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Abstract
Cosmic inflation provides a window to the highest energy densities accessible in nature, far
beyond those achievable in any realistic terrestrial experiment. Theoretical insights into
the inflationary era and its observational probes may therefore shed unique light on the
physical laws underlying our universe. This white paper describes our current theoretical
understanding of the inflationary era, with a focus on the statistical properties of primordial
fluctuations. In particular, we survey observational targets for three important signatures
of inflation: primordial gravitational waves, primordial non-Gaussianity and primordial
features. With the requisite advancements in analysis techniques, the tremendous increase
in the raw sensitivities of upcoming and planned surveys will translate to leaps in our
understanding of the inflationary paradigm and could open new frontiers for cosmology
and particle physics. The combination of future theoretical and observational developments
therefore offer the potential for a dramatic discovery about the nature of cosmic acceleration
in the very early universe and physics on the smallest scales.
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1 Introduction
The origin of the universe is one of the most fascinating questions in science. In its first moments,
the universe appears to have been very flat and filled with a hot plasma. This plasma has small
inhomogeneities which grow under the influence of gravity to seed the formation of structure.
The origin of this primordial era, and of the initial conditions for the cosmological history of the
universe, is still a matter of very active research. Excitingly, we live in times when this question
can be addressed quantitatively. Through powerful theoretical ideas and exquisitely precise
observations, which are tied together by major advances in modeling and data analysis, we
can probe the earliest moments of the universe. The leading paradigm to explain its beginning
posits that, prior to the hot big bang, the universe underwent a phase of exponential expansion
that sets up its very special initial conditions. This era is known as cosmic inflation.

Although the detailed mechanism driving inflation is still unknown, the underlying frame-
work makes predictions that are supported by cosmological observations to a striking degree.
The apparently acausal long-range correlations and the mentioned plasma inhomogeneities at
the onset of the hot phase of the universe are elegantly explained as originating from quantum
fluctuations that are sourced throughout inflation and get stretched to enormous distances as
the universe expands exponentially fast. Moreover, the self-similar behavior of an expanding
cosmology manifests itself in the almost scale invariance of these fluctuations. Importantly, the
predictions of inflation can often be calculated reliably since specific models of inflation are
amenable to weakly coupled descriptions.

Ushering us into the era of precision cosmology are technological advances which have
enabled a huge influx of observational data that can be used to probe these predictions. In
particular, the almost scale-invariant initial conditions have been inferred with high statistical
significance from multiple cosmological probes, notably the observed distribution of matter and
radiation in the universe. These observational tests are possible because matter and radiation
trace the earliest phase of the universe: the initial conditions provide the seeds for structure
formation, around which dark matter forms a big scaffolding to which galaxies, stars and
planets ultimately attach.

To study the beginning of the universe and learn about the physics of inflation, much effort
has been focused on the detailed study and observational characterization of the statistical two-
point function of primordial density (scalar) perturbations. Since observations are consistent
with these fluctuations being Gaussian and almost scale invariant, we can encapsulate its
statistics well using a power-law power spectrum characterized by two parameters. These are
two of the seven1 cosmological parameters describing the standard model of cosmology, ΛCDM:
the scalar amplitude 𝐴s, which parameterizes the amplitude, and the spectral tilt 𝑛s, which
parameterizes the scale dependence of the density perturbation power spectrum. In fact, with
these two numbers, we can already gain insights today into some aspects of inflation and probe
some of the energy scales which play an important role in this era of the universe. This is
illustrated in Fig. 1, which shows a model-agnostic (but necessarily fuzzy) picture of these

1The remaining five parameters are associated with the geometry and composition of the universe: The
matter content of the universe is described by the baryon and cold dark matter densities, the radiation content is
parameterized by the photon temperature, and dark energy is included via its energy density, completed by the
optical depth due to reionization.
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Figure 1: Sketch of the known energy scales relevant to inflationary cosmology, and how
they are related to observables that have been measured and will be targeted in the next
decade. The energy scales in descending order are the Planck scale 𝑀p, the scale beyond
which the scalar fluctuations become strongly coupled, ΛUV, the scale which controls the size
of the scalar primordial fluctuations, 𝑓 , and the Hubble scale 𝐻 during inflation. Additional
scales that are determined by observations, but are more model dependent, are also included.
The amplitude 𝐴s of the scalar power spectrum of initial fluctuations and its spectral tilt 𝑛s
have already been measured. In addition, we indicate primordial features, primordial non-
Gaussianity and primordial tensor modes by the amplitude 𝐴lin of linear oscillatory features
as a proxy for more general features, the relative bispectrum amplitude 𝑓NL and the tensor
amplitude 𝐴𝑡, respectively. A detection of these three prime observables, which are targeted in
the next decade and the main subject of this white paper, will be sensitive to higher energy
scales, giving us access to the “energy frontier” in cosmology.

scales. We see that the spectral tilt 𝑛s is generated from a ratio of different low-energy scales
compared to the Hubble rate 𝐻 during inflation. (For instance, in single-field inflation, these
ratios are the slow-roll parameters and the new energy scales come from the time dependence
of 𝐻.) On the other hand, the scalar amplitude 𝐴s is directly related to an unknown scale 𝑓
relative to the Hubble scale 𝐻.

To understand even more aspects of the primordial universe, it is useful to consider other
observables beyond the nearly scale-invariant scalar power spectrum. In our quest to decode the
physics of inflation, the statistics of primordial fluctuations are the main tool. While generating
the inflationary background (a quasi-de Sitter era of exponential expansion) is also an important
outstanding problem, the dynamics of the background and the fluctuations can be treated
separately. This is emphasized, for example, in the effective field theory approach to inflation,2
and the reason why we focus on the observational and theoretical aspects of the fluctuations in
this white paper. In the context of a specific inflationary model, the background dynamics can

2In the language of effective field theory, the separation between the dynamics of the background and
the fluctuations is evident since background quantities only affect induced interactions. This relatively recent
development provides a framework for consistently studying more general models of inflation. While it is possible
to write down effective theories for the background and fluctuations together, the fluctuations tend to interact
more weakly than theoretically allowed.

2



Inflation: Theory and Observations

also be constrained with an observation of the fluctuations.
More specifically, we center our attention on the simplest imprints of new physics in the

statistics of the initial conditions:

• Inflation predicts that primordial gravitational waves are produced by quantum fluc-
tuations just like the primordial density fluctuations. They are tensor fluctuations of
the metric, characterized in particular by their two-point correlation function (or power
spectrum);

• Inflation also predicts small deviations from Gaussianity. The simplest statistical measure
of primordial non-Gaussianity is the three-point function (the bispectrum) of density
fluctuations;

• Many models of inflation introduce new scales in the inflationary era. These new scales
manifest themselves as primordial features in the power spectrum and higher-point
spectra of primordial fluctuations.

The detection of any of these observables would give us access to new energy scales and the
detailed dynamics of inflation, while also carving the space of viable models. At the same time,
even in the absence of any detection, more stringent limits on these intrinsic predictions of the
inflationary paradigm (and its alternatives) will severely restrict the vast landscape of models
and teach us powerful lessons about the primordial universe.

A schematic view on the relationship of primordial gravitational waves, non-Gaussianity
and features to the various inflationary energy scales is presented in Fig. 1. These scales can
be sharply determined in a specific model of inflation which therefore predicts correlations
between different observables. In single-field slow-roll inflation, for example, the ratio of the
tensor and the scalar power spectra, referred to as the tensor-to-scalar ratio 𝑟, and the spectral
index of tensor fluctuations are proportional to each other, and the level of non-Gaussianity is
controlled by the size of the scalar spectral tilt. Similarly, the introduction of features in the
scalar power spectrum often comes from a new energy scale during inflation leaving similar
imprints in other observables, e.g. a feature in the shape of non-Gaussianities. This shows that
studying inflationary models is important to sharpen the energy scales relevant during inflation,
and to predict the size of and potential correlations between observables.

Since inflation sets the initial conditions for the entire causal evolution of the universe,
signatures of this primordial era are imprinted in all cosmological observations. So far, obser-
vations of the cosmic microwave background (CMB) have provided the strongest constraints
on all three observables, and it is expected to continue to provide significant improvements to
the measurements and serve as an important anchor to the other observational probes in the
coming decade. Similar to the CMB, tracers of the large-scale structure (LSS) of the universe
are sensitive to the largest scales of the primordial spectrum. With upcoming observations,
constraints from LSS will be competitive with CMB constraints for primordial non-Gaussianity
and features. On smaller scales, spectral distortions of the CMB black body spectrum and
direct observations of the stochastic gravitational wave background (SGWB) will be valuable in
advancing our understanding of inflation on a broad range of scales and are expected to have
significant improvements in sensitivity in the coming decade.

3
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While theoretically studying and observationally probing inflation through these three
observables might be the most promising path in the next decade, the landscape of phenomena
and research questions related to inflation is much broader. This means that we are not
able to cover many relevant topics, such as non-adiabatic fluctuations, primordial black holes,
primordial magnetic fields, (p)reheating and general inflationary model building, and open
questions, such as how inflation started and how inflation ended. At the same time, we focus
on the observational signatures of inflation, but we will only be able to mention some of the
far-reaching advances and remaining open problems in cosmological observations that are
being actively tackled, such as astrophysical foregrounds and modeling, theoretical descriptions,
instrumental systematics and new experimental probes.

For in-depth discussions onmany of these topics, we refer to dedicated Snowmass 2021white
papers on theoretical cosmology [1], the cosmological bootstrap [2], the application of effective
field theory to cosmology [3], primordial black holes [4], early-universe model building [5],
data-driven cosmology [6] and the stochastic gravitational wave background [7]. The white
papers on light relics [8] and cosmological tensions [9] also review topics related to inflation. On
the observational front, the experimental design of CMB-S4, as described in the Snowmass 2021
white paper [10], will be of particular importance to probe primordial gravitational waves, and
primordial non-Gaussianity and primordial features, respectively. Additional CMB-related white
papers provide an overview of CMB measurements [11] and a description of CMB-HD [12].
Future large-scale structure surveys, as detailed in the white papers on observational probes
from the three-dimensional large-scale structure [13], 21 cm and millimeter-wavelength line
intensity mapping [14, 15], and cross-correlations of observables [16], will be instrumental
to push the sensitivity to non-Gaussian and feature signatures of inflation. Gravitational
wave observatories will complement these observational efforts, cf. the Snowmass 2021 white
paper [17]. The cross-disciplinary approach and importance of inflationary research is also
evident from the list of related white papers submitted to the Decadal Survey on Astronomy
and Astrophysics 2020 (Astro2020) [18–26], which included dedicated papers on primordial
gravitational waves [18], primordial non-Gaussianity [19] and primordial features [20]. Finally,
we refer the reader to review articles on various aspects of inflationary research [27–46].

The outline of this white paper is as follows: We conclude this section with a summary of the
observational status and prospects. In Sections 2, 3 and 4, we discuss primordial gravitational
waves, primordial non-Gaussianity and primordial features, respectively. In each section, we
provide a review of the theoretical state of the art of these observables and describe their
imprints in cosmological observations. In addition, we summarize current constraints, mention
analysis and modeling challenges, and examine future directions. We conclude in Sec. 5.
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Status and Prospects of Observational Constraints

With many current and upcoming surveys, it is an exciting time for precision cosmology—
general predictions of the inflationary paradigm can be put to test given the upcoming
data. We outline below a few highlights of what an observational detection of each of the
three main observables would tell us about the early universe:

• For primordial gravitational waves, the current upper limit on the tensor-to-scalar
ratio, 𝑟 < 0.035 at 95% C.L., along with the observed spectral tilt 𝑛s strongly disfavors
single-field monomial models. We can look forward to data from CMB experiments
in the next decade to cross important theory thresholds of 𝑟 ' 0.01 and 𝑟 ' 0.001,
with the former being associated with a super-Planckian excursion of the inflaton
field and the latter being associated with classes of models that naturally predict the
observed spectral tilt 𝑛s.

• For primordial non-Gaussianity, the current limits on the amplitude of the three major
bispectrum shapes are 𝑓 localNL = −0.9 ± 5.1, 𝑓 equilNL = −26 ± 47 and 𝑓 orthoNL = −38 ± 24,
showing no evidence for primordial non-Gaussianity. With data from upcoming
and proposed CMB and LSS experiments, we anticipate 𝜎( 𝑓 localNL ) < 1, enabling the
differentiation of models that include the existence of extra light species during or
after inflation. We also anticipate an improvement on bounds for 𝑓 equil,orthoNL , which
will constrain the symmetry breaking patterns of inflation.

• For primordial features, cosmological data have constrained the departures from
the almost scale-invariant primordial spectrum to be less than one percent of the
scalar amplitude 𝐴s. The future influx of CMB and especially LSS data is projected to
improve these limits by one to two orders of magnitude (or make a detection at these
levels). These insights will be complemented by constraints on small scales from
measurements targeting CMB spectral distortions and the stochastic gravitational
wave background. The combination of theory and observations may offer an exciting
opportunity to not only reveal a portion of rather detailed evolutionary history of
inflation, but also provide direct model-independent evidence for the inflationary
paradigm.

With the tremendous increase in data volume and complexity, dedicated analysis, modeling
and simulation efforts are essential to ensure robust measurements and interpretation of
these datasets. Given the strong theoretical foundation, with many new exciting ongoing
developments, influx of high-quality data, and dedicated analysis and interpretation,
allowable model spaces will continue to shrink, qualitative and quantitative features of
the inflationary era will be better understood, and groundbreaking discoveries could be
just around the corner.
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2 Primordial Gravitational Waves
Many of the simplest models of inflation predict the existence of a stochastic background of
primordial gravitational waves (PGWs), which are tensor perturbations of the metric from
the very early universe. Since these perturbations are quantum fluctuations, a detection of
these PGWs would constitute a glimpse of quantum gravity at work. In addition, the amplitude
of the tensor perturbation spectrum is related to the expansion rate during inflation which can
be related to the energy scale of inflation in the simplest models. For a range of amplitudes of
the tensor perturbation spectrum that are measurable in the near future, a detection would
point to an energy scale near the scale of grand unification. This would open new frontiers
of accessible energies for cosmology and particle physics (see e.g. [38, 40, 41] for previous
reviews).

Inflation was originally proposed to solve the horizon and flatness problems.3 The simplest
realization relies on a single scalar field whose energy density is dominated by its potential
energy density. As inflation proceeds, the field slowly rolls down its potential. The slowly-
varying potential energy density leads to a period of accelerated expansion. Inflation ends
once the kinetic and potential energy densities become comparable. Subsequently, the inflaton
decays, filling the universe with a hot plasma of relativistic Standard Model particles (and
possibly particles beyond the Standard Model). This general picture is referred to as single-field
slow-roll inflation. As the scalar field rolls down, its quantum-mechanical fluctuations are
then responsible for sourcing the inhomogeneities in the early universe, producing the seeds
for structure formation. Moreover, fluctuations of the energy density of the vacuum lead to
the rippling of spacetime. In other words, the perturbations of the inflaton can be identified
with the scalar perturbations of the metric. Similarly, tensor perturbations of the metric are
gravitational waves, which is the topic of this section.

Given the profound consequences of a detection of PGWs from inflation, many current and
planned experiments are designed to search for their signatures which can be categorized in two
classes: (i) measuring the effects of PGWs on other cosmological observations and (ii) directly
measuring the strain of spacetime induced by PGWs. The first class of measurements make use
of observations of the cosmic microwave background, large-scale structure and astronomical
objects on smaller scales. The second class of measurements are pursued by interferometric
gravitational wave (GW) observatories. While we will touch on many of these observations, we
will mainly focus on the reach of CMB polarization because many of the simplest inflationary
models predict tensor modes at levels detectable by upcoming CMB experiments.

Upper limits on the tensor spectrum amplitude, parameterized by the tensor-to-scalar ratio 𝑟,
have already been set by multiple CMB experiments. The BICEP/Keck collaboration published
the current tightest upper limit, 𝑟 < 0.035 (95% C.L.), which has strongly disfavored a class of
single-field monomial models when combined with the measurement of the spectral tilt of the
scalar spectrum, 𝑛s. With the advances in experimental sensitivities and analysis techniques in
the next decade, these limits will improve by more than an order of magnitude or potentially
make a detection, crossing critical thresholds (𝑟 ' 0.01 and 𝑟 ' 0.001). Moreover, future data
from experiments with increasing sensitivities could shed light on non-vacuum mechanisms

3Since then, alternative scenarios that solve the horizon and flatness problems have been proposed (see
e.g. [47] for a recent review).
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of PGW production which can arise when embedding inflation in particle physics and string
theory setups, revealing valuable information about the particle physics of inflation. Future
CMB experiments could therefore make great leaps in constraining the available inflationary
model space.

