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Abstract: We review recent developments and outstanding questions regarding connecting
the top-down UV complete physical framework of string theory with the observed physics of
the Standard Model and beyond the standard model physics, emphasizing the global nonper-
turbative framework of F-theory and general lessons from UV physics. This paper, prepared
for the TF01 conveners of the Snowmass 2022 process, provides a brief synopsis of this im-
portant area, focusing on ongoing developments and opportunities.
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1 Introduction

Ever since its formative years, string theory has been developed in close tandem with particle
physics. Originally proposed as a theory of the strong interaction, string theory owes its roots
to particle physics. While string theory was soon after elevated to a quantum theory of gravity
thanks to the ubiquitous massless spin two particle that the theory predicts, its connection to
particle physics has only grown stronger via the construction of increasingly realistic models
and an understanding of typical features. The quest for unification of fundamental forces calls
for an ultraviolet-complete theory that simultaneously incorporates both quantum gravity and
chiral gauge theories. The need to develop a consistent framework to unify particle physics
with gravity was the backdrop for the heterotic string [1] and Calabi-Yau compactifications
[2]. The connection between string theory and particle physics has evolved a great deal in the
past few decades. This invited white paper provides a synopsis of this important area, often
referred to as “string phenomenology”, focusing on ongoing developments and opportunities.

Some of the central questions in this area of research are:
1) How precisely can we match observable particle physics with specific string
vacuum constructions? This question has motivated constructions of string solutions for
several decades, with a variety of different approaches leading to string models that capture
the gauge group, matter content, and various other features of the observed Standard Model
to varying degrees of precision, usually in the context of supersymmetric extensions. In recent
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years more systematic approaches have given a more global picture of the set of possibilities and
enormous classes of candidate (supersymmetric) Standard Model-like constructions, though
there are still many challenges in constructing a set of vacua that contain all observed features
of the Standard Model including Yukawa couplings, the Higgs field, supersymmetry breaking,
the detailed structure of Standard Model parameters, and the observed cosmological constant.
2) What can be ruled out from string theory? While for some time there was an outlook
in the community that “anything goes” in string theory, it is clear that UV consistency with
quantum gravity imposes fairly stringent constraints on the set of allowed models of quantum
field theory available from string theory. These constraints are clearest with more dimensions
and supersymmetry, where for example in 6D and 10D the size and complexity of the gauge
group and matter representations are already constrained by gravitational anomalies. These
anomaly constraints can also be understood as manifestations of geometric constraints in the
UV; similar constraints also hold in other dimensions although they are less well understood
in 4D, and the study of other constraints from UV physics is a very active area of current
research.
3) What features of string vacua are typical, and what are the consequences for
particle physics? While the set of possible consistent string vacuum solutions is enormous,
it is believed to be effectively finite. And within this large finite set some features occur
overwhelmingly more often than others, at the level of naive counting of discrete sets (although
a precise formulation of the measure across string vacua is still lacking). As our understanding
of the global set of solutions of the theory increases we can make more informed observations
of what kinds of features, beyond the Standard Model, such as hidden gauge and matter
sectors, axion fields, etc., are typical in “most” string vacua. Other features, while realized in
some string vacua, may be highly atypical and involve extensive fine-tuning, in a way that can
be quantified in terms of numbers of continuous moduli or discrete parameters like fluxes that
must take special values to realize these features. A crucial question for the next decade(s) is
to identify more precisely what kinds of additional beyond the Standard Model structure are
associated with typical realizations of Standard Model and Standard Model-like structure in
string vacua, and what features are atypical or involve fine tuning.

Beyond these guiding questions, string theory has also more generally been a constant
source of ideas for particle phenomenology. One of the deepest puzzles facing particle physics
today is the electroweak hierarchy problem. Understanding the huge disparity between the
weak scale and the Planck scale has been the driving force for particle theory in the past
few decades. Given the ultraviolet sensitivity of this question, a theory valid all the way to
the Planck scale is likely needed to make significant progress. As we review below, string
theory has shown to be resourceful not only in realizing existing scenarios of physics beyond
the Standard Model (such as supersymmetry, axions, etc.) but suggesting new ones, as well
as offering new insights to the notion of naturalness. Only with a consistent quantum theory
of gravity can we address other vexing naturalness problem involving gravity, such as the
unreasonable smallness of the cosmological constant.

The subjects of particle physics and cosmology are deeply intertwined. We focus on

– 2 –



particle physics aspects in this contribution, leaving the connection between string theory and
cosmology to a complementary white paper [3].

We should emphasize that the emphasis on topics in this contribution is influenced by the
expertise and research interests of the authors; while we have made an effort to summarize
the state of the field in the areas connecting string theory and particle physics that we believe
are of most current significance and have greatest potential for developments in the coming
years, we have not attempted to be comprehensive and some recent related developments are
treated briefly or not at all.

2 Particle Physics from String Theory

Finding a realization of string theory solutions with the structure of the Standard Model
gauge group and three generations of Standard Model chiral matter fields, as well as addi-
tional features such as the Higgs sector and proper Yukawa couplings, moduli stabilization,
supersymmetry breaking and vanishingly small positive cosmological constant, etc. has been
a major preoccupation of string theorists over the last three decades. For many years such
constructions were developed on a somewhat ad hoc basis using a variety of available tools,
primarily in the perturbative corners of string theory, such as algebraic geometry techniques
in heterotic string theory and orbifold constructions in Type II string theory, and Standard
Model-like constructions seemed somewhat rare. However, developments in recent years have
given a better global picture of large parts of the landscape of string vacua. There is increasing
evidence that there are huge classes of string vacua with Standard Model-like features, and,
at least for vacuum solutions with supersymmetry there are increasingly powerful approaches
to systematically identifying how such Standard Model-like vacua fit into the landscape, and
how natural such solutions are. In particular, the approach of F-theory [4–6] provides a ge-
ometric framework in which the broadest class of supersymmetric string vacua yet identified
are incorporated in an underlying connected moduli space (including most heterotic vacua
as duals of a subset of F-theory vacua). While F-theory is intrinsically nonperturbative, the
global lessons from this approach provide insight into the structure of the overall landscape
and provide guidance for further work in narrowing down the nature of Standard Model-like
solutions, computing more detailed features of these solutions, and identifying what physics
beyond the Standard Model may naturally arise in tandem with it. The biggest challenges at
this point to this approach are understanding supersymmetry breaking (§2.4) and the related
questions of moduli stabilization and the small cosmological constant (§2.5); these latter issues
are addressed more comprehensively in [3].

