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Abstract

In this proceeding, the xFitter project is presented. xFitter is an open-source
package that provides a framework for the determination of the parton distribution
and fragmentation functions for many different kinds of analyses in Quantum Chromo-
dynamics. xFitter version 2.2.0 has recently been released and offers an expanded set
of tools and options. xFitter has been used for a number of analyses performed re-
cently. An emphasis is given on the recently published study performed by the xFitter
developers’ team of the pion fragmentation functions.

1 Overview of the project
The xFitter project [1] (formerly HERAfitter) is an open-source fitting framework for
the determination of parton distribution functions (PDFs) of the proton and light mesons
(Ref. [2] illustrates this for the case of pion PDF). Version 2.2.02 has been recently released
and offers a wide and comprehensive set of tools and options for the determination of parton
densities. Various data sets from fixed-target experiments, as well as from ep (HERA), pp̄
(Tevatron) and pp (LHC) colliders, are already incorporated in xFitter, and they can be
fitted using predictions up to next-to-next-to-leading order (NNLO) in quantum chromody-
namics (QCD) and next-to-leading order (NLO) in electroweak (EW) perturbation theory.
Several theoretical calculations are available in this framework, as well as plotting tools to
allow users to better visualize the results. The framework can be used to study the impact of
new measurements from hadron colliders on PDFs, check the consistency of measured data
from different experiments, test different theoretical assumptions, and also assess the impact
of future colliders (see Ref. [3] for LHeC and Ref. [4] for EIC pseudo-data respectively).
More than 100 publications have already used the xFitter framework, thanks to its mod-
ular structure which allows for various theoretical and methodological options. Interfaces
to HATHOR [5], FastNLO [6], APFEL [7, 8], APFELgrid [9], APPLgrid [10], LHAPDF [11] and
QCDNUM [12] are already contained in the platform. More detailed documentation can be
found in Ref. [1], and an overview of available tutorial can be found in Ref. [13].

2 Recent and future developments
A significant restructuring of the code is present in the latest xFitter release - the new
version providing significantly improved modularity for PDF parametrization, evolution,
theory predictions and minimization. This additional flexibility simplifies further develop-
ments of the code. The existing functionalities have been improved and the code capabilities
expanded. The new release is also characterized by the usage of modern, industry-standard
libraries, with several improvements of the execution time required for minimisation by more
than one order of magnitude. Moreover, xFitter can be interfaced to modern minimization
packages, such as CERES, providing additional opportunities to employ more sophisticated
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Figure 1: A comparison of BELLE13, BELLE20, and BaBar for fits A, B, and C. Note that
not all data sets are included in each fit. These plots are taken from Ref. [19].

and faster automatic differentiation.
Further developmenst to allow functionality beyond that of the determination of conven-
tional PDFs have already been planned by the xFitter Developers’ Team. For example, the
functionality for fitting PDFs and Fragmentation Functions (FFs) will be introduced. Fur-
thermore, transverse-momentum-dependent (TMD) parton distribution functions [14] are
being developed by including branching scale-dependent resolution parameters [15] as a new
functionality. TMDs will be introduced independently of the parton branching method using
the existing interface to the DYTURBO [16] package. Moreover, since one of the main targets
of state-of-the-art PDF global fits is to include theoretical uncertainties in the PDF (see
the discussion in Ref. [17]), xFitter plans to provide PDF sets incorporating theoretical
uncertainties by applying the resummation-scale technique presented in Ref. [18].

3 The pion fragmentation function
The first open-source analysis of FFs of charged pions performed at both NLO and NNLO
accuracy in perturbative QCD is presented was presented by the xFitter Collaboration in
Ref. [19] and is summarised here. The resulting fit is called “IPM-XFITTER”. This study in-
corporates an up-to-date and comprehensive set of pion production data from single-inclusive
annihilation (e+e− → π±X, SIA) processes, together with the most recent measurements
of inclusive cross-sections of single pion by the BELLE collaboration. These data contain
inclusive and flavour-tagged measurements of pion scaled energy,z = 2Eπ±/

√
s, calculated

at different center of mass energies of
√
s = Q with charged pion energy Eπ± , corresponding

to individual charm, or bottom quarks, and the sum of light quarks.
The z-dependence of the FFs at an initial scale Q2

0 = 25 GeV2 is parametrised as follows:

Dπ±

i (z,Q0) =
Nizαi(1− z)βi [1 + γi(1− z)δi ]

B[2 + αi, βi + 1] + γiB[2 + αi, βi + δi + 1]
(1)

where B[a, b] is the Euler beta function and each parton flavour has five free parameters.
The fitted flavour combination are i = u+, d+, s+, c+, b+ and g.
To investigate the influence if the BELLE13 [20], BELLE20 [21] and BaBar [22] data sets
on FFs was a primary goal of this QCD analysis. Thus, five different sets of fits have been
performed and they are summarised below:

• Fit A: This fit focuses on the impact of the BELLE13 data set. Thus, the BELLE20
data are excluded.