2.1 Theoretical Background
As was already mentioned in the introduction, according to inflation, the very early universe
underwent a period of nearly exponential expansion. According to the simplest models of
inflation, this expansion is driven by the energy density in a scalar field that is described by the
action

𝑆[𝜙] =
∫

d4𝑥√−𝑔
[
−1
2𝑔

𝜇𝜈𝜕𝜇𝜙𝜕𝜈𝜙 − 𝑉 (𝜙)
]
, (2.1)

where the potential 𝑉 (𝜙) is an a-priori arbitrary function that characterizes the model. In the
3 + 1 (or ADM) decomposition [48], the line element is parameterized as

d𝑠2 = −𝑁2d𝑡2 + 𝑎2ℎ𝑖 𝑗(d𝑥 𝑖 + 𝑁 𝑖d𝑡) (d𝑥 𝑗 + 𝑁 𝑗d𝑡) , (2.2)

and we can choose a gauge so that all dynamical degrees of freedom are described by com-
ponents of the spatial metric ℎ𝑖 𝑗. The fluctuations describing the density (scalar; R) and
gravitational wave (tensor; 𝛾) fluctuations can be taken as

ℎ𝑖 𝑗 = e2R(e𝛾)𝑖 𝑗 =
(
𝛿𝑖 𝑗 + 2R𝛿𝑖 𝑗 + 𝛾𝑖 𝑗 + 2R2𝛿𝑖 𝑗 +

𝛾𝑖𝑘𝛾𝑘 𝑗
2 + · · ·

)
, 𝜕𝑖𝛾𝑖 𝑗 = 0 , 𝛾𝑖𝑖 = 0 , (2.3)

with the lapse 𝑁 and the shift 𝑁 𝑖 being determined in terms of the dynamical degrees of
freedom by the Hamiltonian and momentum constraints. In general, vector perturbations may
also be present, but these rapidly decay and can be neglected unless they are actively sourced,
e.g. by cosmic strings or other defects.

The time evolution of the scale factor 𝑎(𝑡) is described by the Friedmann equation,

𝐻2 =
8𝜋𝐺
3 𝜌 , (2.4)

where the Hubble rate 𝐻 is defined by 𝐻 = ¤𝑎/𝑎, with the overdot indicating a time derivative,
and the energy density is 𝜌 = 1

2
¤𝜙2 + 𝑉 (𝜙). The nearly exponential growth of the scale factor

characteristic for inflation corresponds to a Hubble rate that is approximately constant or, more
precisely, a Hubble rate whose fractional rate of change is small compared to the Hubble rate
itself,

𝜖 ≡ −
¤𝐻
𝐻2 � 1 . (2.5)

For the simplest models of inflation this holds, provided that the kinetic energy density is
small compared to the potential energy density. In order to solve the horizon and flatness
problems [49–53], this condition must hold sufficiently long so that the potential must be
sufficiently flat to keep the fractional rate of change of the inflaton velocity small compared to
the Hubble rate, at least on average.
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To discuss the time evolution of the perturbations, it is convenient to introduce their Fourier
expansions

R(𝑡, x) =
∫ d3𝑘

(2𝜋)3R(𝑡, k)eik·x + h.c. , (2.6)

and
𝛾𝑖 𝑗(𝑡, x) =

∑︁
𝜆

∫ d3𝑘
(2𝜋)3 𝛾𝜆 (𝑡, k)𝑒𝑖 𝑗(k, 𝜆)e

ik·x + h.c. , (2.7)

where 𝑒𝑖 𝑗(k, 𝜆) is the polarization tensor for a graviton with comoving wavenumber k and
polarization 𝜆, and “h.c.” denotes the Hermitian conjugate. In an inflationary universe, the
physical wavenumber 𝑘/𝑎 of any mode at early times far exceeds the expansion rate 𝐻 = ¤𝑎/𝑎.
In this limit, the modes are “inside the horizon” and oscillate rapidly. It is assumed that the
modes are only excited to the extent required by quantum mechanics at these early times. At
later times, the physical wavenumber drops below the expansion rate, and the modes “exit
the horizon”, 𝑘 � 𝑎𝐻. It can be shown that R(𝑡, k) and 𝛾𝜆 (𝑡, k) become time-independent
in this limit [54]. In particular, they are not affected by unknown physics associated with the
end of inflation or subsequent epochs about which very little is known, such as dark matter
decoupling.

At some point, inflation ends and the universe becomes filled with ordinary matter. The
expansion rate decreases more rapidly than the wavenumber and eventually the modes “enter
the horizon” again, 𝑘 � 𝑎𝐻, and begin to oscillate. The conservation of R and 𝛾𝑖 𝑗 outside the
horizon ensures that the statistical properties of the scalar and tensor fluctuations are preserved
and allow us to infer the conditions of the inflationary epoch from late-time observations. If the
probability distribution governing the primordial perturbations is statistically homogeneous,
isotropic and parity-invariant, the two-point correlation functions can be parameterized as

〈R(k)R(k′)〉 = (2𝜋)3𝛿3(k + k′) 2𝜋
2

𝑘3
Δ2
R(𝑘) ,

〈𝛾𝜆 (k)𝛾𝜆 ′ (k′)〉 = (2𝜋)3𝛿𝜆𝜆 ′ 𝛿
3(k + k′) 2𝜋

2

𝑘3
1
2Δ

2
𝛾 (𝑘) ,

(2.8)

where the factor of 1/2 in the last line reflects the fact that the measured power includes
contributions from each of the two graviton polarizations.

Observationally, we know that the power spectrum of primordial density perturbations is
well-described by

Δ2
R(𝑘) = 𝐴s

(
𝑘

𝑘∗

)𝑛s−1
, (2.9)

with a spectral index 𝑛s that is nearly, but not exactly unity. The amplitude of primordial density
perturbations is constrained at the percent level and all observations are currently consistent
with Δ2

ℎ (𝑘) = 0. The fact that the power spectrum of primordial density perturbations is
however well-described by a power law suggests an ansatz of the form

Δ2
ℎ (𝑘) = 𝐴t

(
𝑘

𝑘∗

)𝑛t
. (2.10)
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Since the power spectrum of primordial density perturbations has been measured, it is common
to quantify the amplitude of the primordial gravitational wave signal by the tensor-to-scalar
ratio,

𝑟 =
𝐴t
𝐴s

. (2.11)

For the simplest models of inflation, the primordial power spectrum of density perturbations
is given by

Δ2
R(𝑘) =

1
2𝜖𝑀2p

(
𝐻

2𝜋

)2
, (2.12)

where 𝑀p is the (reduced) Planck mass, and the Hubble rate 𝐻 and slow-roll parameter 𝜖 should
be evaluated at a time when 𝑘 = 𝑎𝐻. Since both 𝜖 and 𝐻 are slowly varying functions of time by
construction, we expect a nearly (but not exactly) scale-invariant spectrum. More specifically,
since the rate of change of the Hubble rate is negative definite and the slow-roll parameter
increases monotonically during inflation, we expect the power to decrease with increasing
wavenumber so that 𝑛s . 1. This is sometimes referred to as a red spectrum and is consistent
with observations. Over the next decade, constraints on the scalar spectral index 𝑛s will improve
by a factor of two. Together with improved constraints on the running of the scalar spectral
index and on primordial gravitational waves, which we will focus on here, this significantly
reduces the space of available models and may also distinguish between different reheating
histories after inflation. Additional discussion of the implications of improved measurements of
the primordial density perturbations can be found in the Snowmass 2021 White Paper [6].

The primordial power spectrum of gravitational waves is

Δ2
ℎ (𝑘) =

8
𝑀2p

(
𝐻

2𝜋

)2
, (2.13)

with 𝐻 again being evaluated at a time when 𝑘 = 𝑎𝐻. Since 𝐻 varies slowly as inflation
proceeds, we expect a nearly scale-invariant spectrum of primordial gravitational waves. More
specifically, since 𝐻 decreases with time, we also expect the primordial gravitational wave
spectrum to be red so that 𝑛t . 0. The tensor-to-scalar ratio for these models then is 𝑟 = 16𝜖.

Rather remarkably, this is the power spectrum associated with quantum fluctuations in
the metric. A detection of this signal would therefore provide evidence for quantum gravity.
The form of the primordial gravitational wave power spectrum highlights that a detection
would yield a measurement of the expansion rate of the universe during inflation. In addition,
since the energy density of the scalar field is dominated by the potential energy density, the
Friedmann equation can be used to infer the energy scale of inflation. This relation is often
used to express the energy scale in terms of the tensor-to-scalar ratio as

𝑉1/4 = 1.04 × 1016 GeV
( 𝑟

0.01
)1/4

. (2.14)

This highlights that inflation would have occurred near the energy scale associated with grand
unified theories for a tensor-to-scalar ratio within reach of CMB observations, which will be
discussed in §2.2. A detection would therefore provide evidence for new physics at energy
scales far beyond the reach of any terrestrial experiment.
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For the simplest models of inflation, the tensor-to-scalar ratio furthermore constrains the
distance traversed by the inflaton [55],

Δ𝜙

𝑀p
&

( 𝑟
8
)1/2

N∗ , (2.15)

where N∗ measures the number of “e-folds”, or the natural logarithm of the ratio of the scale
factor at the end of inflation and when the pivot scale 𝑘∗ exits the horizon, 𝑘∗ = 𝑎𝐻. The
precise value of N∗ depends on the details of reheating, the epoch when inflation ends and the
universe becomes filled with ordinary matter. A typical number for reheating that occurs nearly
instantaneously is of order sixty (with details depending on the choice of model as well as
pivot scale). Less-efficient reheating scenarios can typically lead to a reduction in this number
of order ten, but reheating can also be further delayed. Taking a very conservative value of
N∗ = 30, we see that any detection of a tensor-to-scalar ratio above 𝑟 & 0.01 would imply that
the inflaton must have traveled over a distance larger than 𝑀p.

Theories of quantum gravity are expected to contain new degrees of freedom at or below
the Planck scale. In the absence of symmetries, the inflaton is expected to interact with these
degrees of freedom. These interactions would imply features in the inflaton potential on sub-
Planckian scales that prevent the inflaton from rolling slowly over a super-Planckian distance.
This implies that a detection of gravitational waves with 𝑟 & 0.01 would provide evidence for
a symmetry of nature that forbids these interactions. Whether such symmetries and, more
generally, super-Planckian excursions can occur in a fundamental theory of quantum gravity
continues to be the subject of an active debate [56].

It is natural to ask whether theoretical considerations single out additional scales. To
highlight such an additional scale, we will follow an argument laid out in [57]. Provided 𝜖 � 1,
the tensor-to-scalar ratio obeys an ordinary first-order differential equation [58–60],

d log 𝑟
dN = [𝑛s(N ) − 1] + 𝑟

8 . (2.16)

The observed departure from exact scale invariance is numerically close to 1/N∗. Of course,
this might just be a numerical coincidence, but it implies that models of inflation for which the
functional dependence of the spectral index on the number of e-folds is

𝑛s(N ) − 1 = − 𝑝 + 1
N

, (2.17)

with 𝑝 being a positive number of order unity, naturally predict the observed departure from
scale invariance. The general solution (2.16) can then be written as

𝑟(N ) = 8𝑝
N

1
1 + (N /Neq) 𝑝 , (2.18)

where Neq is an integration constant. In the absence of additional hierarchies in the theory,
we expect one of the terms in the denominator to dominate and expect the solution to be
well-approximated by one of the two limiting cases,

𝑟(N ) = 8𝑝
N

and 𝑟(N ) = 8𝑝
N

(Neq
N

) 𝑝
, (2.19)
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with Neq now expected to be of order unity.
We saw that the simplest single-field models are fully characterized by the potential 𝑉 (𝜙)

and that we can derive the functional form of the potential that naturally explains the observed
value of the spectral index 𝑛s. The first limiting form in (2.19) corresponds to so-called
monomial potentials, 𝑉 (𝜙) = 𝜇4−2𝑝𝜙2𝑝. For reasonable choices of 𝑝, these models predict
𝑟 > 0.01, which is well within the reach of upcoming experiments, and in their simplest form
are already strongly disfavored.

For the second limiting form in (2.19), the qualitative behavior changes depending on
whether 𝑝 is smaller or larger than unity. Larger values, 𝑝 > 1, describe the so-called “hilltop”
models [61]. In this case, the potential near the origin in field space approaches a constant
from below like a power of the field set by 𝑝 and inflation takes place as the field rolls down the
hill toward a minimum. Smaller values, 𝑝 < 1, correspond to the so-called “plateau” models. In
this case, the potential tends to a constant at large field values, again with a power set by 𝑝, and
the inflaton rolls down from the plateau toward the origin. Interestingly, data appear to favor
𝑝 = 1, a special choice of plateau models in which the plateau is approached exponentially.

All potentials associated with the second limiting form describing hilltop and plateau models
are characterized by the distance in field space over which the potential appreciably departs
from the hilltop or plateau. A priori, this scale, which is referred to as the “characteristic scale”
of the potential, is unconstrained. However, we may expect this characteristic scale to be of
order 𝑀p in the most economic scenario. This expectation is realized in many well-known
models, such as Starobinsky’s 𝑅2 inflation [62], models in which the Higgs boson takes on the
additional role of the inflaton [63, 64] or, more generally, models with non-minimally coupled
scalar fields [65, 66]. In these models, the characteristic scale is of order the Planck scale
because both are determined by the coefficient of the Einstein-Hilbert term. This class also
includes 𝛼-attractors [67–69], fibre inflation [70], and Poincaré disk models [71, 72].

The class of hilltop and plateau models with Planckian characteristic scale provides the
target of 𝑟 = 0.001 for the next generation of CMB experiments [57], to be discussed in the
following. We see that this target is interesting both because the class contains many well-known
models and because the absence of a detection would exclude the simplest models of inflation
that naturally explain the observed value of the spectral index 𝑛s with a super-Planckian
characteristic scale.

2.2 Observational Imprints
Observations of the CMB have provided model-independent constraints on the primordial
perturbations that any theory of the early universe must obey. The primordial perturbations are
dominated by density perturbations. Within observational uncertainties, these perturbations
are adiabatic, Gaussian, and their power spectrum is well-approximated by a power law and
nearly, but not exactly scale-invariant (𝑛s . 1). All these properties are predicted by the
simplest models of inflation. As we reviewed, inflation also predicts a nearly scale-invariant
background of PGWs. Because the energy density in gravitational waves rapidly redshifts
after modes enter the horizon, observations of CMB polarization provide the most promising
avenue to detect this characteristic signature. Furthermore, many of the simplest models of
inflation, in particular those based on symmetries in which inflation occurs at high energies
and with a large field displacement, predict amplitudes of PGWs within reach of upcoming
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CMB experiments. As a consequence, we will focus on the imprint of gravitational waves on
the primary CMB polarization anisotropies, but will also touch on other ideas to search for
this signal, such as intrinsic alignments, shear and clustering of galaxies, circular polarization
of 21 cm radiation, polarized Sunyaev-Zel’dovich (SZ) tomography, and direct detection of
primordial gravitational waves with gravitational wave observatories.

2.2.1 Cosmic Microwave Background

In the early universe, the baryon-photon plasma underwent acoustic oscillations seeded by the
primordial perturbations. When the universe was around 400 000 years old, it became cool
enough for hydrogen to form. During this period of “recombination”, the photons decoupled
from the baryon-photon plasma leading to a transparent universe filled with cosmic black
body radiation that now peaks at microwave frequencies and is referred to as the CMB. Some
of these CMB photons have interacted with free electrons after the first stars and galaxies
reionized the universe, but most of them experience their first non-gravitational interaction
since recombination as they are measured by CMB experiments.

At the time the CMB was released, the universe was homogeneous and isotropic to one part
in 104−105. The small anisotropies in the observed CMB temperature arise predominantly from
photon density fluctuations at the time of recombination. For practical reasons, it is convenient
to expand the observed temperature perturbations in terms of spherical harmonics 𝑌�𝑚,

Δ𝑇 (𝑛̂) =
∑︁
�,𝑚

𝑎𝑇�𝑚𝑌�𝑚(𝑛̂) , (2.20)

and work with the so-called multipole coefficients 𝑎𝑇�𝑚.
Individual photons are linearly polarized by their last scattering event: the CMB radiation

observed in a particular direction acquires a net polarization through scattering off electrons
that experience a local temperature quadrupole, which is generated by dissipative processes
in the presence of velocity gradients in the baryon-photon fluid. This means that polariza-
tion anisotropies provide an observational handle on the velocity of the medium, while the
temperature anisotropies predominantly probe the intrinsic temperature perturbations.

The polarization of the CMB is conventionally encoded by the Stokes 𝑄 and 𝑈 parameters,
which characterize the linear polarization of the radiation field. These can be expanded in
terms of spin-weighted spherical harmonics 2𝑌�𝑚,

𝑄(𝑛̂) + i𝑈 (𝑛̂) = −
∑︁
�,𝑚

(
𝑎𝐸�𝑚 + i𝑎𝐵�𝑚

)
2𝑌�𝑚(𝑛̂) . (2.21)

The information about the temperature and polarization anisotropies are therefore encoded
in the multipole coefficients 𝑎𝑇�𝑚, 𝑎𝐸�𝑚 and 𝑎𝐵�𝑚. Since observations have demonstrated that
the CMB is remarkably Gaussian, the ensemble averages are well-characterized by the angular
power spectra

𝐶𝑋𝑌
� 𝛿��′𝛿𝑚𝑚′ =

〈
𝑎𝑋�𝑚𝑎

𝑌∗
�′𝑚′

〉
, (2.22)

where 𝑋, 𝑌 ∈ {𝑇, 𝐸, 𝐵} and the star denotes the complex conjugate. It can be shown that density
perturbations only generate temperature and curl-free (parity-even) E-mode anisotropies at
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linear order in perturbation theory. In the absence of primordial gravitational waves, the
angular power spectra are then given by

𝐶𝑋𝑋,� =

∫ d𝑘
𝑘

Δ2
R(𝑘)

������
𝜏0∫

0

d𝜏 𝑆𝑋 (𝑘, 𝜏) 𝑢𝑋,� [𝑘(𝜏0 − 𝜏)]
������
2

, (2.23)

where 𝑋 = 𝑇, 𝐸, 𝑆𝑋 (𝑘, 𝜏) are the so-called source functions that encode the evolution of the
modes, and 𝑢𝑋,� are special functions that encode the geometry of the universe. If the universe
is spatially flat, as we have implicitly assumed in writing (2.3), then 𝑢𝑇,� = 𝑗�, where 𝑗� are
spherical Bessel functions.

