Начало > Toward the end-to-end optimization of particle physics instruments with differentiable programming |
Article | |
Report number | arXiv:2203.13818 |
Title | Toward the end-to-end optimization of particle physics instruments with differentiable programming |
Related title | Toward the End-to-End Optimization of Particle Physics Instruments with Differentiable Programming: a White Paper |
Author(s) |
Dorigo, Tommaso (INFN, Padua) ; Giammanco, Andrea (Louvain U., CP3) ; Vischia, Pietro (Louvain U., CP3) ; Aehle, Max (Kaiserslautern U.) ; Bawaj, Mateusz (Perugia U.) ; Boldyrev, Alexey (Higher Sch. of Economics, Moscow) ; Manzano, Pablo de Castro (INFN, Padua) ; Derkach, Denis (Higher Sch. of Economics, Moscow) ; Donini, Julien (Clermont-Ferrand U.) ; Edelen, Auralee (SLAC) ; Fanzago, Federica (INFN, Padua) ; Gauger, Nicolas R. (Kaiserslautern U.) ; Glaser, Christian (Uppsala U.) ; Baydin, Atılım G. (Oxford U.) ; Heinrich, Lukas (Munich, Tech. U.) ; Keidel, Ralf (Fachhochsch., Worms) ; Kieseler, Jan (CERN) ; Krause, Claudius (Rutgers U., Piscataway) ; Lagrange, Maxime (Louvain U., CP3) ; Lamparth, Max (Munich, Tech. U.) ; Layer, Lukas (INFN, Padua ; Naples U.) ; Maier, Gernot (DESY) ; Nardi, Federico (INFN, Padua ; Padua U. ; Clermont-Ferrand U.) ; Pettersen, Helge E.S. (Karolinska Inst., Stockholm) ; Ramos, Alberto (Valencia U., IFIC) ; Ratnikov, Fedor (Higher Sch. of Economics, Moscow) ; Röhrich, Dieter (Bergen U.) ; de Austri, Roberto Ruiz (Valencia U., IFIC) ; del Árbol, Pablo Martínez Ruiz (Cantabria Inst. of Phys.) ; Savchenko, Oleg (INFN, Padua ; Louvain U., CP3) ; Simpson, Nathan (Lund U.) ; Strong, Giles C. (INFN, Padua) ; Taliercio, Angela (Louvain U., CP3) ; Tosi, Mia (INFN, Padua ; Padua U.) ; Ustyuzhanin, Andrey (Higher Sch. of Economics, Moscow) ; Zaraket, Haitham (Lebanese U.) |
Publication | 2023-05-25 |
Imprint | 2022-03-22 |
Number of pages | 56 |
In: | Rev. Phys. 10 (2023) 100085 |
DOI | 10.1016/j.revip.2023.100085 (publication) |
Subject category | physics.ins-det ; Detectors and Experimental Techniques |
Abstract | The full optimization of the design and operation of instruments whose functioning relies on the interaction of radiation with matter is a super-human task, given the large dimensionality of the space of possible choices for geometry, detection technology, materials, data-acquisition, and information-extraction techniques, and the interdependence of the related parameters. On the other hand, massive potential gains in performance over standard, "experience-driven" layouts are in principle within our reach if an objective function fully aligned with the final goals of the instrument is maximized by means of a systematic search of the configuration space. The stochastic nature of the involved quantum processes make the modeling of these systems an intractable problem from a classical statistics point of view, yet the construction of a fully differentiable pipeline and the use of deep learning techniques may allow the simultaneous optimization of all design parameters. In this document we lay down our plans for the design of a modular and versatile modeling tool for the end-to-end optimization of complex instruments for particle physics experiments as well as industrial and medical applications that share the detection of radiation as their basic ingredient. We consider a selected set of use cases to highlight the specific needs of different applications. |
Copyright/License | preprint: (License: arXiv nonexclusive-distrib 1.0) publication: © 2023-2024 The Author(s) (License: CC BY-NC-ND 4.0) |