2.1 Approaches to Standard Model-like constructions in string theory

In the past few decades, enormous efforts have been undertaken to demonstrate explicit top-
down string theory constructions of vacua with the gauge symmetry and particle spectrum of
the Standard Model. This program originated in the studies of the E8 × E8 heterotic string
compactified on Calabi-Yau threefolds [2, 7–13]. Other efforts have involved Standard-like

– 3 –



Model constructions on heterotic orbifolds [14, 15] and free fermionic constructions [16, 17].
The first globally consistent construction with the exact matter spectrum of the Minimal
Supersymmetric Standard Model (MSSM) heterotic was given in [9, 10], and more recently
sophisticated computational and mathematical analyses of line bundle constructions have led
to the construction of thousands of vacua with the Standard Model gauge group and three
generations of Standard Model chiral matter fields based on the heterotic approach [12, 18].
With the advent of D-branes [19] these efforts were further advanced by studying D-branes
at singularities (see [20–24] and references therein) and intersecting D-brane models in type
II string theory [25–31] (for review see [32] and references therein), which led to the first
globally consistent three-family Standard-like Model constructions [30, 31]. Both Heterotic
and Type II constructions produced large classes of globally consistent models with Standard
Model gauge sectors and three chiral families. One should, however, point out, that these
constructions may be limited, in part, due to the perturbative values of the string coupling
in these approaches. Furthermore, these models typically suffer from chiral and vector-like
exotic matter, though by now there are large classes of constructions that are increasingly
close to the MSSM. Another approach to string compactification is based on using special
holonomy G2 seven-manifolds to compactified M-theory to 4 dimensions. There has been
substantial progress in this direction in recent years, as discussed further in §3.1; although a
full description of a model with the Standard Model gauge group and chiral matter content in
terms of a singular G2 geometry is still some way in the future (for some initial developments
in this direction, see [33]), this may in time be a promising approach for construction of a
large class of semi-realistic string vacuum models.

While the above mentioned constructions concentrated on perturbative corners of string
theory, the geometric approach of F-theory [34–36] gives a systematic and nonperturbative
global picture of an even larger class of nonperturbative string vacua. In F-theory, the back-
reactions of non-perturbative 7-branes onto the geometry of six compactified space dimensions
are encoded in the geometry of an elliptically fibered Calabi-Yau fourfold. By studying this
space of theories with well-established tools of algebraic geometry, a variety of top-down F-
theory constructions have been realized where the gauge degrees of freedom are encoded in
the singularity structure of the elliptically fibered Calabi-Yau fourfold. Following the initial
intensive study of GUT F-theory models based on tuned SU(5) GUT groups initiated by
[37–40], a number of other classes of F-theory constructions with the Standard Model gauge
group have been realized including directly realizing the Standard Model gauge group as a
geometrically rigid symmetry [41], geometrically tuned Standard Model gauge groups [42–45],
and Standard Model constructions from flux breaking of exceptional GUTs [46].

In F-theory, the matter spectrum is uniquely fixed by a background gauge configuration,
which can be conveniently specified by the three-form gauge potential C3 in the dual M-theory
geometry. The chiral spectrum depends only on the field strength G4 = dC3, referred to as
flux. By now, there exists an extensive toolbox for constructing and enumerating the G4 flux
configurations [43, 47–56]. The application of these tools has led to the construction of a
variety of globally consistent chiral F-theory particle physics constructions [43, 55, 57, 58],
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particularly in the class of tuned Standard Model gauge groups, which recently culminated
in the largest explicit class of string vacua that realize the Standard Model gauge group
along with the exact chiral spectrum and gauge coupling unification [59]. The construction of
global Standard Model vacua from the SU(5) GUT approach is complicated by the necessity
for including hypercharge flux, which requires more complicated (non-toric) base manifolds
[60, 61]. For a review of earlier efforts on constructions of (non-compact) SU(5) GUTs, see
reviews [62, 63], and for a comprehensive introduction to F-theory compactification [64].

The constructions just described begin to address the first question raised in the Intro-
duction: How precisely can we match observable particle physics with specific string vacuum
constructions? In the following subsections we address how much further these constructions
can go beyond the gauge group and chiral matter content of the Standard Model. Related
to the third question of the Introduction, however, there is also a question of typicality. As
discussed further in §3.2, the number of complex threefold base geometries that support el-
liptically fibered Calabi-Yau fourfolds is enormous, likely on the order of 103000. One current
area of active research is to understand which of the above constructions are most typical (in-
volve the least fine tuning). While the (tuned) SU(5) GUT models have been studied in the
most detail, these models seem to be possible only on a small subset of the allowed F-theory
bases and involve extensive tuning of moduli [65]. Similar issues hold for the constructions in
which the Standard Model gauge group is directly tuned at special loci in the generic Weier-
strass model over the base, as in the approach taken in [42, 43, 45, 59]. In terms of simple
numerical counting, all but a handful of the enormous number of threefold bases that support
F-theory constructions are populated by numerous geometric gauge factors associated with
rigid divisors in the base; in 4D, these rigid gauge groups include the non-Abelian factors
E8, E7, E6, F4, G2, SO(8), SO(7), SU(3), SU(2) but not e.g. SU(5) or SO(10) [66]. It is nat-
ural to expect that the most typical realizations of the MSSM in F-theory will arise through
these rigid gauge groups, as explored in e.g. [46, 67]. While there are many challenges associ-
ated with making precise sense of the measure problem on the space of flux compactifications
(see e.g. [68, 69]), the enormous numbers of vacua involved in geometric F-theory construc-
tions suggest that some insight can be gained on questions of typicality of standard model
constructions; further work in coming years should address how the more detailed physics of
the different constructions described here differs and what physics beyond the Standard Model
is more or less typical.

