O(a) this has been shown explicitely
in ref.[22)].

The now accepted Braaten-Pisarski?® and Frenkel-Taylor?* thermal resummation
scheme resolves the problem of large contributions of higher order Feynman diagrams
by resumming them in the hot thermal loop (HTL) approximation. The aim of the
present discussion?® is to see the effect of these higher order radiative correction on
T, and thus on the n/p ratio at this temperature.

In order to calculate the weak interaction rates (including their QED corrections)
for the processes (1), where the energies and temperatures are small compared to the
weak boson masses, we follow the accepted approximation by applying the effective
V — A theory of neutron decay with point-like nucleons?®. We furthermore take the
temperatures for the neutrinos, electrons and photons to be equal, and we neglect
corrections of O(T/m,,) by computing the rates in the infinite neutron/proton mass
limit (M, — 00)'?2.



We first summarize the finite temperature formalism!* and review the relation
between the interconverting rates and the neutron self-energy’®'®?%. Next we analyse
the relevant scales appearing in this problem and identify HTL ~ contributions which
have to be resummed, and which are not included in the previous fixed order results

in refs.[7,8]. Details of our calculation may be found in ref.[25]. We conclude with
quantitative results.

2. Neutron-proton rates at finite temperature

The thermal non-equilibrium distribution for the neutron as a function of time,
n(t), is assumed to obey the kinetic “master” equation
dn
— =-nly+ (1 -n)Ty, (6)
dt
where 'y and T'; denote the decay and formation rates for the neutron, respectively.
When using equilibrium distributions in [y, f, the detailed balance relation

[y/Ta = exp(=qo/T) ‘ (7)

holds, where go is the neutron energy (the small chemical potential of the nucleons
is neglected). According to the work by Weldon'> and by Kobes and Semenoff16-27
the rate I' = 'y + ['; may be related to the imaginary part of the thermal neutron
self-energy ¥ by?2:%®

1

[ = —5—tr] (Q+m,) ImS(Q)] . (®)
qo0

with Q = (qo, §) the Minkowski four-momentum of the neutron. :

Since the processes (1) conserve the number of nucleons, i.e. n(t)+p(t) = constant,
where p denotes the proton distribution function, 'y ; depend on p and thus on the
neutron density n. Therefore (6) is a non-linear equation. However, in order to
calculate the neutron-to-proton ratio the following approximations are usually applied
(and accepted): (i) only the lowest order in the weak Fermi coupling GF is taken into
account, and (ii) the recoil of the nucleons is neglected in the infinite mass limit. This
allows to factorize the rates into:

Tax(1—p) X% . T;=pXm . (9)

where A" is the sum of all partial rates per neutron (including possible QED correc-
tions),

AP =AMve+n—opt+e )+ Met +nopti)+Anopre +2) ,  (10)

and M\P" is the sum of the rates per proton for the inverse processes.

Introducing the ratio X, of neutrons to all nucleons, X, = n/(n + p), and appro-
ximating (1 — p) = (1 —n) ~ 1 (valid for m,,/T > 1), the “master” equation (6)
becomes linear!,
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and the detailed balance relation (7) is replaced by
AP AP = exp(—Am/T) . (12)

All the involved particles, including the nucleons, are assumed to be thermalized at
one universal temperature. '

For the actual calculation we use the real-time formalism for thermal Green
functions'4, and evaluate ImX of (8); we realize from (9) that?®?

D=Ty4+T; >y AP, (13)

since the proton distribution may be neglected, p < 1.
The neutron self-energy function is approximated by

meQ) = % (‘121) 276,((Q — K)? = my?)e(ko)
(1 4 (ko)) [GE@ K+ mp)G) TmILu(K) , (14)

where ¢ is the sign function. The condition §4(P? — m,?) = O(po)d(P? — m,?) stands
for the final state proton. The Bose-Einstein factor is ng(ko) = (exp(ko/T) — 1)™*
and the nucleon vertex function is denoted by G4 = v*(gv — ga~s), according to the
V — A effective Lagrangian®®

Having in mind that the weak interactions are mediated by (infinitely) heavy
bosons, the imaginary part of the boson self-energy, ImIl,,(K), enters in (14). With
the aim to include the HTL-improved electron propagator Syrr we derive for a general
propagator S

ImIl,(K) = —e(ko)(l—exp(—ko/T))
d4P’ 2 / | o+ ’ !
> / 27e(q0)5(Q)nr(a0)[GLISHPIGLE . (15)

with Q' = P’ — K, and the lepton vertex G!, = 7,(1 — v5). The thermal factor for

fermions is np(qo) = (exp(qo/T) + 1)7?
In the Born approximation the free thermal electron propagator Sy enters:

iS*(P) = (P+m.)[O(po) — nr(lpo))]2md(P? — m.?)
= (P+m)e(po)(l — np(po))2m6(P* = m.*) (16)

which leads to the result (keeping the neutron at rest and neglecting the electron
22,
mass m.)*%:

N = A [ dil p? (8 = Am)HL = ne()(1 = ne(Am =), (17)

where A = G% (g% + 3g%)/27°.



