002807541 001__ 2807541
002807541 005__ 20230629062023.0
002807541 0248_ $$aoai:cds.cern.ch:2807541$$pcerncds:FULLTEXT$$pcerncds:CERN:FULLTEXT$$pcerncds:CERN
002807541 037__ $$9arXiv$$aarXiv:2203.13900$$cphysics.ins-det
002807541 037__ $$aFERMILAB-CONF-22-284-PPD
002807541 035__ $$9arXiv$$aoai:arXiv.org:2203.13900
002807541 035__ $$9Inspire$$aoai:inspirehep.net:2058917$$d2023-06-28T14:57:13Z$$h2023-06-29T02:17:08Z$$mmarcxml$$ttrue$$uhttps://inspirehep.net/api/oai2d
002807541 035__ $$9Inspire$$a2058917
002807541 041__ $$aeng
002807541 100__ $$aBerry, Doug$$uFermilab$$vFermi National Accelerator Laboratory, Batavia, IL 60510, USA
002807541 245__ $$9arXiv$$a4-Dimensional Trackers
002807541 269__ $$c2022-03-25
002807541 300__ $$a26 p
002807541 500__ $$9arXiv$$a26 pages, contribution to Snowmass 2021
002807541 520__ $$9arXiv$$a4-dimensional (4D) trackers with ultra fast timing (10-30 ps) and very fine spatial resolution (O(few $\mu$m)) represent a new avenue in the development of silicon trackers, enabling new physics capabilities beyond the reach of the existing tracking detectors. This paper reviews the impact of integrating 4D tracking capabilities on several physics benchmarks both in potential upgrades of the HL-LHC experiments and in several detectors at future colliders, and summarizes the currently available sensor technologies as well as electronics, along with their limitations and directions for R$\&$D.
002807541 540__ $$3preprint$$aarXiv nonexclusive-distrib 1.0$$uhttp://arxiv.org/licenses/nonexclusive-distrib/1.0/
002807541 595_D $$aL$$d2022-04-06$$sabs
002807541 595_D $$aL$$d2022-04-10$$sprinted
002807541 65017 $$2arXiv$$ahep-ex
002807541 65017 $$2SzGeCERN$$aParticle Physics - Experiment
002807541 65017 $$2arXiv$$aphysics.ins-det
002807541 65017 $$2SzGeCERN$$aDetectors and Experimental Techniques
002807541 690C_ $$aCERN
002807541 690C_ $$aPREPRINT
002807541 700__ $$aCairo, [email protected]$$uCERN$$vCERN, Conseil Européen pour la Recherche Nucléaire, 1211 Geneva 23, Switzerland
002807541 700__ $$aDragone, Angelo$$uSLAC$$vSLAC National Accelerator Laboratory; Menlo Park, California 94025, USA
002807541 700__ $$aCentis-Vignali, Matteo$$uFond. Bruno Kessler, Trento$$vFondazione Bruno Kessler, Trento, Italy
002807541 700__ $$aGiacomini, Gabriele$$uBrookhaven$$vBrookhaven National Laboratory, Upton, 11973, NY, USA
002807541 700__ $$aHeller, [email protected]$$uFermilab$$vFermi National Accelerator Laboratory, Batavia, IL 60510, USA
002807541 700__ $$aJindariani, Sergo$$uFermilab$$vFermi National Accelerator Laboratory, Batavia, IL 60510, USA
002807541 700__ $$aLai, Adriano$$uINFN, Cagliari$$vIstituto Nazionale Fisica Nucleare, Sezione di Cagliari, Cagliari, Italy
002807541 700__ $$aLinssen, Lucie$$uCERN$$vCERN, Conseil Européen pour la Recherche Nucléaire, 1211 Geneva 23, Switzerland
002807541 700__ $$aLipton, Ron$$uFermilab$$vFermi National Accelerator Laboratory, Batavia, IL 60510, USA
002807541 700__ $$aMadrid, Chris$$uFermilab$$vFermi National Accelerator Laboratory, Batavia, IL 60510, USA
002807541 700__ $$aMarkovic, Bojan$$uSLAC$$vSLAC National Accelerator Laboratory; Menlo Park, California 94025, USA
002807541 700__ $$aMazza, [email protected]$$uUC, Santa Cruz$$vSCIPP, University of California Santa Cruz, Santa Cruz, CA 95064, USA
002807541 700__ $$aOtt, Jennifer$$uUC, Santa Cruz$$vSCIPP, University of California Santa Cruz, Santa Cruz, CA 95064, USA
002807541 700__ $$aSchwartzman, Ariel$$uSLAC$$vSLAC National Accelerator Laboratory; Menlo Park, California 94025, USA
002807541 700__ $$aWeber, Hannsjörg$$uHumboldt U., Berlin$$vInstitut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
002807541 700__ $$aYe, Zhenyu$$uIllinois U., Chicago$$vUniversity of Illinois at Chicago, Chicago, IL 60607, USA
002807541 773__ $$wC21-07-11
002807541 8564_ $$uhttps://lss.fnal.gov/archive/2022/conf/fermilab-conf-22-284-ppd.pdf$$yFermilab Library Server
002807541 8564_ $$uhttps://www.slac.stanford.edu/econf/C210711/$$yeConf
002807541 8564_ $$82364200$$s178770$$uhttp://cds.cern.ch/record/2807541/files/TOF_SiD.png$$y00001 From Ref. \cite{breidenbach2021updating}. Mass resolution for a time-of-flight system with a performance of 10 ps in SiD.
