CERN Accelerating science

Article
Title Deep neural network techniques in the calibration of space-charge distortion fluctuations for the ALICE TPC
Author(s) Gorbunov, Sergey (Frankfurt U., FIAS) ; Hellbär, Ernst (Darmstadt, GSI) ; Innocenti, Gian Michele (CERN) ; Ivanov, Marian (Darmstadt, GSI) ; Kabus, Maja (Warsaw U. of Tech.) ; Kleiner, Matthias (Frankfurt U., Inst. Kernphys.) ; Riaz, Haris (NUST, Islamabad) ; Rohr, David (CERN) ; Sadikin, Rifki (Tangerang, Indonesian Inst. Phys.) ; Schweda, Kai (Darmstadt, GSI) ; Sekihata, Daiki (Tokyo U.) ; Shahoyan, Ruben (CERN) ; Völkel, Benedikt (Heidelberg U.) ; Wiechula, Jens (Frankfurt U., Inst. Kernphys.) ; Zampolli, Chiara (CERN) ; Appelshäuser, Harald (Frankfurt U., Inst. Kernphys.) ; Büsching, Henner (Frankfurt U., Inst. Kernphys.) ; Graczykowski, Łukasz (Warsaw U. of Tech.) ; Grosse-Oetringhaus, Jan Fiete (CERN) ; Hristov, Peter (CERN) ; Gunji, Taku (Tokyo U.) ; Masciocchi, Silvia (Darmstadt, GSI)
Publication 2021
Number of pages 10
In: EPJ Web Conf. 251 (2021) 03020
In: 25th International Conference on Computing in High-Energy and Nuclear Physics (CHEP), Online, Online, 17 - 21 May 2021, pp.03020
DOI 10.1051/epjconf/202125103020
Subject category Computing and Computers
Abstract The Time Projection Chamber (TPC) of the ALICE experiment at the CERN LHC was upgraded for Run 3 and Run 4. Readout chambers based on Gas Electron Multiplier (GEM) technology and a new readout scheme allow continuous data taking at the highest interaction rates expected in Pb-Pb collisions. Due to the absence of a gating grid system, a significant amount of ions created in the multiplication region is expected to enter the TPC drift volume and distort the uniform electric field that guides the electrons to the readout pads. Analytical calculations were considered to correct for space-charge distortion fluctuations but they proved to be too slow for the calibration and reconstruction workflow in Run 3. In this paper, we discuss a novel strategy developed by the ALICE Collaboration to perform distortion-fluctuation corrections with machine learning and convolutional neural network techniques. The results of preliminary studies are shown and the prospects for further development and optimization are also discussed.
Related document Talk C21-05-17.1
Copyright/License publication: © The Authors, published by EDP Sciences. (License: CC-BY-4.0)

Corresponding record in: Inspire


 Δημιουργία εγγραφής 2022-06-28, τελευταία τροποποίηση 2022-08-17


Πλήρες κείμενο:
Κατέβασμα πλήρες κειμένου
PDF