Primordial gravitational waves also create a local temperature quadrupole and leave an im-
print in the temperature and polarization anisotropies. In particular, PGWs generate divergence-
free (parity-odd) B-mode polarization and are the only source of B modes at recombination at
linear order. As such, B modes of the CMB provide a unique window to PGWs [73, 74]. Figure 2
shows theoretical and observed angular power spectra for CMB temperature and polarization
anisotropies. The B-mode power spectrum created by gravitational waves generated during
inflation are shown for two representative values of the tensor-to-scalar ratio.4 We see that the
angular power spectrum of B modes generated by PGWs peaks at angular multipoles around
� ≈ 80, which corresponds to the light horizon scale. This peak is often referred to as the
recombination peak. In addition, rescattering of CMB photons during reionization leads to
another peak in the B-mode spectrum at � < 10. This is often referred to as the reionization
bump. Ground-based experiments typically target the recombination peak, whereas satellite
experiments target both the recombination peak and reionization bump.

Observational Progress
Given the significance of the implications of a detection of primordial gravitational waves, many
experiments are designed to go after its so-called B-mode signature in the CMB [75, 76, 83–90].
In the last about 10 years, the uncertainty on the amplitude of PGWs as parameterized by
the tensor-to-scalar ratio 𝑟 has tightened by about two orders of magnitude, driven mainly by
results from the ground-based experiment BICEP/Keck located at the South Pole [75]. Looking
forward, the telescopes targeting PGWs within the planned experiment CMB-S4 [10, 91], as
described in its dedicated Snowmass 2021 White Paper [10], has adopted many of its design
features from the BICEP/Keck experiment to further drive the constraining power on 𝑟. In
fact, as illustrated in Fig. 3, current experiments, such as the Simons [92] and South Pole
Observatories [93, 94], and planned experiments, such as LiteBIRD [95] and CMB-S4 [10, 91],
are projected to cross two important thresholds over the next decade, respectively: (i) the
threshold around 𝑟 ' 0.01, which is associated with monomial models and a super-Planckian
excursion in field space that would provide strong evidence for the existence of an approximate
shift symmetry in quantum gravity, and (ii) the threshold at 𝑟 ' 0.001, which is associated
with the simplest models of inflation that naturally predict the observed value of the scalar
spectral index 𝑛s and have a characteristic scale that exceeds the Planck scale.

4We note that there could be matter fields that modify the PGW B-mode signal beyond the simplest models of
inflation. These new observable signatures include chirality, non-Gaussianity and a blue-tilted spectrum (see [32,
46, 79–81] for reviews and early works), and can generate cosmological 𝐶𝑇𝐵

� and 𝐶𝐸𝐵
� spectra [82].
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Figure 2: Theoretical predictions for the CMB temperature (black), E-mode (red), and tensor
B-mode (blue) power spectra. Primordial B-mode spectra are shown for two representative
values of the tensor-to-scalar ratio: 𝑟 = 0.001 and 𝑟 = 0.03. The contribution to tensor B modes
from scattering during the recombination epoch peaks around � ≈ 80 and from reionization
at � < 10. The expected values for the contribution to B modes from gravitationally lensed
Emodes are shown in green. Current measurements of the B-mode spectrum from ground-based
experiments are displayed for BICEP/Keck (dark orange) [75], SPTpol (light orange) [76],
POLARBEAR (yellow) [77], and ACT (light yellow) [78]. The BICEP/Keck experiment has
produced the most sensitive measurements of degree-scale B modes, which are relevant for
constraining the recombination peak from PGW B modes. The lensing contribution to the
B-mode spectrum can be partially removed (“delensed”) by measuring the E-mode polarization
and exploiting the non-Gaussian statistics of the lensing signal.

Before we discuss the challenges of this measurement, let us note again that the detection
of the imprint of a PGW background on the CMB would have profound implications. It
would constitute an indirect observation of quantum fluctuations in the spacetime metric and,
therefore, of the quantum nature of gravity. In addition, it would provide evidence for new
physics at the energy scale associated with grand unified theories. Finally, it would also have
important implications for high-energy physics more generally, for example, by constraining
axion physics and moduli, which are the fields that control the shapes and sizes of the internal
manifold in string theory. For a detailed discussion of inflation in string theory and implications
of a PGW detection, we refer to the Snowmass 2021 White Paper [1].

Measurement Challenges
The PGW-sourced B-mode power is orders of magnitude below the now well-measured temper-
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Figure 3: Predictions for the tensor-to-scalar ratio 𝑟 and spectral index 𝑛s for the class of single-
field inflationary models in which 𝑛s(N ) − 1 ∝ −1/N . This class includes monomial models,
𝑉 (𝜙) ∝ 𝜙𝑝 (dark blue), the Starobinsky (𝑅2) model and models in which inflation is driven
by the Higgs field (orange filled circles). The dashed lines show the predictions of models for
different values of the characteristic scale in the potential. All models with a characteristic scale
that exceeds the Planck scale can be detected or excluded in the next decade. In addition, the
current constraints are shown in light blue [75], strongly disfavoring the single-field monomial
models. The purple contours labeled ‘Stage 3’ show representative constraints of a combination
of the Simons [92] and South Pole Observatories [93, 94]. The red contours give an indication
of the constraints achievable by CMB-S4 [91] and LiteBIRD [95], and the green contour shows
the potential reach of a more futuristic high-resolution satellite mission, such as PICO [96].

ature anisotropy spectrum, as shown in Fig. 2. This poses the first challenge of the search of
primordial B modes in the CMB: it is extremely faint. Given the latest published 95% C.L. upper
limit of 𝑟 < 0.035 [75], these B-mode fluctuations are at most 10s of nK. Apart from this signal
being extremely faint, there are two known astrophysical sources of B modes of comparable or
larger amplitude than the primordial B modes which hinder the search.

The first contaminating astrophysical source of B modes is from within our galaxy: thermal
dust and synchrotron emission produce polarized-foreground B-mode patterns. Both mecha-
nisms of polarized emissions depend on the galactic magnetic field. Synchrotron radiation is
generated by cosmic rays moving through this magnetic field, with the emission being polarized
perpendicular to the projection of the magnetic field onto the line of sight [97]. Likewise,
thermal emission from interstellar grains is polarized perpendicular to the local magnetic field
orientation since grains tend to align with their short axes parallel to field lines [98].

The second source, called “lensing B modes”, is produced by weak gravitational lensing of
the CMB. To first order, density perturbations from inflation produce only E-mode polarization.
This means that the polarization pattern of the CMB would be purely E mode in ΛCDM without
lensing and in the absence of PGWs. However, during their propagation to us, the paths of the
polarized CMB photons are deflected by the intervening gravitational potentials along the line
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of sight [99]. This produces the lensing B-mode component which must be accounted for or
removed (“delensed”) in order to tighten the constraint on or potentially detect 𝑟. Delensing typ-
ically involves estimating the lensing potential and subsequently the lensing B modes in the map.
This estimate could then be subtracted from the observed CMB maps or otherwise incorporated
in a likelihood analysis for 𝑟 to reduce the sample-variance contribution from lensing.

Controlling both sources of PWG B-mode contaminants is key to obtaining robust 𝑟 results.
Different survey configurations will have different fractional contributions of foreground and
lensing uncertainties to their total uncertainty budget for 𝑟. For instance, full-sky satellite
surveys typically cover higher-foreground amplitude and complexity regions, while also having
access to higher frequency bands for foreground characterization compared to ground-based
surveys. This is particularly advantageous given that dust emission is brighter at higher
frequencies. In contrast, ground-based surveys are designed to cover a low-foreground, as-
small-as-practical patch of the sky to maximize the per-mode signal-to-noise ratio. In the limit
that instrument noise is subdominant, the respective strategies tend to result in a larger fraction
of the total uncertainties on 𝑟 coming from foregrounds for satellite surveys and from lensing
for ground-based surveys.

To reduce the impact of foregrounds on 𝑟 in the upcoming high-sensitivity regimes, better
modeling and simulations of the foreground components, and improved foreground cleaning
methods are needed. While both dust and synchrotron emission could be sufficiently mod-
eled as a single component with their spectral dependence following simple spectral energy
density (SED) descriptions in current data [75, 100, 101], it would be unsurprising if each
of them demonstrates more complex spectral and spatial dependence in future data. Indeed,
frequency decorrelation of dust and spatial variation in the dust SED are expected and are
already modeled in current analyses and forecasts [75, 91, 102–104]. To better probe the
physical origin of the observed spectral and spatial complexities of foregrounds, new approaches
using ancillary observations of neutral-hydrogen (HI) and starlight polarization are providing
new ways to trace the three-dimensional dust distribution in the interstellar medium and the
galactic magnetic field [105–108]. Additionally, more accurate models and simulations of the
polarized galactic foregrounds are being developed, leveraging improved observations and
computational resources [91, 109–115]. In terms of foreground-cleaning approaches, various
methods have been developed mostly for previous satellite experiments [75, 89, 116–121]. For
upcoming and future experiments, which have much lower noise regimes and unique survey
configurations, active research is underway to optimize the signal-to-noise ratio and reduce
residuals in each of the survey scenarios [92, 102, 103, 108, 122–126], with particular care
being taken to account for impacts of instrumental systematics [10, 91, 126–129].

Delensing, unlike foreground cleaning, has only recently been implemented on data [130–
136]. Specifically, a reduction in the uncertainty on 𝑟 using delensing was demonstrated for the
first time in [136]. As mentioned, ground-based surveys typically focus their observing time on
a small fraction of the sky when targeting primordial B modes [75, 85, 86, 91, 92, 126], which is
an advantageous strategy until a detection is made. This can however lead to the lensing uncer-
tainty contributing a larger fraction of total uncertainty compared to foregrounds. For current
experiments such as BICEP/Keck, the lensing sample variance already dominates the uncertainty
on 𝑟 [75]; for planned experiments such as CMB-S4, delensing is required to reach its 𝑟 science
goal. On this front, some open questions include whether small-scale galactic foregrounds
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might bias the lensing estimate and, therefore, bias the delensing procedure, and whether
realistic instrument effects would degrade the delensing efficiency at relevant levels [137–139].
Active development of delensing methods are underway and will be necessary to ensure that the
required level of delensing efficiency can be achieved for the planned experiments [140–144].

Given the increased data volume and complexity, continued development in analysis,
modeling and simulations are necessary to keep pace with experimental advancements in order
to extract maximal information about our universe from these upcoming data sets. This includes
the modeling and simulations of galactic and extragalactic foregrounds, and lensing [145–
147], modeling and approximations of the likelihood and covariance matrices [148, 149], and
theoretical work advancing our understanding of inflation.

2.2.2 Large-Scale Structure

Primordial gravitational waves can also alter cosmic shear and galaxy clustering spectrum
measurements [150–162]. This is because the effect of very long-wavelength perturbations on
the scale of galaxy formation is an effective tidal field which results in non-zero E and B modes
on large scales. The prospects of detecting primordial gravitational waves indirectly using this
observable are challenged primarily by two aspects. First, gravitational nonlinearities can source
both E and Bmodes at relatively large scales. This corresponds to a noise component that is much
larger than the PWG signal unless inflation breaks parity and sources an E-B correlation in the
galaxy shape power spectrum which cannot be sourced by late-time nonlinearities [163]. The
second issue is related to shape noise, i.e. the stochasticity produced by small-scale perturbations
that affects the intrinsic ellipticity of galaxies. Forecasts show that competitive constraints with
respect to the CMB will be hard to reach in the near future [152, 156–159, 164].

There are a few other (futuristic) ideas of using LSS and CMB observations to probe signa-
tures of PGWs,5 some of which are generated from the PGW-sourced quadrupole anisotropies.
In a futuristic, tomographic 21 cm survey focused on the dark ages (𝑧 ∼ 20), the remote
quadrupole of the CMB can source a small circular-polarization component in the emitted
21 cm radiation [167, 168]. In addition, PGWs can lens the 21 cm fluctuations, from which one
can reconstruct a curl component of the deflection field and infer the PGW amplitude [169].
Moreover, cross-correlations of galaxy surveys with polarized SZ signals in small-scale CMBmea-
surements will probe the remote quadrupole field and, consequently, PGWs [170, 171].

2.2.3 Gravitational Wave Background

So far, we discussed probes that are designed to detect the effects of primordial gravitational
waves on a set of observables. In the following, we summarize the direct sensitivity of current
and planned gravitational wave observatories to a stochastic gravitational wave background
of primordial origin (see also the dedicated Snowmass 2021 White Papers [7, 17] for more
detailed discussions).

The direct detection of gravitational waves proceeds through interferometry. The fractional
change in the phase of light along two different paths, between pairs of freely falling test masses,

5We can even employ astronomical observations on smaller scales to hunt for PGWs, e.g. via stellar astrome-
try [165] and pulsar timing arrays [166].
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is directly related to the amplitude and phase of a passing gravitational wave. Astrophysical
GW sources produce a finite-duration signal that is characterized by a gravitational waveform.
In contrast, a stochastic background is characterized by a signal power or spectral density that
is manifest as a frequency-dependent, irreducible noise in interferometer phase measurements.
The spectral density is ΩGW ≡ dlog 𝜌GW/dlog 𝑓 , i.e. the energy density in gravitational waves
as a fraction of the critical density per logarithmic frequency interval, with the energy density
in GWs being 𝜌GW = 〈 ¤ℎ𝑖 𝑗(𝜏, ®𝑥) ¤ℎ𝑖 𝑗(𝜏, ®𝑥)〉/(32𝜋𝐺), where the angle brackets indicate averaging
over a time interval much larger than the period of oscillation.6 In a universe filled with
matter and radiation, the inflationary prediction for modes that entered the horizon before
matter-radiation equality is ΩGW( 𝑓 ) = (𝑟𝐴s/24) ( 𝑓/ 𝑓CMB)𝑛t Ω𝑟, with the radiation density
parameter Ω𝑟 and the CMB pivot frequency 𝑓CMB = 1.94 × 10−17 Hz [172]. It is a scientific
goal of all GW observatories to either observe a PGW directly or characterize any possible
foregrounds and place an upper limit on a primordial ΩGW.

The LIGO/Virgo/KAGRA network of detectors is currently sensitive to gravitational waves
in the frequency range 𝑓 ∼ (101 − 102) Hz. The most recent search for a SGWB yields a
95% C.L. upper limit of ΩGW ≤ 5.8 × 10−9 on a flat, frequency-independent SGWB [173]. The
Laser Interferometer Space Antenna (LISA) [174], a proposed space-borne gravitational wave
observatory on track for launch in the mid-2030s, is expected to significantly improve this bound.
LISA will operate primarily in the mHz band, spanning (10−4 − 10−1) Hz. Current forecasts
suggest that LISA will be able to reach a sensitivity level better than ΩGW = 10−12 over the
course of a nominal four-year mission [175, 176]. Comparing this limit to the CMB limit, we see
that the current CMB limit on 𝑟 under the assumption of a scale-invariant tensor spectrum would
translate to gravitational wave spectral energy densities which are several orders of magnitude
more stringent than set by current and planned interferometric GW observatories [18, 177].
However, the frequencies probed by GW observatories are distinct from those accessible to
the CMB and could probe physics of post-inflationary epochs. The process of inflationary
preheating, characterized by rapid field variations and particle production, typically produces
an additional spectrum of primordial gravitational waves (see [178–181], and more recently [7,
182–184] and references therein). These are high-frequency GWs that are beyond the reach of
current detectors unless the inflationary energy scale is unusually low, although their presence
may be indirectly felt as dark radiation (see the Snowmass 2021 White Papers [7, 8]). In
addition, features in the primordial spectra are ubiquitously predicted in scenarios beyond the
simplest inflationary models, as addressed in Sec. 4, which could be probed at these other
frequencies and, therefore, open up new windows to inflation.

Other currently planned or proposed GW observatories include: 𝜇Ares [185] (𝜇Hz);
Taiji [186] and successors [24] (∼mHz), DECIGO [187], TianQin [188] and TianGO [189]
(∼dHz), Cosmic Explorer [25] and the Einstein Telescope [190]. New detector technologies,
such as atom interferometry, have been proposed across a range of frequencies, e.g. MAGIS [191]
and AEDGE [192]. These GW observatories will contribute significantly to the search for pri-
mordial gravitational waves.

6In the case of the inflationary stochastic background, the spatial/time average needed to formally define 𝜌GW
corresponds, in practice, to the ensemble average of the stochastic variable ℎ𝑖 𝑗, which ultimately corresponds to
the graviton correlators at late time.
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3 Primordial Non-Gaussianity
Current observations of primordial fluctuations are consistent with Gaussian statistics. At the
same time, deviations from Gaussianity are necessarily present even in the simplest models of
inflation. More generally, primordial non-Gaussianity (PNG) is a robust probe of interaction
dynamics during inflation beyond the free propagation of curvature fluctuations. Detecting and
characterizing PNG would be a fantastic triumph of theoretical and observational cosmology,
probing the dynamics of the early universe and providing clues about physics at very high energy
densities, much higher than those achievable in particle colliders, and potentially uncovering
new degrees of freedom beyond curvature perturbations (see e.g. [19, 27–31, 33–35, 37, 39, 44]
for previous reviews).

