Home > Hamiltonian Truncation with Larger Dimensions |
Talk | ||||||||||||||||||||||||
Title | Hamiltonian Truncation with Larger Dimensions | |||||||||||||||||||||||
Video |
| |||||||||||||||||||||||
Author(s) | Elias Miró, Joan (speaker) (ICTP) | |||||||||||||||||||||||
Corporate author(s) | CERN. Geneva | |||||||||||||||||||||||
Imprint | 2022-05-31. - 4868. | |||||||||||||||||||||||
Series | (TH institutes) (Nonperturbative Methods in Quantum Field Theory) | |||||||||||||||||||||||
Lecture note | on 2022-05-31T14:00:00 | |||||||||||||||||||||||
Subject category | TH institutes | |||||||||||||||||||||||
Abstract | Hamiltonian Truncation (HT) is a numerical approach for calculating observables in a Quantum Field Theory non-perturbatively. This approach can be applied to theories constructed by deforming a conformal field theory with a relevant operator of scaling dimension ∆. In this talk I will review the HT techniques and emphasise few key open problems. I will also discuss the recent efforts to extend these ideas to higher dimensions (d > 2) and for UV divergent relevant operators (d/2 <= ∆ < d). | |||||||||||||||||||||||
Copyright/License | © 2022-2024 CERN | |||||||||||||||||||||||
Submitted by | [email protected] |