002807541 8564_ $$82364201$$s228560$$uhttp://cds.cern.ch/record/2807541/files/extrapolatedFillFactorTI_Ferrero2022.png$$y00006 Expected fill factor of square TI-LGAD pixels for different channel border layouts. The width of no-gain area was measured on TI-LGAD pad sensors using a pulsed laser~\cite{FerreroTredi2022}.
002807541 8564_ $$82364202$$s33738$$uhttp://cds.cern.ch/record/2807541/files/AC_LGAD_amplitudes_testbeam.png$$y00004 AC-LGAD strip sensor prototype produced at Brookhaven National Laboratory, with \SI{100}{\micro\m} pitch. The green box indicates readout channels (left). Signal amplitudes shared between various channels as a function of the particle impact parameter at the Fermilab Test Beam Facility (center). Spatial resolution as a function of proton impact parameter, including roughly \SI{5}{\micro\m} contribution from the reference tracker (right). The grey areas indicates the metallized regions on the sensor surface.
002807541 8564_ $$82364203$$s156873$$uhttp://cds.cern.ch/record/2807541/files/FCC-pu.png$$y00000 From Ref. \cite{Drasal:2674721}. An effective pile-up in the FCC-hh tracker. Several options of timing resolution per track in 3D vertexing are assumed: no timing (black), $\delta$ t = 25 ps (red) and $\delta$ t = 5 ps (blue). Several $p_{T}$ values are shown: 1 GeV/c (solid), 5 GeV/c (dashed) and 10 GeV/c (dotted). For reference the effective pile-up for CMS Phase 2 layout, $p_{T}$ = 1 GeV/c and nominal pile-up=140 is added.
002807541 8564_ $$82364204$$s2116000$$uhttp://cds.cern.ch/record/2807541/files/2203.13900.pdf$$yFulltext
002807541 8564_ $$82364205$$s160664$$uhttp://cds.cern.ch/record/2807541/files/TI_LGADs.png$$y00008 Schematic for different types of LGADs. From left to right and top to bottom: standard LGAD, AC-LGAD, DJ-LGAD, Buried-LGAD, TI-LGAD, Malta HV-CMOS \cite{MALTA}, DS-LGAD, 3D normal and trench silicon sensor.
002807541 8564_ $$82364206$$s439386$$uhttp://cds.cern.ch/record/2807541/files/AC_LGAD_photo.png$$y00003 AC-LGAD strip sensor prototype produced at Brookhaven National Laboratory, with \SI{100}{\micro\m} pitch. The green box indicates readout channels (left). Signal amplitudes shared between various channels as a function of the particle impact parameter at the Fermilab Test Beam Facility (center). Spatial resolution as a function of proton impact parameter, including roughly \SI{5}{\micro\m} contribution from the reference tracker (right). The grey areas indicates the metallized regions on the sensor surface.
002807541 8564_ $$82364207$$s15136$$uhttp://cds.cern.ch/record/2807541/files/AC_LGAD_resolution_testbeam.png$$y00005 AC-LGAD strip sensor prototype produced at Brookhaven National Laboratory, with \SI{100}{\micro\m} pitch. The green box indicates readout channels (left). Signal amplitudes shared between various channels as a function of the particle impact parameter at the Fermilab Test Beam Facility (center). Spatial resolution as a function of proton impact parameter, including roughly \SI{5}{\micro\m} contribution from the reference tracker (right). The grey areas indicates the metallized regions on the sensor surface.
002807541 8564_ $$82364208$$s133316$$uhttp://cds.cern.ch/record/2807541/files/3D_trench.png$$y00011 Schematic for different types of LGADs. From left to right and top to bottom: standard LGAD, AC-LGAD, DJ-LGAD, Buried-LGAD, TI-LGAD, Malta HV-CMOS \cite{MALTA}, DS-LGAD, 3D normal and trench silicon sensor.
002807541 8564_ $$82364209$$s19053$$uhttp://cds.cern.ch/record/2807541/files/TowerJazz_process_XDPW.png$$y00009 Schematic for different types of LGADs. From left to right and top to bottom: standard LGAD, AC-LGAD, DJ-LGAD, Buried-LGAD, TI-LGAD, Malta HV-CMOS \cite{MALTA}, DS-LGAD, 3D normal and trench silicon sensor.
002807541 8564_ $$82364210$$s235857$$uhttp://cds.cern.ch/record/2807541/files/LGAD_schemes.png$$y00007 Schematic for different types of LGADs. From left to right and top to bottom: standard LGAD, AC-LGAD, DJ-LGAD, Buried-LGAD, TI-LGAD, Malta HV-CMOS \cite{MALTA}, DS-LGAD, 3D normal and trench silicon sensor.
002807541 8564_ $$82364211$$s226008$$uhttp://cds.cern.ch/record/2807541/files/dEdx_TOF_ILD.png$$y00002 From Ref. \cite{theildcollaboration2020international}. Particle separation power for $\pi/k$ and $K/p$ based on the dE/dx measurement in the TPC and on a time-of-flight estimator from the first ten ECAL layers. The separation power obtained when the information from the two systems is combined is also shown.
002807541 8564_ $$82364212$$s222461$$uhttp://cds.cern.ch/record/2807541/files/DS_LGAD.png$$y00010 Schematic for different types of LGADs. From left to right and top to bottom: standard LGAD, AC-LGAD, DJ-LGAD, Buried-LGAD, TI-LGAD, Malta HV-CMOS \cite{MALTA}, DS-LGAD, 3D normal and trench silicon sensor.
002807541 8564_ $$82371172$$s2138336$$uhttp://cds.cern.ch/record/2807541/files/jt.pdf$$yFulltext
002807541 960__ $$a11
002807541 962__ $$b2722743$$k$$nseattle20210711
002807541 980__ $$aConferencePaper
002807541 980__ $$aPREPRINT