2.2 Matter fields and the Standard Model

As described above, we now have the technical facility to construct enormous classes of models
with the Standard Model gauge group and chiral matter content. The next challenges are to
understand more clearly the more detailed structure of these models. While F-theory provides
a powerful nonperturbative framework for accessing the large scale picture of the set of vacua,
explicit calculations of more detailed aspects of these vacua require technical tools not yet
developed and which in some cases may be hard to access due to the fundamental nonper-
turbative nature of the physics in these solutions. Current work is focused on understanding
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more detailed aspects of the vector-like part of the matter content, Higgs fields and Yukawa
interactions.

In particular, the methods described above are insufficient to determine the exact vector-
like spectrum of the chiral zero modes, which depend not only on the flux G4, but also on the
flat directions of the three-form potential C3. In [70, 71], methods for determining the exact
vector-like spectra were put forward, and further advanced in the context of Standard Models
in [72, 72]. Attaining a more detailed understanding of the vector-like spectrum and Higgs
fields is a key goal of near-term research in this area.

Yukawa couplings in F-theory have been explicitly computed only in the ultra-local F-
theory models [49, 73–75]. However, there has been recent progress on calculations of the holo-
morphic part of Yukawa couplings within a global SU(5) GUT-like model [76]. The connection
between F-theory and type II descriptions of Yukawa couplings has also been elucidated [77]
via the role of D-instanon contributions [78–81].(For review, see [82].) Furthermore the calcu-
lation of the Kähler potential, which determines the normalization of the kinetic energy terms
and thus needed for the physical values of Yukawa couplings, remains an outstanding problem.
Note that on the latter topic progress has been made in the heterotic [83, 84] and Type II
context [85, 86]. The full determination of physical Yukawa couplings in globally consistent
F-theory Standard Model constructions is an important goal of future research, and affects
aspects such as the possibility of proton decay in these constructions.

Another class of questions relates to how typical the matter content of the Standard
Model is among string vacua. While the light chiral matter content of the Standard Model,
including 3 generations of quarks and leptons, appears somewhat arbitrary, and many string
constructions that give the Standard Model gauge group also include various exotic matter
fields, there are also strong constraints from anomaly cancellation conditions that limit the
possible sets of matter fields. Naively, however, the matter that occurs in nature could live
in arbitrarily complicated high-dimensional/high-charge representations of the non-Abelian
and Abelian factors in the Standard Model gauge group SU(3) × SU(2) × U(1) while still
satisfying anomaly cancellation. There are some indications, however, that the set of possible
matter representations realized in string theory is quite limited, so that only special simple
representations like those of the Standard Model are realizable in a UV complete theory. The
range of allowed representations for heterotic orbifold models was studied some time ago in
[87]. More recently, analysis from the F-theory point of view seems to strongly limit the
range of possible matter representations of non-Abelian groups that may arise from geometry
[88–90], although there is more apparent flexibility for U(1) charges [91–95]. Furthermore,
the global structure of the gauge group affects the set of allowed matter fields; the observed
Standard Model chiral matter spectrum is much more natural if the global structure of the
group is (SU(3) × SU(2) × U(1))/Z6 (as occurs in most GUT models and many of the F-
theory constructions delineated above) than the group without the quotient; in the F-theory
context these issues have been studied recently in [44, 45, 96, 97]1. Indeed, the “completeness

1In F-theory the global structure of a gauge group is determined by the torsional part of the Mordell-Weil

– 6 –



hypothesis” (see e.g. [100]), recently proven in AdS space in [101], would indicate that if the
gauge group lacks the quotient there must be massive exotics with nontrivial charge under
the central Z6. If string theory can be shown to strongly limit the set of possible matter fields
that can appear in a low-energy vacuum with the gauge group of the Standard Model, it will
help to fit observed physics into the landscape of “typical” theories, while otherwise there is
another fine-tuning problem. Related issues are also discussed in §2.6.

Beyond the light chiral matter fields in the Standard Model, many string constructions
contain a variety of further matter fields that may play roles as dark matter candidates; we
explore these further in the following subsection.

2.3 Particle Remnants of the String Landscape

As mentioned above, string compactifications that give rise to the gauge group and chiral
matter content of the Standard Model regularly exhibit new particles that are accidental
consequences of the ultraviolet theory, i.e., they are not motivated by shortcomings of the
Standard Models of particle physics or cosmology. Nevertheless, these particle remnants are
potentially observable, providing both experimental constraints and opportunities. See [102]
for a thorough account in lectures, including the topics discussed below: axions, dark gauge
sectors, and vector-like exotics.

Axions. String theory contains higher-form gauge fields that regularly give rise to axions
upon compactification [103]; in supersymmetric models, these axions are part of the same
multiplet as scalar moduli fields (§2.5). The number of axions N is dictated by the topology
of the extra dimensions. Generally, N is quite large; in the largest ensembles of supersym-
metric type IIB or F-theory compactifications studied to date, N is in the hundreds [104] or
thousands [105–108], respectively. This leads to the expectation that string theory gives rise
not to one or a few axions, but an axiverse [109], with diverse set of implications for particle
physics and cosmology; notably, these axions need not be the QCD axion. Furthermore, recent
results demonstrate [110] that type IIB compactifications with large volume and weak coupling
typically exhibit numerous very light axions, well below the eV scale. Possible implications of
string theory for axions include for solving the strong CP problem [110], axion monodromy
inflation [111–116] and reheating [117, 118], cosmological relaxation of the weak scale (aka the
“relaxion” scenario) [119–121], fuzzy dark matter [122–124], black hole superradiance [125],
gravitational waves [126–130], and couplings to axion-like particles [131, 132].