A detection of PNG could probe new degrees of freedom around the inflationary Hubble
scale 𝐻, all the way to heavier physics around the strong coupling scale ΛUV, through self-
interactions of the curvature perturbations (see Fig. 1). Moreover, we could infer the dynamical
properties of the various degrees of freedom that are active during inflation, such as their
dispersion relations, spectroscopic properties and interactions. For example, depending on the
field content and symmetry breaking pattern of inflation, the predicted size and shape of PNG
changes. Moreover, the theoretical characterization of the allowed shapes and sizes of PNG is
an interesting endeavor with many recent developments.

Any level of non-Gaussianity in the statistics of the primordial fluctuations will be transfered
to the maps of the cosmic microwave background and large-scale structure. To extract this
information from observations, efficient estimators for the CMB bispectrum have been developed.
Recently, the first analyses involving the bispectrum have also been performed in LSS. Apart
from the bispectrum (and higher-point functions), PNG of the ‘local’ type also results in an
enhancement of power of biased LSS tracers on large scales, referred to as the scale-dependent
bias. While this signal is comparably easy to extract from LSS data, bispectrum analyses are
more complicated to perform than in the CMB. Nevertheless, recent theoretical advances have
enabled the first such analyses. Having said that, there is no evidence for PNG for any shape or
probe so far, with the tightest constraints being derived from Planck data. At the same time,
there is a continued effort to mitigate and model astrophysical and nonlinear effects, spanning
analytic, numerical and simulation-based approaches, to more efficiently extract primordial
information from late-time observables. Together with the dramatic increases in observational
sensitivity, future CMB and LSS analyses are projected to significantly improve the constraints
on all PNG types, with potentially decisive implications for our understanding of the inflation.

In this section, we will review the theoretical status of PNG, the most important shapes of
the bispectrum, what physics they encode, and current bounds on their sizes. We also review
the state of the art in techniques to analyze data from CMB and LSS surveys, together with
promising future directions, and an outlook in both theory and observations.

3.1 Theoretical Background
Current observational data support the ΛCDM assumption that primordial fluctuations have
Gaussian statistics. This is consistent with the simplest single-field inflationary models, in
which fluctuations only self-interact gravitationally, predicting a very small level of PNG, which
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is currently beyond reach [193, 194]. At the same time, well-motivated inflationary models
beyond the simplest ones have been shown to be able to generate PNG with larger amplitudes
and different profiles [27, 30, 31, 33, 37]. These levels of PNG are potentially detectable in
upcoming cosmological surveys. Measuring PNG will allow us to answer fundamental questions
about the primordial universe, such as:

• How many scalar degrees of freedom were light during inflation?

• Were there degrees of freedom with masses comparable to the Hubble scale of inflation?
What were their mass and spin spectra?

• What were the initial states of these quantum fluctuations? What were their interactions
and how fast were they propagating?

• Was the background spacetime of the primordial universe quasi-de Sitter?
There are various measures of non-Gaussianity. We focus on the scalar three-point corre-

lation function or bispectrum. It has been the most-studied and analyzed observable in the
literature since it is often the dominant non-Gaussian signature in weakly coupled models of
inflation. For translation-, rotation- and scale-invariant perturbations, the bispectrum is

〈Rk1Rk2Rk3〉 = (2𝜋)3𝛿3(k1 + k2 + k3) 185 𝑓 typeNL 𝐴2
s
𝑆type(𝑘1, 𝑘2, 𝑘3)

(𝑘1𝑘2𝑘3)2
, (3.1)

where 𝑓NL parameterizes the size of PNG and the dimensionless shape function 𝑆type controls the
overall size of PNG as a function of the triangle formed by the momenta. The shape dependence
encodes information about the specific dynamical mechanism that generated the non-Gaussian
signal and, therefore, serves as a discriminator between various inflationary models.

Studies of various inflationary models have demonstrated several broad classes of scale-
invariant PNG7 with large, potentially detectable 𝑓NL.8 In the following, we list them with an
emphasis on the main characteristics of the function 𝑆 and the physics that they probe.

• Equilateral/orthogonal PNG and single-field inflation. The bispectra peak in the
equilateral configuration, 𝑘1 ∼ 𝑘2 ∼ 𝑘3, and the shape function vanishes as 𝑆 ∼ 𝑞 for a
soft momentum denoted by 𝑞. This type of PNG arises if the inflaton has derivative, local
self-interactions [201–210]. Since derivatives are suppressed on superhorizon scales,
these interactions contribute the most to the PNG signal when all modes have similar
wavenumbers around the horizon exit. Oftentimes, derivative self-interactions produce
several shapes of equilateral PNG that are slightly different from each other which means
that finding an orthogonal basis of these shapes leads to new PNG profiles in this category.

7Scale-dependent PNG is closely associated with primordial features, which we will review in the next section.
Due to the nature of the mechanisms generating scale-dependent signals, many models typically predict correlated
oscillatory signatures in correlation functions at different orders, which motivates the search for such features in
the primordial spectra.

8As a rough rule of thumb, models that predict 𝑓NL > 1 with a shape function that is larger for squeezed
triangles than for equilateral triangles has better observational prospects (see §3.2). For single-field slow-roll
inflation, the prediction is that the shape function peaks around the equilateral configuration with an amplitude
proportional to the scalar spectral tilt (see [193–200] for discussions), which is beyond reach of near-future
surveys.
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• Local PNG and multi-field inflation. The bispectra peak in the squeezed limit, scaling
as 𝑆 ∼ 𝑞−1 as 𝑞 becomes soft. A large local PNG signal indicates the presence of more
than one light (𝑚 � 𝐻) field during inflation [211–214]. Physically, the fluctuations of
massless scalars freeze after horizon exit and open up a multi-field space for superhorizon
evolution. Using the 𝛿𝑁 formalism [215–217], on superhorizon scales, patches of the
universe of Hubble size evolve independently of each other, leading to nonlinearities that
are local in these Hubble patches. This gives rise to PNG that is local in real space and
peaks in the squeezed limit in momentum space.

• Non-analytic PNG and cosmological collider physics. The squeezed-limit behavior
of these bispectra follows a non-analytic power-law scaling of the soft momentum 𝑞,
𝑆 ∼ 𝑞𝛼𝑃𝑠(cos 𝜃), where 𝜃 is the angle between the soft q and the hard mode, 𝛼 is either
a real number 𝛼 ∈ [−1, 12] or a complex number 𝛼 = 1

2 + i𝜇 with real 𝜇, depending
on the mass of the mediating state, and 𝑃𝑠 is the Legendre polynomial of degree 𝑠 that
captures the angular dependence, with 𝑠 being the spin of the mediating state [218–
222]. Note that local PNG is a special limit of this general case. Due to the analogy
between the squeezed limit behavior of PNG and how mass/spin spectra are measured at
energy thresholds in particle colliders, the general classification of these shapes is dubbed
“cosmological collider physics”. Since the resonances are efficiently produced up to states
of mass comparable to the Hubble scale, the detection of such PNG shapes may be used
to probe the nature of particle physics at energies up to or exceeding the Hubble energy
during inflation [218–278].

• Folded PNG and non-Bunch-Davies vacuum. The bispectra peak in the folded config-
uration, 𝑘1 + 𝑘2 ∼ 𝑘3. This shape can arise from non-Bunch-Davies initial states for
quantum scalar fluctuations [204, 279–281], from classically excited states [282] or a
strongly non-geodesic motion in multi-field inflation [283–285]. Physically, the peak in
the folded configuration is due to the decay of the modified initial state [286].

The conventional approach of deriving the templates of these PNG profiles is through
Lagrangians and explicit time evolution with the “in-in” formalism. In the following, we instead
present a new perspective of the “cosmological bootstrap” [2, 221, 251, 261, 266, 287, 288].
This method allows us to make theoretically controlled predictions based on assumptions of
weak coupling and symmetries. As long as the underlying model satisfies these assumptions,
the PNG form follows directly from consistency conditions such as unitarity and analyticity.
This not only dramatically simplifies many computational steps, but also provides a natural
language to describe the properties of shape functions without the need to invoke a Lagrangian.
In what follows, we will describe three distinct classes of PNG in this language.

Single-Field Inflation
In single-field inflation, consistency conditions imply that the most general bispectrum from
derivative interactions is captured by the ansatz

𝑆EFT(𝑘1, 𝑘2, 𝑘3) = 1
𝑘1𝑘2𝑘3

∞∑︁
𝑛=3

Poly3+𝑛(𝑘1, 𝑘2, 𝑘3)
(𝑘1 + 𝑘2 + 𝑘3)𝑛 , (3.2)
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where Poly3+𝑛 is a symmetric polynomial of degree 3+ 𝑛. For the Bunch-Davies initial state, the
pole at 𝑘1+𝑘2+𝑘3 = 0 is the only allowed singularity for the bispectrum in single-field inflation,
where the degree of the pole is related to the number of derivatives of the interaction. The
polynomial in the numerator is not arbitrary, but is largely fixed by demanding locality and the
correct soft-limit behavior imposed by the single-field consistency relation, see (3.6) [210, 289].

To gain physical intuition into this shape function, it is useful to interpret it in the context
of the effective field theory of single-clock inflation [205]. In this framework, the dynamics
of scalar fluctuations is captured by the Goldstone boson 𝜋 which is related to the curvature
perturbation as R = −𝐻𝜋 at linear order and nonlinearly realizes the spontaneously broken
time translations due to a single clock driving the inflationary expansion. At lowest order in
derivatives, corresponding to 𝑛 = 3 in (3.2), there are two cubic interactions ¤𝜋3 and ¤𝜋(𝜕𝑖𝜋)2
which come with two independent parameters: 𝑐̃3 which controls the size of ¤𝜋3 and the sound
speed 𝑐s. These precisely translate to the two free coefficients that fix 𝑆EFT at 𝑛 = 3 [210].

For data analyses, it is convenient to introduce simpler templates which approximate the
exact shapes. These are conventionally called the “equilateral” and “orthogonal” shapes,9 and
defined as [208, 290]

𝑆equil(𝑘1, 𝑘2, 𝑘3) = (𝑘1 + 𝑘2 − 𝑘3) (𝑘2 + 𝑘3 − 𝑘1) (𝑘3 + 𝑘1 − 𝑘2)
𝑘1𝑘2𝑘3

, (3.3)

𝑆ortho(𝑘1, 𝑘2, 𝑘3) = (1 + 𝑝)𝑆equil(𝑘1, 𝑘2, 𝑘3) − 𝑝
Γ(𝑘1, 𝑘2, 𝑘3)3

𝑘1𝑘2𝑘3
, (3.4)

where 𝑝 ≈ 8.52 and Γ(𝑘1, 𝑘2, 𝑘3) ≡ 2
3
∑3

𝑎<𝑏 𝑘𝑎𝑘𝑏 − 1
3
∑3

𝑎 𝑘
2
𝑎. The two EFT parameters therefore

get linearly transformed into the basis of 𝑓 equilNL and 𝑓 orthoNL , with 𝑓 equilNL ∼ 1/𝑐2s for small 𝑐s. Due to
locality of the derivative self-interactions, the shape function peaks when all wavenumbers are
comparable, which is the origin of the name “equilateral”. We however note that the equilateral
shape is not exactly degenerate with the EFT shapes and the orthogonal shape therefore captures
the direction that is orthogonal to the equilateral shape. Since the inflationary background
dynamics admits a weakly coupled description (in the sense of the derivative expansion for the
inflaton) for 𝑓 equilNL . 1, reaching 𝑓 equilNL ∼ 1 is an important observational target [291–293].

Multi-Field Inflation
From a model-building perspective, it is natural to consider models of inflation involving
additional particles beyond the inflaton. In multi-field models, one often considers massless
spectator degrees of freedom. They can generate significant isocurvature perturbations (fluctua-
tions orthogonal to the multi-field trajectory in field space), which in turn are directly converted
to curvature perturbations, while still giving a subdominant contribution to the background
energy density. Popular models of this type include the “curvaton” [294–297] or “modulated
reheating” scenarios [298–300]. This transfer of non-Gaussianity occurs on superhorizon
scales, which can be approximated by the Taylor expansion R = R𝑔 + 3

5 𝑓
local
NL R2

𝑔 + . . . around
9For a review on the derivation of these shapes, and other developments related to EFTs in inflation, we refer

to the dedicated Snowmass 2021 White Paper [3].
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the Gaussian perturbation R𝑔. The “local” shape generated by this nonlinearity then is

𝑆local(𝑘1, 𝑘2, 𝑘3) = 1
3

𝑘21
𝑘2𝑘3

+ 2 perms . (3.5)

As a consequence of being generated by local interactions on superhorizon scales, this shape
peaks locally at coincidental points in real space. From a bootstrap point of view, this type of
locally peaked signal corresponds to correlations formed by exchanging extra massless particles
during inflation (see below). Spectator fields typically generate 𝑓 localNL ∼ 1, which provides a
natural observational target for upcoming surveys.

A distinctive feature of the local shape is that it maximally violates the single-field consistency
relation [194, 301–305],

〈Rq Rk−q/2 R−k−q/2〉 = (2𝜋)3𝛿3(k1 + k2 + k3) 𝑃R(𝑞) 𝑃R(𝑘)
[
(1 − 𝑛s) + 𝑂

(
𝑞2

𝑘2

)]
. (3.6)

In single-field inflation, this puts a fully kinematic constraint on the leading and subleading
part of the squeezed shape function. On the other hand, a model with more than one light field
produces extra contributions to the local shape, violating the consistency relation at leading
order. With the exception of models with certain non-Bunch-Davies vacua or non-attractor
solutions [306–314], a detection of the bispectrum in the squeezed limit would rule out single-
field models of inflation and is therefore a smoking gun for additional light particles during
inflation. A large local PNG on large scales may also induce fluctuations that change statistical
assumptions about the density perturbations on smaller scales [315–327].

Cosmological Collider Physics
If the additional particles have masses comparable to the Hubble scale of inflation, then they
can lead to a distinct non-analytic behavior in the squeezed limit [218, 221]. Assuming a
weakly coupled background dynamics, the bispectrum from the exchange of a heavy particle
can be efficiently computed by exploiting the isometries of the background de Sitter space. This
allows us to construct a differential representation of the bispectrum, which has the advantage
that it can systematically incorporate particles of any spin. The basic building block in this
framework is the four-point function of a conformally coupled scalar 𝜑 exchanging a massive
scalar, which satisfies the differential equations [221, 251]

(Δ𝑢 − Δ𝑣) 𝐹ex𝜑 (𝑢, 𝑣) = 0 ,
(
Δ𝑢 + 𝜇2 + 1

4
)
𝐹ex𝜑 (𝑢, 𝑣) = 𝑢 𝑣

𝑢 + 𝑣
, (3.7)

where 𝑢 ≡ 𝑘𝐼/(𝑘1+𝑘2) and 𝑣 ≡ 𝑘𝐼/(𝑘3+𝑘4), with 𝑘𝐼 = |k1+k2 |, Δ𝑢 is a second-order differential
operator, and 𝜇 =

√︁
𝑚2/𝐻2 − 9/4 is a dimensionless mass parameter. The solution, given by a

two-variable generalization of the hypergeometric series, can be uniquely fixed by imposing
the absence of the folded singularity 𝑢, 𝑣 = 1 and the normalization in the partial energy
singularity 𝑢, 𝑣 = −1 as boundary conditions. The massive-exchange shape has a rich analytic
structure, mixing an infinite sum of EFT contributions that give an equilateral-like shape, with
non-analytical contributions from on-shell massive fields not captured by the EFT. In particular,
for 𝑚/𝐻 > 3/2, the shape develops oscillations—a fingerprint of particle production—in the
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squeezed limit, which become a sharp resonance in position space [328], in close analogy with
collider physics for particle accelerators.

The exchange bispectrum can then be expressed in terms of the above building block
as [251]

𝑆ex(𝑘1, 𝑘2, 𝑘3) =
𝑘23
𝑘1𝑘2

∑︁
𝑠

𝜆𝑠𝑈𝑠,𝑚(𝑢, 𝜕𝑢, 𝛼) 𝐹ex𝜑 (𝑢, 1) 𝑃𝑠(𝛼)
��
𝑘4→0 + 2 perms , (3.8)

where 𝜆𝑠 parameterizes the coupling strengths, 𝛼 ≡ (𝑘1 − 𝑘2)/𝑘3, and 𝑈𝑠,𝑚 is the differential
operator that transforms the exchange shape of 𝜑 to that of a particle of mass 𝑚 and spin 𝑠.
This formula provides an elegant way to classify exchange bispectra with arbitrary mass and
spin from the soft limit of a simple scalar-exchange four-point function. Taking the squeezed
limit of this general solution, it follows that 𝑆 ∼ 𝑞

1
2+i𝜇𝑃𝑠(cos 𝜃), with 𝜃 being the angle between

the soft and hard modes. The bulk particle production in a weakly coupled background
however necessarily implies that the amplitude is both slow-roll- and Boltzmann-suppressed,
𝑓 exNL ∼ 𝜀𝜇𝑛e−𝜋𝜇. Various scenarios have been considered to compensate for these suppression
factors, including an EFT construction [222, 329] and a chemical-potential enhancement [248,
257, 260, 265, 269]. These lead to a slight modification in the overall shape function, but both
the oscillatory features and the angular dependence remain robust spectroscopic information
of these shapes in the squeezed limit.

Apart from the particle spectra, the functional form of the non-analytical dependence of
the soft momentum, 𝑆 ∝ ei𝜇 log 𝑞, directly encodes the time dependence of the scale factor of
the background spacetime. This property is particularly clear in the context of the quantum
primordial standard clock [233, 246, 330–332]: Quantum fluctuations of heavy fields with
constant masses can be regarded as standard clocks and the 𝑞 dependence of the oscillation
phase in the PNG shape is determined by the inverse function of 𝑎(𝑡).

