Página principal > Search for Majorana neutrinos exploiting millikelvin cryogenics with CUORE |
Article | |
Report number | arXiv:2104.06906 |
Title | Search for Majorana neutrinos exploiting millikelvin cryogenics with CUORE |
Related title | Search for Majorana neutrinos exploiting millikelvin cryogenics with CUORE |
Author(s) |
Adams, D.Q. (South Carolina U.) ; Alduino, C. (South Carolina U.) ; Alfonso, K. (UCLA) ; Avignone, III F.T. (South Carolina U.) ; Azzolini, O. (INFN, Legnaro) ; Bari, G. (INFN, Bologna) ; Bellini, F. (Rome U. ; CERN ; UC, Riverside ; INFN, Rome) ; Benato, G. (Gran Sasso) ; Beretta, M. (UC, Berkeley) ; Biassoni, M. (Milan Bicocca U. ; INFN, Milan Bicocca) ; Branca, A. (Milan Bicocca U. ; INFN, Milan Bicocca) ; Brofferio, C. (Milan Bicocca U. ; INFN, Milan Bicocca) ; Bucci, C. (Gran Sasso) ; Camilleri, J. (Virginia Tech.) ; Caminata, A. (INFN, Genoa) ; Campani, A. (INFN, Genoa ; Genoa U.) ; Canonica, L. (Gran Sasso ; MIT) ; Cao, X.G. (Fudan U.) ; Capelli, S. (Milan Bicocca U. ; INFN, Milan Bicocca) ; Cappelli, L. (Gran Sasso ; UC, Berkeley ; LBNL, NSD) ; Cardani, L. (CERN ; UC, Riverside ; INFN, Rome) ; Carniti, P. (Milan Bicocca U. ; INFN, Milan Bicocca) ; Casali, N. (CERN ; UC, Riverside ; INFN, Rome) ; Celi, E. (Gran Sasso ; GSSI, Aquila) ; Chiesa, D. (Milan Bicocca U. ; INFN, Milan Bicocca) ; Clemenza, M. (Milan Bicocca U. ; INFN, Milan Bicocca) ; Copello, S. (INFN, Genoa ; Genoa U.) ; Cremonesi, O. (Milan Bicocca U. ; INFN, Milan Bicocca) ; Creswick, R.J. (South Carolina U.) ; D'Addabbo, A. (Gran Sasso ; GSSI, Aquila) ; Dafinei, I. (CERN ; UC, Riverside ; INFN, Rome) ; Dell'Oro, S. (Milan Bicocca U. ; INFN, Milan Bicocca) ; Di Domizio, S. (INFN, Genoa ; Genoa U.) ; Dompè, V. (Gran Sasso ; GSSI, Aquila) ; Fang, D.Q. (Fudan U.) ; Fantini, G. (Rome U. ; CERN ; UC, Riverside ; INFN, Rome) ; Faverzani, M. (Milan Bicocca U. ; INFN, Milan Bicocca) ; Ferri, E. (Milan Bicocca U. ; INFN, Milan Bicocca) ; Ferroni, F. (CERN ; UC, Riverside ; GSSI, Aquila ; INFN, Rome) ; Fiorini, E. (Milan Bicocca U. ; INFN, Milan Bicocca) ; Franceschi, M.A. (Frascati) ; Freedman, S.J. (UC, Berkeley ; LBNL, NSD) ; Fu, S.H. (Fudan U.) ; Fujikawa, B.K. (LBNL, NSD) ; Giachero, A. (Milan Bicocca U. ; INFN, Milan Bicocca) ; Gironi, L. (Milan Bicocca U. ; INFN, Milan Bicocca) ; Giuliani, A. (IJCLab, Orsay) ; Gorla, P. (Gran Sasso) ; Gotti, C. (Milan Bicocca U. ; INFN, Milan Bicocca) ; Gutierrez, T.D. (Cal. Poly.) ; Han, K. (Shanghai Jiaotong U., INPAC ; Shanghai Jiao Tong U.) ; Hansen, E.V. (UC, Berkeley) ; Heeger, K.M. (Yale U.) ; Huang, R.G. (UC, Berkeley) ; Huang, H.Z. (UCLA) ; Johnston, J. (MIT) ; Keppel, G. (INFN, Legnaro) ; Kolomensky, Yu. G. (UC, Berkeley ; LBNL, NSD) ; Ligi, C. (Frascati) ; Liu, R. (Yale U.) ; Ma, L. (UCLA) ; Ma, Y.G. (Fudan U.) ; Marini, L. (Gran Sasso ; UC, Berkeley ; LBNL, NSD ; GSSI, Aquila) ; Maruyama, R.H. (Yale U.) ; Mayer, D. (MIT) ; Mei, Y. (LBNL, NSD) ; Moggi, N. (INFN, Bologna ; U. Bologna, DIFA) ; Morganti, S. (CERN ; UC, Riverside ; INFN, Rome) ; Napolitano, T. (Frascati) ; Nastasi, M. (Milan Bicocca U. ; INFN, Milan Bicocca) ; Nikkel, J. (Yale U.) ; Nones, C. (IRFU, Saclay) ; Norman, E.B. (LLNL, Livermore ; UC, Berkeley) ; Nucciotti, A. (Milan Bicocca U. ; INFN, Milan Bicocca) ; Nutini, I. (Milan Bicocca U. ; INFN, Milan Bicocca) ; O'Donnell, T. (Virginia