Dark Gauge Sectors. Consistency conditions such as Gauss’ law for higher-form gauge
fields, generally associated with tadpole cancellation conditions, combined with geometric
and topological features in the UV theory often require the presence of multiple gauge sectors,
which may couple to the visible sector (if present) only via gravity and non-renormalizable
interactions. For instance, visible sectors arise in one E8 factor in the heterotic string, leaving
the other E8 as a potential dark matter sector [133], where some gauge factor may be forced

group of an elliptic fibration, addressed in non-Abelian cases in [98] and in the presence of Abelian factors in
[96]. For review, see [99].
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from a given distribution of instantons. More generally, as discussed above, F-theory com-
pactifications typically give rise to dozens or hundreds of rigid gauge factors. These heterotic
and F-theory mechanisms producing hidden sectors are related through duality [134]; duality
with G2 constructions suggests similar features there [135]. In many cases these extra sectors
confine, giving rise to the possibility of dark glueball dark matter [136–138]. However, it is
very easy to oversaturate the observed relic abundance [136], and more generally one might
use cosmological observations to constrain F-theory, given the plethora of dark gauge sectors
and axions that it exhibits. In addition, string theory also suggests new portals between the
visible and dark gauge sectors e.g., through Stuckelberg couplings [139, 140].

Vector-like Exotics. Matter fields that are vector-like with respect to the Standard Model
regularly arise in string compactifications and are experimentally allowed, provided that their
mass is TeV-scale or above. Such new particles are the subject of many searches at LHC, and
provide opportunities to explain existing data, such as WIMP dark matter [141, 142] and the
B anomalies [143]. In string constructions a variant of vector-like exotics regularly arise, so-
called quasi-chiral exotics [144–146], which are vector-like with respect to the Standard Model,
but chiral with respect to another symmetry, which provides a mechanism to expect masses
significantly below the string scale. In some other cases, these quasi-chiral exotics decouple
from the low energy spectrum due to hidden sector strong dynamics and charge confinement
[147, 148].

2.4 SUSY breaking

One of the greatest challenges in string phenomenology is the issue that the vacua that are
best understood are those with at least some supersymmetry. Since low-scale supersymmetry
(i.e. SUSY at the TeV scale or below) has not been observed at the LHC (or in astrophysical
experiments), this presents a major challenge to connecting UV complete string construc-
tions with observable physics. The most powerful approaches to understanding string vacua
and computing physics in these backgrounds relies heavily on supersymmetry, in particular
the nonperturbative approach of F-theory uses algebraic geometric methods in which the
complex-analytic structure of the geometry is tied to space-time supersymmetry. Certainly,
direct exploration of non-SUSY vacua and mechanisms of high-scale SUSY breaking in super-
symmetric string vacua are significant priorities for this community. The problem of identifying
non-supersymmetric de Sitter string vacua from conventional methods such as uplifted flux
vacua is a major focus of current research, discussed slightly further in the following section
and in more depth in [3].

At the same time, some lessons even from supersymmetric string vacua such as the pres-
ence of many scalar fields and axions, and gravitationally coupled hidden dark sectors from
rigid gauge groups and associated matter uncharged under the Standard Model gauge group,
seem to be present in the string landscape somewhat independently of the amount of super-
symmetry involved. For example, virtually the same hidden sector rigid gauge group factors
(e.g. E8, E7, E6, F4, SO(8), G2, SU(3), SU(2) but not SU(5)) arise in 6D supersymmetric F-
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theory vacua with 8 supercharges as in 4D supersymmetric F-theory vacua with 4 supercharges
[66, 149], and with similar frequencies [106–108], suggesting that some of these qualitative fea-
tures of string vacua may persist even without SUSY or when SUSY is broken.

Another intriguing question is whether the geometries associated with supersymmetry
are natural even if we drop the constraint of SUSY. In particular, there are few smooth
compact manifolds known in the math literature that admit a Ricci flat global metric that
are not essentially Calabi-Yau manifolds or closely related special holonomy manifolds [150].
(As a very simple example, in 2D the Gauss-Bonnet theorem shows that the only compact
smooth 2D manifold admitting a Ricci flat metric is the torus.) Indeed, it was conjectured
in [150] that any smooth manifold with a Ricci flat metric that lacks special holonomy leads
to a “bubble of nothing” instability [151], and there is some recent evidence in support of
this [152, 153]. This is a special case of the more general hypothesis that non-supersymmetric
vacua may suffer from some form of instability. We will return to this in the next section when
we discuss de Sitter vacua. Another approach to realizing non-supersymmetric vacua is to
start with a hyperbolic compactification space and directly construct a solution with positive
cosmological constant, as explored for example in [154] and references therein. The effort to
directly construct explicit non-supersymmetric string vacua is a promising avenue for further
research that might justify (or might disprove) the notion that features of supersymmetric
string vacua are also natural for our non-supersymmetric world.