Figure 4 shows a one-dimensional projection of the shape functions discussed in this section,
highlighting their squeezed-limit behaviors. The local shape has a dominant scaling in the
squeezed limit, making it an ideal PNG type to be constrained from large-scale structure
observables (see §3.2). While the equilateral and orthogonal shapes have the same soft scaling,
the latter peaks in the folded configuration, making it also a useful template for the folded-
type PNG [280]. For the exchange shape, its oscillatory period in log 𝑥 is precisely fixed by 𝜇,
the mass of the particle in Hubble units. In the large-𝜇 limit, the non-analytic contribution from
the on-shell massive field is Boltzmann suppressed and the exchange shape becomes degenerate
with the equilateral shape. This is the familiar low-energy-EFT limit in which the mediating
massive particle can effectively be integrated out. Accessing the full two-dimensional shape
space can further help to distinguish various bispectra, in particular higher-derivative-EFT or
spin-exchange shapes with a unique angular dependence.

Beyond the Bispectrum
Non-Gaussianity might also be stored in the primordial statistics beyond that captured by three-
point functions. Large bispectra generically imply enhanced trispectra (four-point functions),
which contain complementary information and can be large even if the bispectra are small [333–
350]. Another example, in which leading information cannot be captured by any single
polyspectra, is found in multi-field inflation, where the statistical properties of isocurvature
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Figure 4: The shape functions 𝑆equil, 𝑆ortho, 𝑆local and 𝑆ex discussed in this section. The 𝑥 values
scan isosceles triangle configurations between the squeezed (𝑥 = 10−4) and folded (𝑥 = 2)
limits. The normalization is chosen such that the (asymptotic) amplitudes are set to unity at
𝑥 = 10−4. For the exchange shape, we have chosen 𝜇 = 3 and 𝑠 = 0.

fields can be transferred to the curvature perturbations which can potentially lead to PNG
being spread over a large number of 𝑛-point correlation functions. The resummation of these
𝑛-point functions yields a density probability distribution for R with a non-Gaussian shape that
is determined by the multi-field potential orthogonal to the inflationary trajectory [351–353].

Yet another context, in which an analysis based on the bispectrum fails, is the description of
large (but rare) primordial fluctuations which are parameterized by the tails of their probability
distribution. A compelling motivation to study the statistics of rare fluctuations is offered
by primordial black holes, as their formation from the collapse of fluctuations is an unlikely
event whose occurrence is dictated by the shape of the tail of their distribution. It is now
well understood that standard perturbative techniques fail to correctly parameterize non-
Gaussian tails [354]. The use of non-perturbative techniques has allowed the computation of
non-Gaussian tails in the context of both single-field [354–357] and multi-field inflation [358–
361]. These works have focused on the computation of one-point distributions, although two-
point (or higher-point) distributions are needed in order to accurately predict the abundance
and clustering properties of primordial black holes, as noted in [362].

3.2 Observational Imprints
Based on our theoretical assumptions and as suggested by observations, a primordial non-
Gaussian signal will be small. As a consequence, a detection of the signal will heavily rely on
how well we can remove sources of noise and confusion. In the following, we broadly define
everything that is not intrinsic to the sky as noise and refer to everything that is on the sky,
but is not our target of interest as confusion. For example, in the CMB, noise could refer to
instrumental noise, while sources of confusion could be galactic foregrounds or CMB secondary
signals, such as weak gravitational lensing and the Sunyaev-Zel’dovich effects. However, even
after dealing with all sources of noise and confusion, cosmic variance remains as a limitation
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which means that a PNG measurement ultimately relies on the number of available modes
that we can reliably extract from the sky. If we were able to directly constrain the matter field,
there would in principle be more than 1012 modes between us and the last-scattering surface.
Improving current bounds on primordial non-Gaussianity therefore critically depends on how
many of these modes can be observed and how accurately we are able to model the relation
between the matter and the tracer fields.

We will focus on the prospects of constraining PNG with measurements of the CMB anisotro-
pies and LSS, but note that there exist additional possibilities, in particular in cross-correlations
of different probes and length scales.10 While CMB measurements currently put the tightest
and most-robust bounds on PNG, further improvements with the CMB will be limited (with
some exceptions) because of its effective two-dimensional nature and the fact that the number
of measured primordial modes cannot be substantially increased. On the other hand, LSS sur-
veys allow us to access a large three-dimensional comoving volume and, in principle, reach
smaller comoving scales, but constraining PNG using LSS is hard and many challenges need
to be overcome for LSS measurements to reach their full potential. As we will now discuss
for CMB and LSS observables, a future detection of primordial non-Gaussianity will therefore
rely on several key factors: the size of the primordial signal, realistic modeling of the signal,
modeling and mitigating sources of confusion, observing a larger comoving volume down to
smaller scales, and identifying new observational channels (multi-tracer cosmology).

3.2.1 Cosmic Microwave Background

The projection of the primordial fluctuations {R, 𝛾} on the temperature and polarization
fluctuations in the CMB through transfer functions is almost linear which means that the
statistics of the CMB are directly related to the statistics of the primordial field. This is the
main reason why the most stringent constraints on PNG are currently derived from the CMB.

CMB Bispectrum
The bispectrum is generically the most sensitive statistic in the limit of weak PNG. This men-
tioned projection from the initial conditions to the last-scattering surface is however com-
putationally prohibitive for 𝑛-point correlation functions beyond 𝑛 = 2. PNG analyses of
CMB data therefore rely on optimal estimators that are applied to heavily processed CMB maps.
In particular, unlike for inferences from the power spectra, the cosmology is fixed in these
bispectrum analyses and the parameter 𝑓NL is constrained once for each bispectrum shape, with
the uncertainty on 𝑓NL being derived from simulations of a noisy Gaussian sky. To establish
confidence in these analyses, several independent bispectrum estimators have been developed
and the Planck Collaboration for example applied the KSW estimator, the modal estimator and
the binned estimator to their data (for details see [374, 375]).

While it would be ideal to constrain the full bispectrum, i.e. including its shape, instead of just
the amplitude of a fixed shape, this unfortunately remains out of reach (see e.g. [376]). Having
said that, the modal estimator has sufficient flexibility to measure a very large number (30 000)

10For instance, cross-correlating the primary CMB anisotropies with CMB spectral distortions could potentially
lead to very tight constraints on local PNG [363–372] and their cross-correlations with GW data (e.g. from LISA)
may allow for interesting constraints on tensor-scalar and tensor-tensor interactions in the early universe [373].
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of different shapes and, in principle, allows a (noisy) reconstruction of the true bispectrum [377–
379]. In addition, the binned bispectrum estimator provides an efficient andmodel-independent
reconstruction within the class of smooth bispectra [380, 381], and efficient estimators for linear
and logarithmic oscillatory bispectra (cf. Section 4) are available and have been applied to Planck
data [382–384]. So far, no analyses with any estimator has found significant evidence for a
non-zero primordial bispectrum, with the best constraint from Planck being 𝑓 localNL = −0.9± 5.1,
𝑓 equilNL = −26 ± 47 and 𝑓 orthoNL = −38 ± 24 using the KSW estimator [375]. Having said
that, constraints from just polarization appear tentative for orthogonal non-Gaussianity and
future CMB polarization data could shed further light on these hints in the near future. We
present a comparison of these current constraints from Planck with forecasts for CMB-S4 and a
conservative cosmic-variance-limited CMB experiment in Figure 5.

Analyses of bispectra from PNG of scalar interactions, i.e. from tensor-scalar and tensor-
tensor couplings, are more challenging since their shapes are intrinsically non-factorizable
which makes them hard to constrain using the default estimator [396]. Nevertheless, the first
such constraints were derived from WMAP temperature data in [397]. Moreover, this challenge
has since been resolved with only limited additional computational cost [398], which opens
up the possibility to make significant advances in the near future to constrain these types of
bispectra using precision measurements of B-mode polarization.

The main source of nuisance in CMB bispectrum analyses at current levels of sensitivity
is the ISW-lensing bispectrum. This observable originates from correlations between small-
scale temperature modes that are lensed by the gravitational potential and the integrated
Sachs-Wolfe (ISW) effect which is sourced by the same potential. This bispectrum primarily
affects the local shape and was projected out in the Planck analyses, which is possible since we
know the shape and amplitude of this bispectrum exactly. Other sources of confusion are point
sources and galactic foregrounds which can however be dealt with effectively using foreground
cleaning, masking and in-painting.

Beyond the Bispectrum
Higher-point correlation functions can in principle be constrained as well, but are compu-
tationally more challenging than the bispectrum. As shown in [399], constraints on the
CMB trispectrum can in principle be competitive to the bispectrum due to favorable scaling of
the signal-to-noise with the number of modes. To date, bounds on the primordial trispectrum
are however only provided for two shapes [133]. More generally, higher-order spectra could be
enhanced (despite the natural expectation that the bispectrum provides the leading constraints
in the limit of small PNG) due to physics that affects the shape of the distribution of primordial
fluctuations, as discussed in §3.1. A dedicated attempt to look for these effects in data was
undertaken in [400] (see also [401, 402]).

Prospects and Challenges
The expected improvements on PNG measurements from the CMB depend on the bispectrum
shape. Due to projection effects [399, 403, 404], the signal-to-noise scales as (𝑆/𝑁) 𝑓NL ∝
� log(�max/�min) for local temperature bispectra and as (𝑆/𝑁) 𝑓NL ∝

√
� for equilateral shapes.

This scaling behavior can be improved by combining temperature with E-mode polarization
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Figure 5: Comparison of constraints on three types of primordial non-Gaussianity from a small
subset of completed (‘c’), upcoming (‘u’) and proposed (‘p’) experiments (see [15, 22, 26, 375,
385–395] for the underlying data analyses and forecasts). We also forecast a conservative
cosmic-variance-limited (CVL) CMB experiment up to �𝑇max = 3000 and �𝑃max = 5000, but
note that these limits could be further improved by the use of delensing or the inclusion of
Rayleigh-scattering anisotropies. The constraints on local PNG from (e)BOSS, Euclid, DESI
and mm-LIM assume only power-spectrum information. The DESI+SO forecast includes the
cross-correlation between the emission-line-galaxy sample of DESI and SZ maps of the Simons
Observatory. The forecast for LSST+CMB-S4 includes power spectra and bispectra, including
the cross-correlations between galaxy and lensing maps to remove sample variance. All other
LSS probes include bispectrum information. We note that there are two important caveats to
these displayed results: (i) scale-dependent-bias measurements hinge on the ability to measure
the largest scales at high precision and most of the forecasts contain only a limited assessment
of the impact of observational systematics; (ii) there remains a large degree of uncertainty
over several aspects of these forecasts despite a lot of theoretical progress in recent years which
means that the achievable constraints may become better or worse as these issues are resolved.

data. Based on current constraints, this implies that future CMB data can in principle reach
𝑓 localNL ∼ 𝑂(1), while this level is out of reach for equilateral-type PNG. For more detailed
forecasts, including ISW-lensing and reionization-lensing deprojection, we refer to [389].

Improvements by another factor of two may be obtained by including Rayleigh anisotropies,
which are produced shortly after recombination when CMB photons scatter off of neutral
hydrogen and helium [405]. To include this information in an analysis however requires a
careful removal of foregrounds. Since constraints on large-scale B modes will dramatically
improve this decade (cf. §2.2), we note that current bounds on bispectra sourced by tensor-
scalar and tensor-tensor interactions could be even more significantly tightened than those
from purely scalar couplings (see e.g. [398] for a forecast).
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As CMB observations push to smaller scales, the primary CMB anisotropies produced at
recombination become increasingly dominated by CMB secondary anisotropies. These are
signals that arise from weak lensing of the CMB photons by, their scattering off of and additional
emission from the intervening large-scale structure between the last-scattering surface and us.
These CMB secondaries are highly non-Gaussian, and can impact PNG measurements as a bias
and as a source of additional confusion.

The largest biases arise from correlations between lensing and the ISW effect, the thermal
Sunyaev-Zel’dovich (tSZ) effect or the cosmic infrared background (CIB) [406, 407]. As already
mentioned, the ISW-lensing bispectrummust be modeled and removed from PNGmeasurements
since the ISW effect cannot be addressed through multi-frequency CMB observations. On small-
enough scales, the bispectra from the tSZ and CIB effects become important. Since these
effects produce anisotropies with a frequency dependence that differs from the CMB, their
induced PNG biases can be effectively suppressed by combining CMB observations at multiple
frequencies. This multi-frequency cleaning must however be performed at very high precision
because the size of these late-time non-Gaussianities is much larger than any primordial signal.

The primary sources of additional confusion arise from CMB lensing and the kinetic Sunyaev-
Zel’dovich (kSZ) effect. Lensing of the CMB introduces a large trispectrum which affects the
covariance of the bispectrum, with the main impact on local-type PNG given the nature of the
lensed CMB. While this nonlinear covariance can be mitigated by first delensing the CMB [408],
not adequately addressing this effect can entirely reverse the projected improvements over
current constraints. Although the CMB temperature anisotropies imprinted by the kSZ effect
are non-Gaussian, the projection of these non-Gaussianities onto the primordial bispectra is
very small. The main issue induced by the kSZ effect is that it limits the gains from improved
measurements. On the other hand, CMB polarization is significantly less obscured and more
easily cleaned since the main contaminants are point sources and galactic emission, which can
be masked and removed, respectively, based on their distinct frequency dependencies. This
means that there is a clear path to improve PNG measurements with E-mode observations for
� . 8000 or beyond as long as the lensing impact can be mitigated through delensing.

Implicit Likelihood Inference
Recent advances in implicit-likelihood inference (ILI; also referred to as likelihood-free or
simulation-based inference) [409–411], see [412] for a recent review, open up new and poten-
tially more powerful ways of extracting information on PNG from cosmological data sets, and
addressing the challenges posed by secondary anisotropies, other foregrounds and astrophysical
or observational systematics. These ILI methods compute constraints by comparing statistics
computed on data with statistics computed on simulated mock observations.

The potential of these methods derives from multiple points. First, there is considerable
flexibility in the choice of statistics, i.e. analyses can use (combinations of) 𝑛-point functions,
both in configuration space and Fourier space, or other measures. More importantly, any
type of filtering, cuts or masking can be applied to the data as long as it can also be applied
to the simulations since the methods make only very weak assumptions about the form of
the likelihood. In addition, the effects of non-Gaussianity on secondary anisotropies and
astrophysical or observational systematics can be taken into account non-perturbatively at
the level of numerical simulations, Finally, these methods can (at least in principle) directly
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perform inference without choosing a particular combination of statistics, but directly using
the observations.

The choice of statistical summaries is driven by a combination of their information content
and the fidelity of the simulated observations. There are several challenges to simulation accu-
racy, in particular realizing physically accurate simulations of non-Gaussian initial conditions
and the ability to simulate realistic observables. While in some cases (such as local PNG),
physical realizations of the CMB with non-Gaussian initial conditions can be generated [413],
this is not possible in other cases where only low-order 𝑛-point functions are known perturba-
tively (with 2 ≤ 𝑛 ≤ 4). Methods exist to generate initial conditions with a given combination
of two-point and three-point correlation functions [414], but the physicality of higher-order
𝑛-point functions of those generated fields is not guaranteed. Having said that, simpler ap-
proaches exist that give rise to efficient estimators, rather than full, multi-dimensional posterior
distributions. The needed optimal compression of statistics [415], or regression weights for pos-
terior moments or marginals [411] can be trained on nonlinear simulations and can therefore
go beyond the perturbative regime.

3.2.2 Large-Scale Structure

A promising observational probe of primordial non-Gaussianity is the distribution of structures
on large scales and at late times. Matter overdensities grew from the initial conditions under
the effect of gravity into the structures that we observe in the sky today with LSS surveys.
It is therefore natural to search for information on the initial conditions by studying how
matter is distributed in the universe. The main challenges to overcome in this endeavor are
gravitational nonlinearities, biasing, redshift space distortions and observational systematic
effects. Gravitational nonlinearities arise due to the fact that gravitational growth is a nonlinear
process which we need to model beyond linear order in perturbation theory to recover the
initial conditions from the late-time density field. In addition, we only measure the clustering
of luminous objects which trace the distribution of dark matter in a nonlinear way, and we
observe these biased tracers in redshift space, which introduces yet another nonlinear mapping
between the observables and the underlying dark matter distribution. Finally, the robust
extraction of this signal relies on careful modeling/subtraction of large-scale systematics, such
as variations in the properties of the target sample of spectroscopic surveys [416]. Having
said that, LSS observations are able to explore the three-dimensional density field as opposed
to its two-dimensional projection on the last-scattering surface probed by the CMB. This is a
major advantage of LSS probes and is projected to result in tighter PNG constraints given the
anticipated large increase in the number of available modes with a high signal-to-noise ratio.

The large-scale structure of the universe can be explored through a variety of different
probes which is another advantage. At low redshift, the statistical distribution of galaxies can be
mapped through spectroscopic and photometric surveys, and observations of weak gravitational
lensing directly study the distribution of dark matter. These are established LSS probes. Line
intensity mapping (LIM) is an emerging technique [417, 418], which uses fluctuations in the
intensity of spectral emission lines at different frequencies, and provides an additional way to
map the LSS over a wide range of scales and over many redshift epochs (see the dedicated
Snowmass 2021 White Papers on 21 cm and mm-wavelength LIM [14, 15]). Particular targets
are the 21 cm hyperfine transition of neutral hydrogen, rotational lines of carbon monoxide
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and the fine-structure line of ionized carbon. In contrast to galaxy surveys, which measure
individually resolved galaxies, LIM relies on detecting cumulative light from an ensemble of
sources or the intergalactic medium which allows to efficiently map the LSS over very large
comoving volume. As a biased tracer of LSS, all PNG signatures imprinted in galaxy statistics
are also contained in line intensity clustering statistics. LIM therefore complements upcoming
wide-field galaxy surveys at redshifts 𝑧 . 2 and provides a detailed spectroscopic probe of LSS
at higher redshifts.