• Fit B: This fit focuses on the impact of the BELLE20 data set. Thus, the BELLE13
data are excluded.
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Figure 2: A comparison of fits E and B for charged pion FFs (π++π−) at NNLO with results
from the literature at Q2 = 100 GeV2. The predictions from DSEHS14 [23] and JAM19 [24]
at NLO, NNFF1 [25] at NNLO, with their uncertainties, are also displayed. These plots are
taken from Ref. [19].

• Fit C: This fit focuses on the impact of the BELLE20 data without the BaBar set.
Thus, the BaBar and BELLE13 data are excluded.

• Fit D: This fit focuses on the impact of cutting the low-z BELLE20 data. Thus,
the BaBar and BELLE13 data are excluded and a cut, z > 0.2, is imposed on the
BELLE20 data.

• Fit E: This fit focuses on the impact of the BELLE20 and BaBar sets with cuts
imposed to remove low-z data. Thus,the BELLE13 data are excluded and a cut, z >
0.2, is imposed on the BELLE20 data, and z > 0.1 on the BaBar data.

The comparison between our fits A, B and C with the data for BELLE13, BELLE20 and
BaBar is displayed in Figure 1. As regards the BELLE13 data, within the large uncertainties
Fit A is consistent with the data; fits B and C provide a good description of the BaBar or
BELLE data with the exception of the low-z region, where the two data sets pull the fits in
opposite directions. Because of this poor description at low z, additional selection in z was
considered for fits D and E.
Comparisons of fits E and B are displayed in Figure 2 along with results from the literature.
The preferred fit is Fit E, with Fit B chosen to highlight the impact of low-z cuts. Com-
parison is shown with results from the DSEHS14 [23], JAM19 [24] and NNFF1 [25, 26, 27]
collaborations which are computed either at NLO (DSEHS14 and JAM19) or at NNLO
(NNFF1). Figure 2 shows these results at Q2 = 100 GeV2. The up and down FFs are
generally compatible with NNFF1 and DSEHS14 at larger z, but they differ in the low-z
region, and similar conclusions can be applied to the c+ and b+ heavy quarks. For the
strange quark, results have a larger spread, suggesting an overall increased uncertainty, in
part reflecting the minimal constraint imposed on the strange FF by the chosen data. Com-
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paring the xFitter gluon FF with NNFF1 and DSEHS14, again it is seen that the FFs
are generally compatible, lying within the NNFF1 uncertainty and overlapping with the
DSEHS14 uncertainty for the larger z region.
It is interesting to notice that the JAM19 FFs show a different behaviour in contrast to
the above-mentioned analyses. The FFs from JAM19 have a much steeper slope at small
z for the quark flavours, while the gluon generally is generally higher than the xFitter
results for intermediate to larger z values. The JAM19 uncertainty bands are much smaller
in comparison with the xFitter result and the NNFF1 analysis. This can be understood as
the JAM19 focus which was on SIDIS in the region z & 0.2, and in this region there is closer
agreement among the FFs. Moreover, the JAM19 collaboration obtain their results by a
simultaneous determination of both PDFs and FFs, so it would be interesting to investigate
further to determine to what extent any difference might be separately attributable to this
combined analysis and the choice of data sets.

4 Conclusion
The xFitter 2.2.0 program is a versatile, flexible, modular, and comprehensive tool that
can facilitate analyses of experimental data with a variety of theoretical calculations. This
analysis exemplifies the capability of xFitter to analyse both PDFs and FFs of both had-
rons (e.g., protons and nuclei) and mesons (e.g. pions). This is facilitated by incorporating
experimental data from a wide range of experiments, and implementing NNLO theoret-
ical calculations in perturbation theory. We encourage the use of xFitter, and welcome
new contributions from the community as we continue to incorporate the latest theoretical
advances and precision experimental data.
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