2.5 Moduli Stabilization

String theory has no free parameters; for example in type II string theory, the string coupling
is encoded in the dynamical axiodilaton field. Upon compactification, the low-energy effective
action of string theory constructions generically contains many parameters associated with
vacuum expectation values (VEVs) of scalar fields, generalizing the type II axiodilaton field.
Stabilizing these scalar fields (known as moduli) is thus important for drawing phenomenolog-
ical predictions from string theory. Because no massless scalar fields are observed in nature,
we expect that all these moduli are stabilized in a physically relevant vacuum of the the-
ory. Fifth-force experiments and cosmological constraints typically put these moduli masses
above O(10) TeV scale, though loopholes exist if one contemplates unconventional cosmologi-
cal histories. Understanding precisely how moduli stabilization occurs is a major challenge for
string theory. In some cases, the issue of moduli stabilization cannot be decoupled from par-
ticle physics considerations [155], though model-building can mitigate this tension [156–158].
In general, it is expected that any theory with broken supersymmetry will generically have
mass terms for all the scalar fields. The question remains why the Higgs mass is significantly
lighter than that of other moduli. This issue is akin to realizing inflation in string theory,
which requires a hierarchy in masses between the inflaton and other moduli.

Mechanisms to stabilize moduli developed so far can be divided into two broad classes:
power-law stabilization and non-perturbative stabilization. We refer the reader to [3] for
their distinction and a more in-depth discussion. Here, we focus on the latter as they are
more commonly used in particle physics model building from string theory. In general, even
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constructions of supersymmetric string vacua incorporate mechanisms that stabilize most or
all moduli fields. In N = 1 solutions of type II string theory and F-theory, for example, fluxes
generate a superpotential that stabilizes many of the (complex structure) moduli of the vacua
directly (although there are questions about whether the number of fluxes, which is bounded
by the D3-brane tadpole, is sufficient to stabilize a plurality of the complex structure moduli
[159–162]); other effects such as gaugino condensation and nonperturbative instanton affects
also arise that in general are expected to lift other moduli of the theory. See, e.g., [163] for
a review2. While this gives rise to a plethora of expected vacua with negative cosmological
constants (including supersymmetric vacua), it is remarkably difficult to explicitly construct
moduli-stabilized vacua with positive cosmological constant. There are a number of no-go
theorems that demonstrate the impossibility of getting vacua with a positive cosmological
constant (or even a slowly rolling vacuum with many e-folds of inflation) with simple (albeit
limited) sets of ingredients from supergravity theory [166–169]. More involved setups that
naively evade these no-go theorems were found to suffer from tachyonic instabilities [170–
174] (an issue later revisited in e.g. [175–177])). It should be noted that the sources of
potential considered in these no-go theorems are not general enough to exclude de Sitter
vacua in string theory. It has been suggested that de Sitter vacua do not arise in regions
of string theory that are within strict parametric control [178–180]. A lack of parametric
control does not mean that no theoretical control is possible. However, in light of the Dine-
Seiberg problem [181], one would have to carefully quantify that higher order terms which are
ignored are indeed unimportant even though different order terms in the potential compete
to give a minimum. In addition, the instability hypothesis mentioned in §2.4 (see [182] for a
recent discussion regarding de Sitter instability) suggests that any proposed de Sitter vacuum
should be subject to a more careful scrutiny. Another perspective on flux vacua without
supersymmetry is given in [183]. These various considerations have reignited the interest in
moduli stabilization in string theory, resulting in a number of technical advances. Recent
work [184] has succeeded in constructing supersymmetric AdS vacua with exponentially small
negative cosmological constant, a difficult task even with an optimized computer search [185].
Challenges remain in uplifting these solutions to de Sitter, all related one way or the other
to the anti-D3-branes that break supersymmetry. Metastability of anti-D3-branes requires
a large enough warped throat supported by a large quantity of D3-brane charge which may
be in further tension with the tadpole constraints mentioned above, though detailed model
building may mitigate this problem. It was argued that a large throat leads to a singular
bulk problem [186]. The singularities of the internal metric may be resolved at the non-
perturbative level [187], but theoretical control of the low energy effective theory remains to
be shown. Furthermore, advances in lifting gaugino condensates to 10D have recently been
made, including an improved understanding of the four-fermion couplings [188–191] and the
generalized complex geometry [190, 192] needed to describe their backreaction to the internal

2Well-studied approaches to non-perturbative moduli stabilization include the KKLT scenario [164] and
the Large Volume Scenario [165].
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geometry. Such 10D lift allows us to quantify possible corrections to the stabilized vacua which
is a result of an interplay of the classical flux energy, the non-perturbative instanton effects,
and the anti-branes. Fleshing out these advances in full and constructing explicit vacua with
all moduli stabilized, particularly with a small positive cosmological constant, remains a clear
and precise challenge for the field in coming years.

A complementary approach to explicitly stabilizing moduli is to study what is possible,
in principle, in regimes of the theory that may be controlled. For instance, for increasing
topological complexity, control over the α′ and gs expansion in type IIB compactifications
pushes the theory [110] to larger cycle volumes. This has numerous phenomenological im-
plications; e.g., it correlates with increasingly light axions when their masses are generated
non-perturbatively, and increasingly weak seven-brane gauge couplings. Applying such an
analysis in the context of the 1015 F-theory compactifications with the gauge group and chiral
spectrum of the Standard Model, it was found [193] that (for the bulk of the models) there
is no part of the large volume moduli space that realizes the correct values of the Standard
Model gauge couplings; they are far too weakly coupled. Avoiding this consequence requires
either alternative moduli stabilization schemes that exist at small volume, focusing on models
with lower topological complexity, or modifying the location of the Standard Model sector in
the extra dimensions, which forces the existence of dark gauge sectors. Results such as these
are demonstrative of a general principle in string compactification: there is no free lunch, and
correlations from the UV theory often exist that defy expectations from an EFT point of view.