PNG from the Power Spectrum of Tracers
The local bispectrum is somewhat special in our effort to constrain PNG since it probes
the coupling between large and small scales. Importantly, local PNG also induces a unique
scale dependence of the bias 𝑏(k, 𝑓NL) of LSS tracers, which sets the relation between the
overdensity of biased tracers 𝛿𝑏(k) and the matter overdensity 𝛿(k) on large scales via
𝛿𝑏(k) = 𝑏(k, 𝑓NL)𝛿(k) [419–421] (see [39, 44] for recent reviews). The physical effect of
local PNG is a modulation of short-wavelength overdensity modes by long-wavelength modes
of the Bardeen potential and its spatial derivatives. This results in a scale-dependent enhance-
ment (or suppression, depending on the sign of 𝑓NL) of the power spectrum on large scales.
Such a scale dependence is not produced by other processes (with the exception of projection
effects on our past light cone which can however be calculated [422, 423]) and can be modeled
mostly using linear physics since it affects large scales.

The strongest LSS constraints on local PNG to date, −31 < 𝑓 localNL < 22 at 95% C.L.,
have been inferred from a population of quasars between redshifts of 0.8 and 2.2 by the
extended Baryon Oscillation Spectroscopic Survey (eBOSS) collaboration by exploiting this
scale-dependent-bias effect [388, 392]. A similar scale-dependent bias can be observed in the
galaxy-shape power spectrum which is measured in weak-lensing observations as an intrinsic
shape alignment. While the imprint of massive particles with spin on the galaxy power spectrum
is highly suppressed [424, 425], these intrinsic alignments provide a unique opportunity to
constrain these particles [268, 426–430].

Further improvements in the constraining power on local PNG from the scale-dependent
bias will be available with future multi-tracer observations which will allow us to mitigate
sample variance [431]. The large variance of the matter field on large scales limits constraints
on 𝑏(k, 𝑓NL) using a single tracer field. This sample variance can however be removed by
taking the ratio of multiple biased tracers of the same underlying matter field (each with their
own deterministic bias) or of a biased tracer and the underlying matter field (see also the
Snowmass 2021 White paper [16] on LSS cross-correlations).11 While this technique has
not been applied to observational data yet, it in principle allows measurements of the scale-
dependent bias to be only limited by shot noise. Forecasts using different tracer samples of the
same galaxy survey or combinations of galaxy surveys with CMB-lensing or kSZ measurements
show the potential to improve constraints by almost an order of magnitude (cf. Fig. 5), with
𝜎
(
𝑓 localNL

) ∼ 1 being achievable by SPHEREx or cross-correlating Vera Rubin Observatory
photometric data with CMB-S4 lensing, for instance [385, 387, 433].

11It is even possible to mitigate sample variance using a single tracer by applying certain reconstruction
techniques [432].
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PNG from the Bispectrum of Tracers
For primordial non-Gaussianity beyond the local type, the leading LSS observable is the three-
point correlation function of tracers since the effect of most other PNG types, for example the
shape induced by the presence of extra massive particles as part of the cosmological collider, on
the power spectrum of tracers is challenging to probe [434], but can potentially be constrained
with the LSS bispectrum [245, 268, 435]. Even for the local shape, the bispectrum of biased
tracers should provide significantly tighter constraints than the power spectrum [436], which
can be understood as follows: (i) the bispectrum of biased tracers captures both the scale-
dependent bias and directly probes the matter bispectrum, (ii) it intrinsically provides more
information by capturing the imprints of PNG on more modes in contrast to the power spectrum
for which the imprint of local PNG appears on the largest scales that are dominated by sample
variance and (iii) some of the parameter degeneracies that limit the power spectrum constraints
are broken in the bispectrum. This therefore also implies that jointly analyzing the power
spectrum and bispectrum should be the standard approach. As anticipated above, the main
challenge for bispectrum analyses is that gravitational nonlinearities also generated a large
non-vanishing bispectrum, which therefore acts as a source of confusion for the primordial
signature. Modeling these nonlinearities implies introducing more nuisance parameters as we
try to push the model to more nonlinear scales.

Recent progress [393, 394, 437] (see also e.g. [438–441] in these modeling efforts has
allowed us to put the first constraints on both 𝑓 localNL , and on 𝑓 equilNL and 𝑓 orthoNL from the measure-
ment of the bispectrum of BOSS DR12 galaxies, constraining these PNG parameters to 𝑂(30)
and 𝑂(100), respectively. While these limits are not competitive with current CMB bounds,
the calculations and tests performed on BOSS data pave the way for future surveys with much
larger constraining power.

Map-Level Inference of PNG from Large-Scale Structure Data
Recent progress has been made in considering alternatives to using low-order correlation
functions (such as the power spectrum and bispectrum) as summary statistics to constrain
primordial non-Gaussianity. While it would intuitively seem natural to “observe a primordial
bispectrum through a late-time bispectrum”, secondary non-Gaussianities are dominant for
these statistics and degenerate with the primordial ones (especially for LSS observables), as
previously discussed. The physical processes producing these non-Gaussianities are however
very different: while primordial non-Gaussianities are inherently non-local in space, late non-
Gaussianities are local in space (but non-local in time). For this reason, it appears promising
to challenge the problem directly at the map level in configuration space, where locality is
explicit [442].

Methods based on the analysis of survey data at the map level may therefore have an
important role to play in the search for PNG in LSS. Employing ILI might be a promising tool,
for instance, since we can use non-perturbative, numerical simulations (in redshift space) to
model non-primordial effects due to gravitational growth and hydrodynamic processing of
the initial perturbations. Moreover, ILI can in principle “discover” the optimal combination of
features of the evolved LSS to disentangle processing from primordial effects.

It is intriguing to note that the information content of LSS on PNG has so far only been
quantified perturbatively due to the nonlinearity of the problem. Recent work has begun
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to use ILI to determine the cosmological information content of the nonlinear dark matter
distribution [443–453] and even of state-of-the-art hydrodynamical simulations [449, 450].
Given the rapid advances in this field, it is anticipated that these techniques will also be
applied to the problem of extracting inflationary physics from LSS data (cf. e.g. [454–456]).
Additional approaches that would exploit the same idea are also being developed in the
direction of formulating field-level likelihoods for biased tracers [457–467] and the application
of computational topology methods to find features at various coarse graining scales [468, 469].

Prospects and Challenges
The prospects for constraining 𝑓 localNL down to order unity are bright in the near future, cf. Fig. 5.
Upcoming spectroscopic surveys probing 𝑧 . 2, such as DESI and Euclid, are expected to
provide constraints comparable to those of Planck from power-spectrum-only measurements
and potentially approaching the target sensitivity of 𝑓 localNL = 𝑂(1) using the bispectrum [470].
Similar potential may also be offered by other LSS tracers, such as fast radio bursts [471]. At
the same time, SPHEREx is anticipated to push the limits from both the power spectrum and
bispectrum due to its wide frequency coverage and its ability to perform multi-tracer analyses
by splitting their galaxy sample into several subsamples with different galaxy biases [433].

There are several challenges to overcome in order to reach this level of constraining power
for 𝑓 localNL , and to substantially improve the bounds on 𝑓 equilNL and 𝑓 orthoNL . First, it will be important
to obtain a fully consistent perturbative model for the two-loop power spectrum, one-loop
bispectrum and tree-level trispectrum for galaxies in redshift space and in the presence of PNG.
It would also be greatly beneficial for PNG constraints if we were able to impose stronger
priors on the values of the nuisance parameters of the model, e.g. through information from
high-fidelity simulations [472]. This applies to both the EFT and the galaxy bias parameters.
The latter are more of a concern in case of a detection of PNG since their amplitude is almost
perfectly degenerate with the primordial signal [436, 472–474]. Future surveys will observe
hundreds of triangle configurations with good signal-to-noise ratios which implies a very high-
dimensional covariance matrix with large off-diagonal elements that can significantly affect
the constraining power of the bispectrum (see e.g. the PUMA forecasts in [475]). Recent
substantial developments in covariance matrix estimation and data compression techniques are
however paving the way towards a consistent likelihood analysis for future surveys [476–478].
Finally, exquisite control of the large-scale systematics for the power spectrum and bispectrum
constraints has to be achieved. While several methods are available for the former (e.g. [416,
479]), it is still an open problem how to best handle observational and instrumental effects in
the bispectrum. In conclusion, while important advances have recently been made in all areas,
as briefly summarized above, it remains to be seen whether this is adequate for upcoming
surveys given their significantly larger signal-to-noise ratio.

Looking further into the future, wide-field LIM surveys at 21 cm and/or mm wavelengths
can further improve the expected PNG constraints from spectroscopic galaxy surveys [22, 386,
391, 480, 481]. Proposed experiments such as PUMA or mm-LIM will cover the largest volume
with the lowest noise (at least in principle) and could represent the ultimate probes of PNG in
the post-reionization era. Realizing the promise of LIM however relies on multiple factors and
the feasibility of this observational technique has yet to be demonstrated (see the dedicated
Snowmass 2021 White Papers [13–15] for more details).
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We conclude with Figure 5, which summarizes forecasts for a range of upcoming and
proposed surveys, using a vast array of probes. In principle, SPHEREx [433], the galaxy
survey MegaMapper [23], the 21 cm experiment PUMA [22, 482] and mm-wave LIM [15] are
projected to provide very interesting constraints on primordial non-Gaussianity. It is however
clear that significant progress in theory, experiment and data analysis will be necessary to fully
achieve the potential to extract PNG information. Nonetheless, the future looks bright, with
many advances in all directions towards decoding this treasure of cosmological information.

34



Inflation: Theory and Observations

4 Primordial Features
In addition to primordial gravitational waves and primordial non-Gaussianity, primordial
features are a separate signal of physics beyond the standard models of cosmology and particle
physics. These inflationary imprints are a manifestation of primordial dynamics that exhibit
a significant departure from scale invariance and arise in broad classes of models, including
of both inflation and its alternatives. Finding such inflationary signatures in cosmological
observables would be a groundbreaking discovery that would open an entirely new window
into the primordial universe (see e.g. [20, 31, 36] for previous reviews).

Vanilla models of inflation predict almost Gaussian fluctuations with a nearly scale-invariant
power spectrum as we have discussed in the previous sections. However, many models of the
very early universe beyond the simplest incarnations of single-field slow-roll inflation generically
predict departures from scale invariance. Since these deviations from the minimal power-law
power spectrum of initial fluctuations are strongly scale-dependent, primordial features are
typically oscillatory and/or localized in momentum space. They are ubiquitous in theoretical
attempts to connect inflationary modeling to fundamental physics, can be introduced by a
wide variety of phenomena and carry valuable information about the nature of the primordial
universe (cf. Fig. 1). In addition, similar signals may be imprinted in observables during the
cosmic evolution after the hot big bang and reveal unique information about the particles and
forces at play in the universe.12

Observationally, primordial features could be imprinted in the spectrum of the cosmic
microwave background, its anisotropies, all tracers of the large-scale structure of the universe
and the stochastic gravitational wave background. So far, these observations however point to an
almost scale-invariant primordial spectrum with a slight red tilt with no evidence for primordial
features. Nevertheless, the future of primordial feature searches in all observables is bright. In
the near term, CMB and especially galaxy surveys will provide significant advances in sensitivity.
In the more distant future, line intensity mapping and gravitational wave observatories are
projected to lead to tremendous improvements in constraining power over a large part of
parameter space. This means that future cosmological observations offer the potential for a
dramatic discovery about the nature of cosmic acceleration in the very early universe.

4.1 Theoretical Background
The simplest models of inflation predict initial fluctuations of the hot big bang cosmology to
follow (almost) Gaussian statistics with a nearly scale-invariant power spectrum, Δ2

R,0(𝑘) ≡
12Oscillatory features may not only be imprinted in the cosmological observables in the primordial universe,

but also as a result of the dynamics of the primordial plasma after the hot big bang. For instance, an interaction
between all or a fraction of the dark matter and dark radiation (neutrinos or relativistic particles beyond the
Standard Model) would result in so-called dark acoustic oscillations [483–492]. Features may also be the result
of non-standard components affecting the expansion history at early times [493, 494]. A detection of these and
similar signals may therefore provide a unique probe of the existence of new particles and their interactions
present in the universe. In the following, we will however focus on the inflationary origin of potential features
in cosmological observations and refer to the dedicated Snowmass 2021 White Paper on early-universe model
building [5] for additional information.
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𝐴s (𝑘/𝑘∗)𝑛s−1, cf. (2.9), consistent with cosmological observations. Achieving this power spec-
trum within more fundamental models, e.g. those taking into account interactions between
the inflaton and other degrees of freedom, requires the introduction of symmetries. These
symmetries are however known to be broken in a theory of quantum gravity, with inflation
being sensitive to the related effects (see e.g. [29, 34]). Remnants of this tension can still be
present in models, which avoid the most severe quantum gravity effects. As a consequence,
sub-leading violations of scale invariance are imprinted on the primordial power spectrum in
the form of features:

Δ2
R(𝑘) = Δ2

R,0(𝑘) [1 + 𝛿Δ2
R(𝑘)] . (4.1)

The emergence of 𝛿Δ2
R(𝑘) can be studied within effective models of inflation taking into

account many degrees of freedom and/or non-canonical interactions that represent effects
from quantum gravity. The detection of these features would provide a unique insight into
the physics of the very early universe. It could also provide evidence for particular models of
inflation or one of its alternatives, or identify the existence of new particles and forces in the
early universe.

From the point of view of ultraviolet completions in inflationary model building, the presence
of primordial features is rather natural. The landscape of the inflationary potential is expected
to be a complicated function of many fields and a very high-dimensional space. The inflaton
trajectory is only one of the many low-energy low-dimensional subspaces embedded in this
landscape. It therefore seems natural to expect the presence of various features that could violate
the assumption of single-field slow-roll inflation. These features may break the smoothness of
the inflaton potential or the internal space of the inflaton, or may excite heavy fields along the
main inflaton trajectory.

A strongly scale-dependent correction 𝛿Δ2
R(𝑘) arises in broad classes of inflationary models

since they may occur if any background quantity 𝐵(𝑡) involved in the linear evolution of
the curvature perturbation R(𝑡, k) experiences departures from a slow-roll evolution of the
form | ¤𝐵/𝐵𝐻 | � 1 (even if 𝐵 remains small). Here, 𝐵(𝑡) can refer to one or a combination
of the following classes of background quantities commonly encountered in the building of
inflationary models: (a) background quantities parametrizing the evolution of the scale factor,
such as the slow-roll parameters, (b) background functions parametrizing departures from
canonical inflation, such as the sound speed of R(𝑡, k), or (c) background couplings describing
the interaction between the inflaton and other degrees of freedom. While it is natural to expect
that these three classes of time-dependent backgrounds should occur simultaneously, we note
that there are well-motivated models in which features can emerge without slow-roll being
interrupted [495, 496].

Primordial features imprinted in the power spectrum generically have an oscillatory form
which encapsulates the fact that a small component of the density perturbations significantly
departed from scale invariance. They are typically found to lie within two main classes related
to their mechanism of generation:

• Sharp features are produced by the momentary departure of a background parameter 𝐵
from the attractor solution, | ¤𝐵/𝐵𝐻 | � 1 [497]. These take the form of a (typically
transient) oscillatory component in the power spectrum which can be described by linear
oscillations, 𝛿Δ2

R(𝑘) = 𝑓 (𝑘) cos(2𝑘/𝑘0 + 𝜙), where 𝑓 (𝑘) is a model-dependent envelope

36



Inflation: Theory and Observations

function, 𝑘0 is the value of the comoving wavelength that crossed the horizon at the time
of momentary departure and 𝜙 is a constant phase. Examples of models in which this class
of features appear include single-field inflation with a non-smooth inflaton potential [495,
497–506], multi-field models with sudden turns of the inflationary trajectory [495,
496, 507, 508] and effective field theory models with sudden variations of the sound
speed [495, 508–511]. In some cases, such as models with a resonant production of
particles [512–520], the local interaction generates a bump in the power spectrum and the
envelop of the sinusoidal running decays very quickly towards increased scales. In practice,
the feature can therefore be represented by just a bump, e.g. 𝛿Δ2

R(𝑘) ∼ 𝑘3𝑒−𝜋𝑘
2/(2𝑘2∗),

in some of these scenarios. In addition to a single sharp feature, a periodic [516] or
random [521–524] distribution of these imprints may occur which can however usually
be treated as a sum of oscillations or localized structures in Fourier space.

• Resonant features are produced by the periodic oscillation of a background quantity
around the attractor solution with a super-Hubble frequency since it resonates with
the subhorizon quantum modes R [501]. The signal is characterized by an oscilla-
tory feature with a constant frequency extending over a wide range in log 𝑘-space:
𝛿Δ2

R(𝑘) ∝ cos(Ω log(2𝑘) +𝜙), with constants Ω and 𝜙. Examples of this class of features
include inflationary models with oscillatory components in the potential, such as in axion
monodromy [525–528] or in other backgrounds [529, 530], which may include possi-
ble runnings of the frequency Ω [531]. Resonant features can also arise if inflationary
models start from certain non-Bunch-Davies vacua [532, 533] or be used to boost the
tensor-to-scalar ratio [534].