Tech.) ; Ouellet, J.L. (MIT) ; Pagan, S. (Yale U.) ; Pagliarone, C.E. (Gran Sasso ; Brescia U. ; Cassino U.) ; Pagnanini, L. (Gran Sasso ; GSSI, Aquila) ; Pallavicini, M. (INFN, Genoa ; Genoa U.) ; Pattavina, L. (Gran Sasso) ; Pavan, M. (Milan Bicocca U. ; INFN, Milan Bicocca) ; Pessina, G. (Milan Bicocca U. ; INFN, Milan Bicocca) ; Pettinacci, V. (CERN ; UC, Riverside ; INFN, Rome) ; Pira, C. (INFN, Legnaro) ; Pirro, S. (Gran Sasso) ; Pozzi, S. (Milan Bicocca U. ; INFN, Milan Bicocca) ; Previtali, E. (Milan Bicocca U. ; INFN, Milan Bicocca) ; Puiu, A. (Gran Sasso ; GSSI, Aquila) ; Rosenfeld, C. (South Carolina U.) ; Rusconi, C. (South Carolina U. ; Gran Sasso) ; Sakai, M. (UC, Berkeley) ; Sangiorgio, S. (LLNL, Livermore) ; Schmidt, B. (LBNL, NSD) ; Scielzo, N.D. (LLNL, Livermore) ; Sharma, V. (Virginia Tech.) ; Singh, V. (UC, Berkeley) ; Sisti, M. (Milan Bicocca U. ; INFN, Milan Bicocca) ; Speller, D. (Johns Hopkins U.) ; Surukuchi, P.T. (Yale U.) ; Taffarello, L. (INFN, Padua) ; Terranova, F. (Milan Bicocca U. ; INFN, Milan Bicocca) ; Tomei, C. (CERN ; UC, Riverside ; INFN, Rome) ; Vetter, K.J. (UC, Berkeley ; LBNL, NSD) ; Vignati, M. (Rome U. ; CERN ; UC, Riverside ; INFN, Rome) ; Wagaarachchi, S.L. (UC, Berkeley ; LBNL, NSD) ; Wang, B.S. (LLNL, Livermore ; UC, Berkeley) ; Welliver, B. (LBNL, NSD) ; Wilson, J. (South Carolina U.) ; Wilson, K. (South Carolina U.) ; Winslow, L.A. (MIT) ; Zimmermann, S. (LBL, Berkeley) ; Zucchelli, S. (INFN, Bologna ; U. Bologna, DIFA) |
Publication | 2022-04-06 |
Imprint | 2021-04-14 |
Number of pages | 6 |
In: | Nature 604, 7904 (2022) pp.53-58 |
DOI | 10.1038/s41586-022-04497-4 10.1038/s41586-022-04497-4 10.1038/s41586-022-04497-4 (publication) |
Subject category | nucl-ex ; Nuclear Physics - Experiment |
Accelerator/Facility, Experiment | CUORE |
Abstract | The possibility that neutrinos may be their own antiparticles, unique among the known fundamental particles, arises from the symmetric theory of fermions proposed by Ettore Majorana in 1937. Given the profound consequences of such Majorana neutrinos, among which is a potential explanation for the matter-antimatter asymmetry of the universe via leptogenesis, the Majorana nature of neutrinos commands intense experimental scrutiny globally; one of the primary experimental probes is neutrinoless double beta ($0 \nu \beta \beta$) decay. Here we show results from the search for $0 \nu \beta \beta$ decay of $^{130}$Te, using the latest advanced cryogenic calorimeters with the CUORE experiment. CUORE, operating just 10 millikelvin above absolute zero, has pushed the state of the art on three frontiers: the sheer mass held at such ultra-low temperatures, operational longevity, and the low levels of ionising radiation emanating from the cryogenic infrastructure. We find no evidence for $0 \nu \beta \beta$ decay and set a lower bound of $T_{1/2}^{0 \nu} > 2.2 \times 10^{25}$ years at a 90% credibility interval. We discuss potential applications of the advances made with CUORE to other fields such as direct dark matter, neutrino and nuclear physics searches and large-scale quantum computing, which can benefit from sustained operation of large payloads in a low-radioactivity, ultra-low temperature cryogenic environment. |
Copyright/License | CC-BY-4.0 publication: (License: CC BY 4.0) preprint: (License: arXiv nonexclusive-distrib 1.0) |