2.6 UV lessons

The electroweak hierarchy problem is arguably one of the main science drivers for particle
physics beyond the Standard Model. In essence, it is a question of how an infrared (IR) scale
can emerge from an ultraviolet (UV) scale without fine-tuning of UV parameters. In unifying
particle physics with gravity, among the tunings in question is the huge disparity between
the Higgs mass and the Planck scale. A notion of “naturalness” in accessing the degree of
fine-tuning was succinctly articulated by ’t Hooft [194]: “at any energy scale µ, a physical
parameter or set of parameters αi(µ) is allowed to be very small only if the replacement of
αi(µ) = 0 would increase the symmetry of the system.” There are reasons to expect that
gravity may provide a break from this Wilsonian EFT reasoning. Heuristic arguments [100]
as well as string theoretical reasonings [101, 195] suggest that quantum theories of gravity
admit no global symmetries, making the above αi(µ) → 0 limit subtle. Another hint is the
Beckenstein-Hawking entropy of a black hole, which links the classical IR solution of gravity
with the degeneracy of highly massive states of the UV theory. This UV/IR mixing (a term
coined in [196]) manifests in many forms in string theory. There have been attempts e.g.
[197] to frame the Higgs mass computation in string theory in a way that respects this UV/IR
duality. How this UV/IR mixing can concretely address the electroweak hierarchy problem
remains to be explored. Meanwhile the vast but finite landscape of string vacua also suggests
a notion of stringy naturalness [198] which measures the degree of tuning by the number
of phenomenologically acceptable vacua leading to a given value of an observable. Similar
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considerations of stringy naturalness may shed light on the scale of supersymmetry breaking
[199–201] as well as other vexing hierarchy problems such as the smallness of the cosmological
constant, though concrete realizations remain to be found.

The Swampland program [202] (see e.g. [203–207] for reviews) aims to make precise this
UV/IR relation with an eye toward its phenomenological implications. Combining reasoning
from such diverse areas as black hole physics, holography, scattering amplitudes, and the
bootstrap, an interconnected web of swampland criteria has emerged. These criteria, if proven,
may have interesting phenomenological implications. For example, milli-charged dark matter
scenarios often considered in phenomenological studies are in tension with the absence of
global symmetry in quantum gravity [208]. The Weak Gravity Conjecture (WGC) [209] has
been used to put phenomenological constraints on axions [210–214] and dark photons [215].
Stronger versions of the WGC have been used to link the observed value of the cosmological
constant with the neutrino masses (which for fixed Yukawa couplings, set the weak scale)
[216, 217]. Ideas to stabilize the Higgs mass using the WGC in the presence of scalars have
been explored [218, 219]. See the related Snowmass white papers [220, 221] for discussions of
other phenomenological implications. While there is growing evidence for various swampland
criteria, they are at present conjectural though continued serious attempts for proofs have
been made [222–226].

Swampland considerations have also been utilized to constrain the gauge and matter con-
tent in consistent quantum theory of gravity. The Completeness Hypothesis [227] necessitates
physical states with all possible gauge charges consistent with Dirac quantization. In the pres-
ence of higher form symmetries, these physical states include extended objects, such as strings
and branes. A powerful general approach initiated in [228] makes use of brane probes to rule
out infinite families of anomaly free gravitational theories. Subsequent works have found pre-
cise match of the allowed spectra with string constructions, sometimes involving fine details
such as the global structure of the spacetime gauge group [229–236]. Investigations along this
line, if successfully extended to lower dimensions, would suggest a notion of string universality
[237] (or the string lamppost principle [230]) that all consistent supersymmetric theories of
quantum gravity are realized in string theory. Six-dimensional supergravity theories and their
string/F-theory realizations provide an excellent testbed for swampland ideas since the class of
string constructions is fairly well understood and controlled, and known quantum consistency
conditions also tightly bound the set of possible low-energy theories; these theories satisfy the
completeness relation and some related conditions that may help to fully understand the role
of quantum gravity constraints in this context [238, 239]. Improved understanding of quantum
gravity constraints in more general contexts through the swampland together with continued
advances in string compactifications would enable us to better understand the rigid pattern
of particle spectra found in string theory.
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3 Connections to other areas of research

3.1 Mathematics

Since the early days of string theory, there has been a constant flux of new ideas in both direc-
tions between physicists studying string theory and a wide range of branches of mathematics.
This synergy between the fields has continued unabated, and perhaps even increased, in re-
cent years. One particularly strong set of such connections relates to the use of geometry in
string compactifications. In particular, in recent years there have been exciting developments
generating new connections and insights for both math and physics related to special holon-
omy (“G2” manifolds) relevant for compactifications of 11-dimensional M-theory to 4D, and to
the algebraic geometry of elliptically fibered Calabi-Yau threefolds and fourfolds, relevant for
compactification of F-theory to 6D and 4D. These developments promise to provide powerful
tools for better understanding F-theory and M-theory constructions of Standard Model-like
string vacua.

In the context of F-theory, there has been significant progress in understanding many
aspects of elliptically fibered Calabi-Yau threefolds and fourfolds. Evidence suggests that
most known Calabi-Yau threefolds and fourfolds are in fact elliptically fibered [240–243]. New
mathematical results on the finiteness of topological equivalence classes of Calabi-Yau fourfolds
[244], expanding the earlier results on Calabi-Yau threefolds [245, 246], give insight into the
global structure of string vacua, in general, and F-theory vacua, in particular. Progress
has been made on generalizing the Kodaira classification of codimension one singularities
in elliptic fibrations, which matches beautifully with the nonperturbative physics of non-
Abelian gauge groups, by understanding higher-codimension singularities encoding matter
and Yukawa couplings (for some examples see, e.g., [88, 247–249]). Difficult mathematical
problems associated with the Mordell-Weil and Tate-Shafarevich/Weil-Châtelet groups of an
elliptically fibered Calabi-Yau are connected with physics of continuous and discrete Abelian
gauge symmetries in F-theory, and progress is being made in understanding these structures
with mutual benefit to mathematicians and physicists. For a comprehensive review on these
developments, see [99]. There are a number of open questions in these areas that are promising
for progress in the coming years and will shed light on important questions both in physics
and math.