The physics responsible for these scenarios is often deeply tied to the fundamental origin of the
respective model. We can exemplify this with the resonant scenario of axion monodromy [525–
528]. While the shift symmetry of axion fields make them attractive candidates to be the
inflaton, this discrete symmetry is generically broken in string theory or in the presence of
multiple interacting axions. In consequence, the period of the underlying axion potential is
smaller than the field range which results in resonant features in the scalar spectra with a
model-dependent amplitude and envelope function of 𝛿Δ2

R(𝑘).
A class of features that combines both types of signals is encountered within the framework

of classical primordial standard clocks [535–549]. In these scenarios, classical oscillations of
some massive fields (with masses 𝑚 � 𝐻) are excited by sharp features that are encountered
by the inflaton along its trajectory, such as sharp turns of trajectories in field space or tachyonic
falling over potentials. The sinusoidal-running signal, generated by the sharp feature, smoothly
connects with the resonant-running signal imprinted by the oscillation of the massive field (the
so-called “clock” signal). The phase of the oscillatory clock signal directly records the time
dependence of the background scale factor 𝑎(𝑡). This remarkable property remains valid
beyond the inflationary scenario and applies to various alternative scenarios to inflation that
we phenomenologically parameterize in Fig. 6. This gives rise to a unique opportunity to
experimentally test the very definition of the inflationary paradigm, complementary to the
approach of primordial gravitational waves that we discussed in Sec. 2.

The dynamics underlying the appearance of features in the power spectrum may also
lead to features in higher-point correlation functions and, therefore, in non-Gaussianities (cf.
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Figure 6: A qualitative sketch of signals of classical primordial standard clocks in various
primordial universe scenarios that we phenomenologically parameterize by 𝑎(𝑡) ∝ 𝑡𝑝 (adapted
from [544]). This includes inflation in the top panel characterized by a fast expansion with
|𝑝| > 1. The blue curves represent sharp feature signals, which are qualitatively similar for all
scenarios. The red curves depict clock signals that are induced by a classically oscillating heavy
field, with their phases directly encoding the information of 𝑎(𝑡).

Sec. 3) [500, 501, 510, 511, 528, 529, 550–554]. As an example, the bispectrum will re-
ceive a strongly scale-dependent correction of the form 𝑆(𝑘1, 𝑘2, 𝑘3) = 𝑆0(𝑘1, 𝑘2, 𝑘3) [1 +
𝛿𝑆(𝑘1, 𝑘2, 𝑘3)], which is analogous to (4.1). Here, the function 𝑆0 represents the standard
single-field prediction for the bispectrum discussed in §3.1. Since both 𝛿Δ2

R and 𝛿𝑆 have the
same origin, a certain degree of correlation is expected, which in general takes the following
form:

𝛿𝑆(𝑘1, 𝑘2, 𝑘3) = 𝑓0 𝛿Δ
2
R(𝑘) + 𝑓1

d
d𝑘𝛿Δ

2
R(𝑘) + 𝑓2

d2
d𝑘2𝛿Δ

2
R(𝑘) , (4.2)

where 𝑘 ≡ (𝑘1 + 𝑘2 + 𝑘3)/2 and 𝑓𝑖 = 𝑓𝑖(𝑘1, 𝑘2, 𝑘3), 𝑖 = 0, 1, 2, are model-dependent functions
with a smooth dependence on the three momenta 𝑘 𝑗 (see [510, 551]). Observational con-
straints of these functions 𝑓𝑖 would provide additional powerful tools to distinguish different
models of inflation [555]. In addition, there are also scenarios of heavy particle production
or resonant models which induce correlated higher-point functions of potential observational
significance [519, 556].

So far, we have focused on primordial features in the context of a small amplitude relative
to the leading-order scale-invariant spectrum, 𝛿Δ2

R(𝑘) � 1, which is motivated by the obser-
vational constraints on scales 𝑘 � 1Mpc−1 from CMB and LSS data (cf. §4.2). On smaller
scales, 𝑘 � 1Mpc−1, the amplitude and shape of the primordial power spectrum remains
however largely unconstrained. This consequently allows for the possibility that the curvature
fluctuations are significantly larger. In fact, this enhancement can even dominate over the fea-
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tureless spectrum by orders of magnitude in some cases [557–571]. While the scale-dependent
oscillatory pattern still depends on its generation mechanism and can be classified in the same
way as discussed above, in particular as sharp and resonant features, the phenomenology of
features with a large amplitude is richer.

To illustrate this, we consider sharp large-amplitude features on small scales. In this case,
the enhancement of the leading-order power spectrum Δ2

R,0(𝑘) leads to an enhancement of
the oscillatory part 𝛿Δ2

R(𝑘) which results in large 𝑂(1) oscillations [496, 572–574]. This
can be understood as a consequence of the sharp feature dynamically inducing an effective
excited state for the curvature perturbation R (and potentially other entropic fluctuations in a
multi-field inflation setting) with moderate to copious particle production [573]. Since such a
significant enhancement of fluctuations leaves potentially observable signatures in the form of
induced gravitational waves and primordial black holes, this scenario allows to observationally
scrutinize inflation also on small scales (cf. §4.2.3). More generally, this exemplifies that
small-scale large-amplitude features can give rise to new physical phenomena compared to
large-scale features with an amplitude that is constrained to be small.

To summarize, departures from the minimal power-law power spectrum of primordial
fluctuations occur ubiquitously in theoretical attempts to connect the inflationary modeling to
fundamental physics. In addition, it is possible to extract broader lessons from the discussed
scenarios for low-energy effective field theory and data analysis. Since there are however no
useful theoretical priors on the scale or amplitude of primordial features, which is related to the
lack of our understanding of fundamental physics, cosmological searches for these inflationary
signatures should cover as much of parameter and model space as possible. Conversely, the past
and future extensive observational hunts, which we will discuss in the following, can inform
the theoretical modeling. The combination of theory and observations may therefore offer
an exciting opportunity to not only reveal a portion of rather detailed evolutionary history of
inflation, but also provide direct model-independent evidence for the inflationary paradigm.

4.2 Observational Imprints
All cosmological observables that are sensitive to fluctuations in the universe will contain
signals from features in the primordial spectra, if present. It is useful to employ all these
observables since they probe complementary scales and have different advantages. On large
scales, the leading constraints come from observations of the cosmic microwave background
anisotropies and the large-scale structure of the universe. Spectral distortions of the CMB black
body spectrum and the stochastic gravitational background provide an entirely complementary
window on the primordial power spectrum and features on small scales.

4.2.1 Cosmic Microwave Background

Analyses of CMB data have been the cornerstone of primordial feature searches. The primary
CMB anisotropies have been extensively employed to constrain these inflationary imprints on
large scales, while spectral distortions of the black body spectrum can put bounds on these
departures from scale invariance on small scales.
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CMB Anisotropies
As with the searches for primordial gravitational waves, primordial non-Gaussianity and other
inflationary signatures, the primary CMB temperature anisotropies and polarization signal
have been at the forefront of the observational sensitivity to features in the primordial spectra.
They are imprinted in the CMB spectra after convolution with the transfer functions as detailed
in (2.23) for the power spectra 𝐶𝑋𝑌

� . The particular sensitivity of the CMB anisotropies to these
oscillatory signatures is due to the following advantages: (i) they probe the largest accessible
scales, (ii) their physics is entirely linear and, therefore, under complete theoretical control,
and (iii) they are extremely well measured. On the other hand, projection and transfer-function
effects decrease the primordial signal in the CMB data: the linear transformation between
the primordial spectra and the observed spherical power and higher-order spectra intrinsically
averages oscillatory imprints which in particular impedes searches for high-frequency features.
In addition, since Planck has already measured the temperature power spectrum to the cosmic
variance limit up to � ∼ 1600 [575], future CMB experiments will only bring relatively incre-
mental improvements of factors of a few at most with polarization measurements approaching
the cosmic variance limit (see e.g. [576–579]).13

Extensive template searches for primordial features have been performed in the CMB power
spectra, in particular as measured by the WMAP and Planck satellites. In these analyses, the
particular functional forms of sharp, resonant and similar features is typically incorporated
in the model for the power spectrum to be constrained by the data. This may also include
particular aspects of certain inflationary models as discussed in §4.1. However, in the most
general case, features represent any component that modulates a smooth “background” given
by the near power-law power spectrum produced by slow-roll, Δ2

R,0(𝑘). Two template models
are linear oscillations,

Δ2
R(𝑘) = Δ2

R,0(𝑘) [1 + 𝐴lin cos(𝜔lin 𝑘 + 𝜙lin)] , (4.3)

which modulate the minimal slow-roll power-law spectrum by a sinusoidal fluctuation with a
certain relative amplitude 𝐴lin, frequency 𝜔lin and phase 𝜙lin, and logarithmic oscillations,

Δ2
R(𝑘) = Δ2

R,0(𝑘)
[
1 + 𝐴log cos

(
𝜔log log(𝑘/𝑘∗) + 𝜙log

) ]
, (4.4)

with the same three parameters. These linear and logarithmic feature templates encapsulate the
general form of sharp and resonant features discussed in §4.1, but with a constant amplitude 𝐴𝑋 .
Apart from dedicated model predictions, linear oscillations can also be a useful basis in which
to look for features since they can capture large parts of model space because these oscillations
form an orthogonal basis of functions over a given range of wavenumbers 𝑘, i.e. similar to
a time-series analysis problem. We also note that the restricted range of scales over which
the observations have an appreciable signal-to-noise ratio may be interpreted as an implicit
envelope function over the constant-amplitude oscillations of (4.3) and (4.4). On the other
hand, this approach has its limitations and dedicated analyses should be performed when these

13We however note that the Planck likelihood for the CMB TT, TE and EE power spectra employed sub-optimal
pseudo-𝐶� estimators at high multipoles �. It might not be widely appreciated that this sub-optimality can lead to
excess variance in the pseudo-𝐶� estimates at the 10-20% level. An optimal re-analysis could therefore improve
the power spectrum constraints on primordial features and other cosmological parameters by a similar amount.
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shapes significantly deviate and/or tentative signals are found in the future since the feature
templates are not random fields, but instead have well-defined shapes (or phase relations in
decomposition).

To date, no significant detection has been made in CMB data, but constraints on the feature
amplitudes have been reported at the percent level relative to the primordial scalar ampli-
tude 𝐴s [375, 511, 547, 579–596]. Having said that, some potentially interesting candidates
for such departures have been reported at marginal statistical significance, including a dip in
the temperature power spectrum around � ∼ 20− 40 and a potential oscillatory feature around
multipoles of � ∼ 700−800 [591, 594, 597] (see also [9]). Analyses of CMB temperature and po-
larization data have considered these and other feature-like anomalies in cosmological datasets,
and revealed new potential candidates for oscillatory imprints [511, 548, 549, 554, 598–604].
As discussed in §4.1, many inflationary models also predict correlated features in the power
spectrum and bispectrum (and additional higher-point spectra), but combined analyses of these
spectra, which include the look-elsewhere effect, have also not found any significant deviations
from a featureless spectrum [590, 594, 605, 606]. In general, dedicated feature searches are
either based on the templates (4.3) and (4.4) or other more model-dependent templates, but
might not capture all theoretically predicted aspects, such as the momentum dependence of the
bispectrum phase of (4.2). At the same time, new approaches to the data, such as the use of an
estimator that resums 𝑛-point functions in the context of features generated by heavy particle
production [400], show the future potential of ongoing developments of efficient numerical
and data analysis techniques (see e.g. [607–620]).

To forecast the sensitivity of cosmological surveys to primordial features, it is useful to
estimate the bounds on a linear feature model and decompose other feature models into a
sum of linear oscillations as discussed above. While the precise bounds for specific models
might differ from these estimates, this ‘feature spectrometer’ allows to easily compare the
sensitivity of different probes and experiments. We display such forecasts in Fig. 7, which show
that future measurements of the CMB anisotropies will be able to gradually improve over the
current constraints from Planck and dominate the sensitivity for the smallest and especially
the largest feature frequencies 𝜔lin.

In addition to these dedicated template searches, several approaches to directly infer the
primordial power spectrum, and therefore also any potential features, through non-parametric
reconstruction have been developed since [627]. To this end, penalized likelihood reconstruc-
tion [628], Bayesian reconstruction [629–631], cubic spline reconstruction [632], Richardson-
Lucy reconstruction [633–636], generalized slow-roll methods [637–639], principle component
analysis [640–642] and further methods have been applied to CMB data. As in the template
searches, these techniques also point to a featureless power spectrum within current error bars
and over the range of scales accessible in the CMB [555, 591, 594, 641–646].

CMB Spectral Distortions
Spectral distortions of the CMB black body spectrum provide an entirely complementary window
on the primordial power spectrum and its potential departures from a power law on small
scales since they are sensitive to the primordial amplitude at scales of 𝑘 ' (1 − 104)Mpc−1 (cf.
e.g. [21, 36, 518, 647]). These scales cannot be accessed in the anisotropy signal of the CMB
and would be very challenging to reliably extract from LSS data. Departures from a featureless
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Figure 7: Forecasted sensitivity for the ‘feature spectrometer’ of linear features. The potential
reach of various CMB (dashed) and LSS (solid) experiments to constrain the feature ampli-
tude 𝐴lin at a confidence level of 95% (under the assumption that the true amplitude is zero)
is presented as a function of their frequency 𝜔lin (adapted from [579, 621]). The positive-
semi-definite nature of 𝐴lin is taken into account in the displayed estimates. The underlying
experimental specifications for planned surveys are similar to those of BOSS [622], DESI [623],
Euclid [624], Planck [625], a CMB-S3-like experiment (e.g. [92]) and CMB-S4 [389], re-
spectively (see also [626]). To illustrate the potential future reach, we additionally show
the expected sensitivity of a future LSS survey with 108 objects up to redshift 𝑧max = 3 over
half the sky using a maximum wavenumber 𝑘max = 0.5 hMpc−1, which yields a slightly less
sensitive sensitivity than the proposed galaxy survey MegaMapper [23] (cf. [391]), and the
proposed 21 cm experiment PUMA [20]. In addition, we include cosmic-variance-limited (CVL)
observations of LSS up to 𝑧max = 6, over half the sky with 𝑘max = 0.75 hMpc−1, and of the CMB
up to �𝑇max = 3000 and �𝑃max = 5000 over 75% of the sky. The LSS forecasts with 𝜔lin . 100Mpc
should be treated cautiously since these low frequencies are more sensitive to the details of
signal modeling. We also note that a reconstruction efficiency of 50% was assumed which
should be surpassed in the future thanks to further theoretical developments. Overall, LSS sur-
veys have the potential to improve over the CMB by more than an order of magnitude, while
the CMB will always dominate the reach in feature frequency. We refer to [579] for further
details.

power spectrum Δ2
R,0(𝑘) will result into a net energy release or deficit that is potentially

detectable as a net distortion signal. In particular bumps or troughs in the primordial power
spectrum can therefore be constrained by spectral distortion measurements. On the other
hand, oscillatory features usually result in a small average effect since power enhancements
and deficits cancel out. This implies that spectral distortions might only be observable for
low-frequency oscillations that span a significant range of wavenumbers [36]. In the future,
interesting constraints on primordial features might be derived from measurements by an
experiment such as PIXIE [648] or PRISM [649]. Additional theory and analysis development
could therefore shed more light on the potential constraining power of CMB spectral distortions
on small-scale features.
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4.2.2 Large-Scale Structure

Primordial features are also imprinted in the large-scale structure of the universe. The infor-
mation in the primordial power spectrum Δ2

R(𝑘) is transferred to the (linear) matter power
spectrum according to 𝑃(𝑘, 𝑧) ∝ 𝑘𝑇 (𝑘)2𝐷(𝑧)2 Δ2

R(𝑘), which is the usual linear evolution from
the initial conditions with linear growth rate 𝐷(𝑧) and transfer function 𝑇 (𝑘). The inflationary
imprints are therefore more directly imprinted in LSS observables than in the CMB anisotropies,
cf. (2.23), but are additionally processed by the nonlinear gravitational evolution in the late
universe. This has to be taken into account in any LSS search. Another advantage of LSS probes
is the fact that the number of available signal-dominated LSS modes grows approximately
as 𝑘3max𝑉survey, with maximum wavenumber 𝑘max and survey volume 𝑉survey, compared to �2max
for the CMB, with the maximum multipole �max. These points explain why analyses of current
LSS data have started to overtake the sensitivity of CMB searches over a certain range of
feature frequencies and will dominate the constraining power for a decisive part of parameter
space in the future [579]. In the following, we will separately discuss optical galaxy surveys,
which are the current frontier in the search for primordial oscillations, and line intensity
mapping, which will dominate the sensitivity in the more distant future [621]. As in the case
of CMB anisotropies, it is useful to constrain both dedicated models and the model-agnostic
templates of (4.3) and (4.4).

Galaxy Surveys
The cosmological use of the large number of modes that are in principle accessible in galaxy
surveys is usually limited by gravitational nonlinearities, baryonic physics on small scales and
observational shot noise. While forecasts had indicated improvements in sensitivity for future
LSS surveys in combination with CMB experiments, these limitations restricted the observational
reach [599, 650–660]. However, recent advances in the theoretical understanding of these
effects on the feature imprints in the LSS spectra now allow to employ not only linear scales,
but also those in the (weakly) nonlinear regime: large-scale gravitational bulk flows can be
resummed in perturbation theory and treated analytically, leading to an exponential damping of
the primordial signal [579, 661] (cf. [662–664] for simulation-based confirmations) and small-
scale nonlinearities should not impact these inflationary oscillations as long as their frequency is
large enough [579]. In addition, it suffices to model the oscillatory part of the power spectrum,
i.e. we do not need to model its full shape, which is an easier problem and can be achieved
to smaller scales than the full nonlinear treatment of biased tracers [579]. Consequently,
LSS constraints that are independent of and competitive with those from the CMB anisotropies
can be inferred from present data for the currently accessible feature frequencies [579]. In
addition, significantly better bounds should be achievable in the upcoming decade [23, 391,
579, 663] with the next generation of LSS surveys [13], as illustrated in Fig. 7.