3. QED corrections and hard thermal loops

In order to obtain a more precise estimate for A\*? the corrections have to be
considered due to the coupling of the intense radiation background to the charged
particles present in the thermal neutron decay processes (1). Although the total
QED corrections at fixed O(a) to A™ are found to be small”®, as expected, it may be
observed (e.g. from Fig. 8 of ref.[8]) that individual processes, especially the exclusive
neutron decay and its inverse, do indeed receive large corrections at high temperature;
they even exceed the corresponding rate of the Born approximation! Such a behaviour,
however, requires resummation of the fixed order perturbative expansion.

Hard loop contributions are present in self-energy corrections to the fermion lines
as well as in the loop correction to the vertex functions. They are especially significant
on the soft momentum scale, where they become of leading order. Therefore we have
to analyse carefully the relevant scales entering the rates for the processes (1).

To get an idea of the de facto relevance of critical soft momenta we estimate
the mean electron momentum in the exclusive neutron decay based on the Born
approximation:

< p >pape-p.~ 0.65MeV | (18)

which is indeed a soft momentum for temperatures T > 2MeV. However, it has to
be noted that this exclusive channel gives only a small fraction to the total rate A",
(10), at high values of T. On the other hand the dominant scattering processes prefer
average electron momenta of the O(T), i.e. hard ones, but nevertheless the soft region
cannot be neglected when the electron phasespace is integrated to calculate the rate
(cf. (15)).

The proton propagation does not require HTL modifications, because the mass
satifies m, > T such that the proton four-momentum stays hard in the interesting
range of temperatures. By the same argument HTL corrections to the proton-electron
vertex may be neglected: the corrections attached to the proton are therefore calcu-
lated consistently at fixed O(a) as in refs.[7.8].

4, HTL resummation

The rate A" receives contributions from hard as well as from soft electron mo-
mentum. In order to obtain the corrections due to thermal electron self-energy effects
consistently in the HTL approximation we calculate the soft and hard parts separa-
tely, following a proposal of ref.[29], where we separate the soft and hard regime in
the electron momentum by a hyperbolic boundary:

Po=1/P?—u?. (19)

The cutoff parameter u is chosen on an intermediate scale p ~ veT. This kind of
covariant boundary has been successfully applied to the case of the thermal production
‘rate of hard photons®, where the same answer is obtained using the momentum cutoff:

p" = /T3,



In order to include all leading contributions when the electron momentum is soft
the hard thermal loops in the electron propagator have to be resummed. This can

be accomplished by taking the electron to be described by the effectlve resummed
fermion propagator Syz1323%34:

iSHr(P) = [O(po) — nr(|pol)]

.. 1
(yo — 7p) Im

1
D (po,p) D_(po,p)]’

where we neglect the electron mass. The properties of the functions Dy are discussed
in great detail in refs.[32-34], and they have been used e.g in refs.[30,31].
There are two distinct contributions to ImD , and therefore to the neutron rate.

The first one is due to the poles of 1/Di at D:t = 0, i.e. to the quasiparticle (QP)
excitations, w+. The second one arises from a logarithmic singularity in Dy giving rise
to an imaginary part for spacelike electron momenta. This is interpreted as Landau
damping (LD) i.e. absorption of the spacelike electron into the medium as discussed
in ref.[34].

For the hard electron contribution the electron’s phasespace to the right of the
boundary (19) in the po — p plane is relevant. Here HTL contributions are suppressed,

and only the one-loop diagram for the electron propagator to order a has to be
considered.

+ (Yo + 7p) Im (20)

5. Results and conclusion

The final result is expressed by the sum of three partial rates, due to the quasi-
particles, due to Landau damping and due to the hard contribution:

AP = A lop + AL + AF (21)

As we are interested in radiative corrections we subtract the Born approximation (17)
from the total result (21), AX™ = A*» —\Y . This quantity is evaluated numerically

as a function of temperature, keeping p fixed at its “ideal” value p = \/eT. The
relative corrections?®, normalized to the Born rate (17),

ANP/AP ~ —0.001 , (22)

turn out to stay approximately stable for temperatures above 1MeV/, supporting the
validity of the HTL approximation. Since we neglect the mass of the electron, we do
not investigate temperatures below 1MeV: this could be done e.g. by takmg into
account the effective temperature dependent Lagrangian derived in ref.[35], in which
m. # 0 at all temperatures.

Next we may relate (22) to the mass-fraction Y of the *He abundance using the
approximation given in ref.[3]:

AY ~ —0.18AN" /X ~0.0002 , (23)



indicating an increase of Y due to HTL contributions.

We note that (22) includes the fixed O(a) contribution, already evaluated in
refs.[7,8], where the (total) finite-temperature radiative correction - including the one
for the electron-proton vertex - is evaluated to AY =~ 0.0004.

In order to be able to quote the “genuine” HTL contribution beyond the leadmg
fixed order we have to subtract the O(a) part, which we estimate by expandlng A op
and A |Lp of (21), respectively, in terms of a.

Quantitatively we find that in terms of Y the finite temperature radiative correc-
tions of ref.[7] are reduced at high temperatures (T > 10MeV) by AYyrr/Y ~ 0.0017
when taking into account the HTL resummed electron propagator, whereas at lower
values of T',i.e. T >~ 1MeV, the fixed O(a) correction agrees with the HTL improved
one.

We finally observe that the HTL correction to Y is smaller than the recently
estimated effect of keeping the nucleon mass finite (AY/Y ~ 0.0057), but it is as big
as (even bigger than) the effect of neutrino heating (AY/Y ~ 0.0006)°.
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