M-theory compactifications on seven-manifolds with G2 holonomy also give rise to large
ensembles of 4d N = 1 vacua, where singularities at codimension 4, 6, and 7, encode the
structure of gauge groups, non-chiral matter, and chiral matter, respectively; see [250] for an
early review. More recently, constructions of so-called twisted connected sums [251] have given
rise to millions of G2 manifolds [252], which have been the subject of numerous physics studies
in compact twisted connected sums [135, 253–259], and related Higgs bundle constructions
[260–264]. For some recent progress on singular non-compact G2 constructions and studies on
gauge dynamics there, see [265, 266]. In general, though, much less is known about compact
(singular) G2 manifolds than Calabi-Yau compactifications. This is in part due to the fact
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that there is no analog of Yau’s theorem, i.e., no simple topological check that guarantees the
existence of a Ricci-flat metric with appropriate holonomy.

One set of questions that is common to the challenges of the G2 special holonomy research
and the elliptically fibered Calabi-Yau F-theory research is the challenge of understanding bet-
ter how mathematical structures such as intersection theory operate in singular spaces. This
is only partially understood by mathematicians and only in limited domains but is crucial to
understanding the physics of string compactifications in both these areas. In particular, in G2

holonomy manifolds and elliptically fibered Calabi-Yau varieties, singularities are essential for
the physics of non-Abelian gauge theories, matter fields, Yukawa couplings and other impor-
tant aspects of the theory. The primary approach taken to F-theory currently is to view it as a
limit of a compactification of M-theory on a smooth Calabi-Yau, but a more intrinsic definition
is given by IIB string theory, which is characterized by singular elliptic fibrations associated
with 7-brane configurations. Finding a direct description of the physics of F-theory in terms
of the singular geometries may be a crucial step to a better general class of tools for describing
details of compactification; such a description, however, requires understanding intersection
theory on singular spaces. Recent work [56, 267, 268] shows how some of these features must
be properties of the singular spaces, providing examples of how a proper mathematical theory
of these singularities should work; providing a systematic mathematically sound methodology
for analyzing these spaces is an important challenge for the future.

A simple illustration demonstrates the importance of an appropriate homology and inter-
section theory on singular compactification spaces. Since gauge sectors arise at codimension
4 in G2 compactifications, and two codimension 4 cycles do not intersect in a 7-manifold,
one might conclude that distinct gauge sector loci cannot have jointly charged matter in G2

compactifications. However, this directly contradicts the existence of uplifts of IIA models
with intersecting D6-branes [269], and also local G2 constructions of unfolding chiral matter
[270]. The error is that the non-intersection of three-cycles holds in (smooth) 7-manifolds,
but not in seven-dimension singular spaces. One way to correct this is to determine an appro-
priate homology and intersection theory in the presence of singularities, perhaps intersection
homology [271] of Goresky and Macpherson, which corrects the failure of Poincaré duality on
singular spaces.

3.2 Machine Learning and Computational Complexity

As our understanding of the theoretical framework for string compactifications increases, the
problems in identifying the desired vacua and computing their characteristics become increas-
ingly well-defined. Many of these problems are computationally challenging and involve non-
perturbative physics or exponentially large search spaces, and will likely require sophisticated
computational approaches, just as many of the detailed features of strongly coupled quantum
field theories like QCD are currently best understood through lattice gauge computations.
There have been efforts to use computational approaches to analyze a number of problems re-
lated to string compactifications, such as for the computation of exact metrics on Calabi-Yau
compactification spaces, for which no analytic solution is known [272–277]. In this section we
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focus on the use of modern methods of machine learning and associated methodologies for
approaching some of the computational difficult challenges in string compactification.

The string landscape is vast, and our knowledge of it has grown significantly in the
last decade. Evidence for exponentially large numbers of 4d string vacua was already given
in 1987 [278], in the context of chiral heterotic models. However, the possibility received
increased attention with work by Bousso and Polchinski [279], which provided a string theoretic
mechanism for realizing Weinberg’s anthropic solution to the cosmological constant problem
[280]. Famously, this led to an estimate of 10500 flux vacua in weakly coupled type IIB
compactifications (reviewed in [69]), an estimate that recently ballooned to 10272,000 [105]
by moving outside of the weakly coupled regime to F-theory. A more recent development
is that the number of string geometries is also exponentially large. Though Kreuzer and
Skarke’s classification relating four-dimensional reflexive polytopes and Calabi-Yau threefolds
yields only a strict lower bound of O(30, 000) Calabi-Yau threefolds (from distinct Hodge
numbers), this was always expected to be a significant undercount due to triangulated polytope
combinatorics, and the number of Calabi-Yau fourfolds is dramatically larger, with a recently
studied subset giving over 500 million distinct Hodge numbers for fourfolds [281]. A related
setup in F-theory instead counts bases of elliptically fibered Calabi-Yau threefolds [282, 283]
and fourfolds [106, 284, 285]. Compared to roughly 65,000 distinct toric bases for threefolds,
this approach provides a strict lower bound of O(10755) F-theory geometries for fourfold
bases [107], which is also a vast undercount due to imposing a sufficient but not necessary
condition; Monte Carlo estimates [108] suggest there are O(103000) geometries with the relaxed
condition. Despite these large numbers of elliptically fibered Calabi-Yau fourfolds, a result
appeared around the same time proving that the total number is finite [244]. However, the
string landscape is not only vast, it is also unwieldy: computationally complex problems
abound. For instance, the search for small cosmological constants in simplified idealized
models is already NP-hard [286], although the success in finding explicit solutions with small
cosmological constant in F-theory [184] suggests that the structure of the landscape may
enable efficient solutions to this problem. Furthermore, [287] computing effective potentials
often requires solving instances of NP-hard problems, and the search for local minima is itself
(co)-NP-hard. Additionally, the appearance of both explicit diophantine equations in string
theory (from both index theorems, e.g., and diophantine encodings of decision problems) brings
undecidability into the game, by the negative solution to Hilbert’s tenth problem [288]. There
are a number of potential mechanisms for avoiding complexity issues, however. For instance,
landscape structure may aid in solving complex problems such as Diophantines [289]; fast-
enough algorithms may exist for system sizes of interest [290]; some NP-hard problems have
fully polynomial time approximation schemes, which allow for polynomial time solution if
small errors are allowed; and complexity considerations can change by allowing for stochastic
or quantum computers.

Taken together, the enormity and complexity of the landscape motivates the use of modern
techniques from computer science. Much of the focus has been on machine learning, beginning
with [291–294], which utilized supervised learning (both with and without neural networks)
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and led to machine-assisted theorems via conjecture generation. Other notable areas include
persistent homology, which can detect cycles and voids in the landscape [295, 296]; network
science, which can be used to model tunneling transitions and dynamical measures [297]; fast
SAT and SMT solvers [298, 299], which can solve string constraints by mapping them to famous
problems in computer science, SAT and SMT; and genetic algorithms [161, 185, 292, 300–304],
which use ideas from evolution to search for solutions, e.g., for string vacua satisfying various
properties.

A number of deep learning techniques have been utilized to study the string landscape
and associated mathematical data. Due to the enormity of the landscape, we organize the
discussion here according to the type of question under consideration, and the associated
machine learning technique. Prediction is the domain of supervised learning, whereby a neu-
ral network or simpler algorithm is trained to predict outputs given inputs. String theoretic
applications of supervised learning (e.g. [291–294, 305–311]), often predict physical features
such as gauge group and Hodge numbers (which includes number of axions) given core geo-
metric, D-brane, or flux data as input. Notably, conjectures may be generated by bringing
the human into the loop: though supervised learning has intrinstic error, it can also learn
correlations that can be understood by humans, especially when simpler techniques are used,
that can lead to conjectures and even theorems [294, 312, 313]. Though supervised learning
was the focus of early work, new directions quickly arose. Search for vacua with particular
properties [314–317] may be carried out with deep Reinforcement Learning (RL), by which a
trained neural network represents a learned policy function that chooses intelligent actions,
given the state of the system; RL is the type of deep learning utilized by DeepMind in its
famous works on Go and Chess [318]. For instance, the state could be an intermediate stage
of constructing a string compactification with D-branes, where intelligent actions would push
the system towards global consistency and interesting phenomenology. Genetic algorithms,
an optimization technique that does not utilize a neural network, also regularly lead to good
search results; see [319–321] for comparisons. Deep generative models are trained to sample
from a desired probability distribution, and may be utilized to simulate SUSY EFT data [322]
or string data [323]. Finally, a major recent and very notable development is in self-generative
learning, where the neural network itself is trained to represent a function of interest, usually
a solution to a PDE, such as a Calabi-Yau metric [324–326], which was recently extended to
general Kreuzer-Skarke Calabi-Yau threefolds [327]; see also [328]. Interestingly, these closely
resemble techniques used to learn ground states of quantum many-body systems [329]. For a
recent review, see [330].

While it is not yet clear how far machine learning and related methodologies can go in
addressing these difficult string vacuum questions, these developments lay the groundwork
for a deepened understanding of the landscape that may be obtained via machine learning.
Self-generative learning, including in the context of Calabi-Yau metrics, opens the door to the
study of non-holomorphic data such as non-BPS charged particles and Kaluza-Klein modes
that are difficult to study with traditional techniques. These same techniques can push the
envelope in pure mathematics, for instance in studies of G2 manifolds and singular spaces
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with numerical metrics. Search, as offered by reinforcement learning and genetic algorithms,
provides new opportunity to understand what is possible in string theory. Applications include
the search for vacua with potential for realistic particle physics and cosmology, as well as other
observables typical of those vacua. Specifically, these techniques could be utilized to efficiently
search for vacua with small positive cosmological constants. Finally, generative models provide
a means of sampling from desired distributions, which will be essential to making statistical
predictions with some measures; see [323].

4 Outlook

As we have reviewed here, connecting the top-down framework of string theory with the
bottom-up observational data of particle physics is an active and vibrant enterprise and is an
important central component of completing our understanding of the Universe. In the last
decade, substantial progress has been made in framing and beginning to address the questions
listed in the introduction: How precisely can string theory match observed particle physics?
What is ruled out from string theory? What are typical features of string vacuum solutions and
what are the consequences for particle physics? The nonperturbative approach of F-theory and
other developments in string compactification have given an increasingly global perspective
on the set of string solutions from which these questions can be addressed. There are now
substantial classes of top-down string constructions of vacua that contain the Standard Model
gauge group and the three family chiral matter content, and some of these appear to involve
fairly minimal fine tuning. Certain features, such as axions and strongly coupled hidden
sectors arise ubiquitously in string vacuum constructions, and suggest natural dark matter
candidates as well as potential avenues for applying cosmological constraints. Constraints on
low-energy theories from string theory promise to shed insight on long-standing questions such
as the hierarchy problem.

Many key questions, however, remain unanswered. The lack of experimental observation
of low-energy supersymmetry sharpens the questions about the physics of SUSY breaking and
the nature of non-supersymmetric solutions in string theory. The observed small positive cos-
mological constant sharpens the challenge of understanding de Sitter and non-supersymmetric
string vacua. The landscape is large and while naive counting suggests that certain features
may dominate, the measure problem is open, which is crucial for making any kind of precise
statistical statement regarding string vacua.

This general research area, which aims at connections between UV-complete quantum
gravity theories and the observed Standard Model of particle physics, promises to be a very
exciting and dynamic area of activity in the coming decade, and brings together the research
efforts of formal theorists with the large community of particle physicists working closer to
experiment. Supporting this effort should be a crucial part of DOE high-energy priorities
through the 2020s and 2030s.
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