These forecasts show that LSS surveys have a smaller dynamical range in the feature
frequency 𝜔lin than CMB experiments. This is in particular due to (i) the largest available
scales in real space being intrinsically smaller since a comoving scale per radian is considerably
larger at the surface of last scattering and (ii) a smaller range of scales available from the
fundamental mode to the onset of nonlinear evolution. On the other hand, LSS observations
have several advantages. While the large number of usable signal-dominated modes drives
the overall sensitivity of LSS feature searches, the shape of the LSS transfer function 𝑇 (𝑘)
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is smoother than that of the CMB. This results in a larger intrinsic signal in LSS observables
compared to the CMB which implies that primordial features are in principle easier to find
in the matter spectra than in the CMB spectra. In addition, spectroscopic galaxy surveys can
probe very large volumes and have a full three-dimensional sampling of the underlying density
fluctuations, which means that the maximum oscillation frequency is limited entirely by the
volume of the survey since a larger volume implies a smaller fundamental frequency and, in
turn, a higher maximal 𝜔lin. In comparison, photometric surveys have in general the same
maximal 𝜔lin, but their sensitivity is restricted by the smearing of the primordial signal by
the large radial kernels for weak lensing and galaxies with photometric errors, i.e. a similar
effective averaging effect as for the anisotropies of the two-dimensional CMB sky. Since these
surveys are able to observe significantly more objects than spectroscopic surveys by several
orders of magnitude, they may however remain competitive on the largest scales due to the
raw number of objects.

The current best limits inferred from galaxy clustering data of BOSS DR12 alone are
comparable to, but slightly stronger than those derived from current Planck CMB data for
the accessible range of feature frequencies [579] (see [665] for the analogous BOSS two-
point correlation function analysis). This was made possible by the discussed theoretical
advances which allowed to use all signal-dominated modes and, therefore, the full statistical
power of BOSS. In addition, since the predictions for these primordial signals in the statistical
distributions of the CMB anisotropies and LSS probes are strictly correlated, these searches
can also be combined, which has in particular been explored in [579, 599, 652, 659].

An ongoing field of theoretical development pertains to density field reconstruction (see
e.g. [443, 666–672]) which has the potential to effectively further decrease the nonlinear
damping scale induced by large-scale bulk flows. In turn, this will increase the primordial
signal in the LSS power spectrum. For instance, an improvement in the forecasted sensitivity
to 𝐴lin of factors in excess of 3, 2 and 1.5 for BOSS, DESI and LSS-CVL could be achieved
with an increase of the reconstruction efficiency from about 50% to 100% [579]. This is a
considerable improvement compared to the results shown in Fig. 7 and substantially larger than
what we expect for the BAO frequency, i.e. the search for primordial features might give new
motivation to develop more efficient reconstruction techniques. While the methods developed
in the context of the BAO frequency are theoretically expected to reconstruct any nonlinearly
damped peak in the matter correlation function, this was recently shown explicitly for a set of
low-frequency feature models [673].

Line Intensity Mapping
Future 21 cm and other line intensity mapping (LIM) surveys, such as the Stage-ii experiment
PUMA [22, 482, 621], millimeter-wave intensity mapping experiments probing rest-frame
infrared lines from dusty star-forming galaxies [15] or surveys targeting the era prior to
reionization (c.f. [13, 14]), hold the promise to improve the constraints from galaxy surveys by
another few orders of magnitude [391, 579, 621, 674, 675]. The primordial signal is imprinted
in these observables in the same way as in other LSS tracers, but these experiments are able to
observe to higher redshifts. This means that the raw statistical power is significantly larger
since there is three times more comoving volume available in the redshift range 𝑧 = 2 − 6
compared to 𝑧 < 2, for instance. This also implies an important increase in the maximum
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feature frequency that can be probed. In addition, the universe is more linear at earlier times
and can therefore be described using (resummed) perturbation theory to smaller scales which
allows an increase by a factor of at least two in the maximum wavenumber in data analyses.

On the other hand, the full three-dimensional LIM information is obscured by the foreground
wedge and interloper lines for 21 cm and mm-wave observations, respectively. More generally, it
remains a challenge to separate the cosmic signal from the galactic and extragalactic foregrounds
which are larger by many orders of magnitude. There are however ongoing efforts to mitigate
the foregrounds and extract the cosmic signal (see e.g. [14]). For instance, cross-correlations
between different probes, such as intensity maps with various spectral lines or intensity
maps with galaxy/CMB surveys, can significantly help in foreground cleaning since different
observables have different (presumably uncorrelated) foregrounds and systematics.

The 21 cm signal is in principle observable out to redshift 𝑧 ∼ 200 which would provide
the ultimate goal for primordial feature searches. At redshifts beyond 𝑧 ∼ 6, even more
comoving volume is available and the nonlinear scale is beyond the Jeans scale for redshifts
𝑧 & 30. For this reason, features could be observed on scales far beyond the reach of CMB and
galaxy surveys [674]. However, close-packed interferometers with large baselines (> 10 km)
are required to observe the 21 cm signal out to these redshifts with sufficient resolution and
sensitivity. Because the ionosphere becomes opaque at the frequencies corresponding to this
redshifted 21 cm signal, such experiments would have to be operated in space or on the back
side of the moon [676]. While futuristic, several pilot studies are currently under consideration
at both ESA [677] and NASA [678] (see also [14]).

4.2.3 Gravitational Wave Background

The stochastic gravitational wave background provides an observational channel that is partic-
ularly relevant to searches for primordial features at scales much smaller than those accessible
in CMB and galaxy surveys. Primordial features are imprinted in the SGWB through the
sourcing of tensor fluctuations from scalar fluctuations at nonlinear order [193, 679–681]. On
CMB scales, the constraints on the amplitude of scalar fluctuations imply that the irreducible
contribution to the GW spectrum from vacuum fluctuations dominates over this scalar-induced
SGWB signal for scenarios with a tensor-to-scalar ratio 𝑟 which is detectable in B-mode searches
of present or upcoming CMB experiments. However, the amplitude of scalar fluctuations is
much less constrained on small scales, 𝑘 � 1Mpc−1, and permits a potentially observable
scale-dependent feature contribution to the SGWB.

Tensor modes associated with a primordial feature are produced twice during the history of
the universe: (i) at the time that the feature is produced during inflation and (ii) when the
scalar fluctuations affected by the feature re-enter the horizon in the post-inflationary era.14 In
the context of GW observations, the relevant quantity is the gravitational wave energy density
fraction per log(𝑘) interval, which we denote by Ωinf

GW(𝑘) and Ωpost
GW (𝑘) for the inflationary and

post-inflationary contributions, respectively. These background quantities exhibit an oscillatory
modulation similar to the primordial signal in Δ2

R(𝑘).
14We neglect the mixed component which receives contributions from both periods since Ωinf

GW(𝑘) and Ωpost
GW (𝑘)

dominate the signal and are therefore most relevant for observations [682].
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Figure 8: Top: Contributions to the stochastic gravitational wave background sourced during
inflation (Ωinf

GW) and induced in the post-inflationary era during a phase of radiation domi-
nation (Ωpost

GW ) due to a sharp feature which induces an excited state with copious particle
production. Both spectra exhibit oscillatory modulations albeit with different amplitudes.
Bottom: Scalar power spectrum associated with the same sharp feature which exhibits 𝑂(1) os-
cillations and follows the form of the linear feature template (4.3) with a scale-dependent
envelope.

The inflationary contribution Ωinf
GW(𝑘) due to a sharp feature was computed explicitly in

[682] (see also e.g. [683, 684] for explicit realizations and [685] for similar GW profiles arising
from instantaneous sources during inflation). For the phenomenologically most-relevant case
of the feature sufficiently amplifying Ωinf

GW(𝑘) to be potentially observable, the GW spectrum
was found to exhibit 𝑂(1) modulations in the UV tail with frequency 𝜔lin = 2/𝑘0 (see the red
curve in Fig. 8). The origin of this oscillation is the same as for the modulations in Δ2

R(𝑘): The
oscillation with frequency 𝜔lin = 2/𝑘0 is a direct consequence of the sharp feature inducing an
effective excited state which further implies an 𝑂(1) oscillation amplitude if it is associated
with moderate to copious particle production.

The post-inflationary contribution Ωpost
GW (𝑘) due to sharp, resonant and standard clock fea-

tures has been analyzed in [573, 574, 686–688]. The oscillation in Ωpost
GW (𝑘) can be understood

as a superposition of several resonance peaks from the resonant amplification of the peaks
associated with the modulation in Δ2

R(𝑘) [573]. As these resonance peaks have a finite width
in wavenumber, their superposition averages the oscillation so that Ωpost

GW (𝑘) only exhibits
𝑂(10% − 20%) modulations, even if the associated scalar power spectrum Δ2

R(𝑘) (and Ωinf
GW)

contains𝑂(1) oscillations (see the green curve in Fig. 8). Interestingly, the contributionΩpost
GW (𝑘)

also encodes information about the post-inflationary era when the GWs are induced, such as
the frequency of the oscillation in the GW spectrum being 𝜔GW

lin = 𝑐−1s 𝜔lin, with the propagation
speed 𝑐s of scalar fluctuations [688]. The amplitude of the oscillation and the shape of the en-
velope of Ωpost

GW (𝑘) are additionally sensitive to the equation of state when the GWs are induced,
e.g. 𝑤 = 𝑐2s = 1/3 during radiation domination. For a resonant feature, the post-inflationary
GW spectrum exhibits a superposition of two oscillatory terms, one with frequency 𝜔log and one
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with frequency 2𝜔log [574, 686], with the respective amplitudes depending on 𝜔log, the shape
of the peak in Δ2

R(𝑘) and the equation of state 𝑤 during the GW sourcing. The templates that
have been derived in [573, 574, 686, 688] for the post-inflationary contribution to the SGWB
capture these aspects.

Observationally, the amplitude of features has to be much larger to be detectable in the
stochastic gravitational wave background compared to the discussed CMB anisotropy and
LSS measurements. On the other hand, the SGWB is sensitive to scales 𝑘 � 1Mpc−1 and
could potentially cover up to 23 e-folds of unchartered territory since GW observations may
probe scales from 𝑘 ∼ 106 Mpc−1 with pulsar timing arrays [166] to 𝑘 ∼ 1016 Mpc−1 with
next-generation ground-based interferometers (e.g. Cosmic Explorer [25] and the Einstein
Telescope [190], cf. §2.2.3). The sensitivity of the space-based interferometer LISA [174]
will peak in the mHz regime which corresponds to inflationary features that occurred some
30 e-folds after CMB modes exited the horizon or 𝑘 ∼ 1012 Mpc−1. An initial investigation
of the prospects to detect these imprints with LISA suggests that a possible detection of
𝑂(10%) oscillations from the post-inflationary contribution requires an overall amplitude of
ℎ2Ωpost

GW > 10−12 − 10−11 [689]. This would imply Δ2
R & 10−3 since ℎ2Ωpost

GW ∼ 10−5Δ4
R during

radiation domination. To measure the oscillations in the inflationary contribution with LISA,
the peak amplitude of ℎ2Ωinf

GW would need to be even higher because the oscillations only occur
in the ultraviolet tail. At the same time, the next-generation space-based GW observatories,
such as DECIGO [187], will however further increase the signal-to-noise ratio and bridge the
frequency gap between LISA and the ground-based observatories. This will allow us to probe
the details of these feature signals and their inflationary origin.
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5 Conclusions
The standard model of cosmology rests on three pillars: the visible sector, the dark sector
and the initial conditions. We observe the universe through observations of the visible sector,
gathering information about the distribution of light and matter in the universe. In turn, we
can infer the presence of an additional, mysterious dark sector which dominates the energy
budget of the universe today, and consists of dark matter and dark energy. Dark matter provides
the scaffolding around which galaxies clump and largely dictates the large-scale structure of
the universe, while dark energy affects the geometry of the universe and drives its current
accelerated expansion. Finally, observations indicate that we need very special initial conditions
that imprinted tiny fluctuations at the big bang. These three pillars therefore provide us with
the best picture of the history, composition and structure of the universe. In this paper, we focus
on the initial conditions of the universe and how observations of the visible sector enable their
inference to ultimately probe the main paradigm that explains their origin, cosmic inflation.

Since all models of inflation predict the existence of primordial gravitational waves and
primordial non-Gaussianity, and many include deviations from the almost scale-invariant power
spectrum of primordial fluctuations, these are the three signatures we center our attention
on. We note that in a large class of models, important thresholds are within reach in the next
decade given the ever increasing sensitivity of cosmological surveys. The relevant observational
probes are (i) the cosmic microwave background and tracers of the large-scale structure, which
are sensitive to the largest scales of the primordial spectrum, and (ii) spectral distortions of
the CMB black body spectrum and direct observations of the stochastic gravitational wave
background, which will provide valuable information on smaller scales.

Historically, the detailed measurement of the anisotropies and polarization of the CMB
has been leading our observational insights. Next-generation experiments are projected to
tremendously increase our sensitivity to many of these imprints. In particular, an experiment
such as CMB-S4, which covers both large scales and large sky area, will be instrumental in
reaching important thresholds on all three fronts, and uniquely for primordial gravitational
waves. For primordial non-Gaussianity and features, the sensitivity of the CMB is currently
complemented by galaxy surveys, but a range of different observations of tracers of the large-
scale structure of the universe will lead the observational sensitivity for a number of important
signatures in the future. On smaller scales, CMB spectral distortions and direct gravitational
wave observations have started to add valuable information for our understanding of inflation
on a broad range of scales and are projected to significantly improve in the future.

Given the anticipated observational advances, in the following, we give a bird’s eye view
on the implications of a detection of any one of these signatures of new physics (or absence
thereof), any of which would tremendously impact our understanding of the early universe
and high-energy physics:

• Primordial gravitational waves: In simple inflationary models, the amplitude of PGWs
reveals the energy scale at which inflation occurred. Given the expected reach of planned
CMB experiments, a detection of PGWs would imply an energy scale near the scale of
grand unification. The quantum origin of these fluctuations of the metric itself implies
that a detection would provide evidence for quantum gravity. Specifically, current and
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planned CMB experiments targeting primordial B-mode polarization will cross important
thresholds for the tensor-to-scalar ratio 𝑟: 𝑟 ' 0.01 and 𝑟 ' 0.001. A detection of
𝑟 & 0.01 would provide evidence for the existence of an approximate shift symmetry
in quantum gravity; a detection of 𝑟 & 0.001 would provide evidence for the simplest
models of inflation which naturally predict the observed values of the spectral tilt 𝑛s
and have a characteristic scale that exceeds the Planck scale. In turn, a non-detection
of PGWs at the sensitivity of upcoming experiments will vastly restrict the space of viable
inflationary models and provide important insights into what nature accommodates at
these extreme scales. The key challenge to obtaining robust upper limits on or a decisive
detection of 𝑟 are astrophysical foregrounds and weak gravitational lensing of the CMB,
which require continued developments in modeling, simulations and analysis.

• Primordial non-Gaussianity: A detection or constraint of PNG will teach us about the
interactions of primordial fluctuations. Interpreting a detection depends on the overall
amplitude 𝑓NL and the PNG shape function. For local non-Gaussianity, models with
𝑓 localNL > 1 typically point to the existence of extra light species active during or after infla-
tion. For equilateral and orthogonal non-Gaussianity, models with 𝑓NL > 1 tend to favor
scenarios with a strong breaking of boost symmetries of the inflationary background (or
small sound speed of the scalar perturbations). Moreover, around the squeezed limit,
there is the exciting possibility of imprints left by new particles, with masses all the
way to the inflationary Hubble scale. This is much heavier than any direct detection
experiment currently available. Learning which new particles and symmetries play a role
during inflation will open new avenues in building inflationary models and connections
to the Standard Model of particle physics. Conversely, stronger bounds on these shapes of
non-Gaussianity will constrain large classes of inflationary models and point to favored di-
rections in “theory space”. The main observational challenges ahead lie in separating the
primordial signal from late-time effects in CMB and LSS probes, and mitigating sources
of noise and nuisance. Theoretically modeling (or simulating) the late-time observables
for a given PNG signal is also an important challenge for the immediate future.

• Primordial features: Deviations from the minimal power-law power spectrum of primor-
dial fluctuations indicate that new energy scales play an important role in the inflationary
dynamics. This occurs pervasively when connecting models of inflation to theories of
fundamental physics. Relatedly, there are currently no useful theoretical priors on the
scale or amplitude of primordial features, which necessitates broad cosmological searches
covering as much of parameter and model space as possible. A potential detection of
these primordial imprints could have profound implications for our understanding of
fundamental physics, while upper limits can still inform model building efforts and
narrow the vast theoretical possibilities provided by physics at the highest energies. Anal-
yses already exploit that the separation of the primordial signal from late-time effects
in CMB and LSS observations is easier for oscillatory features than for primordial non-
Gaussianities. While the observational prospects for feature searches are therefore bright,
further theoretical advances will however be required, in particular in efficient data anal-
ysis techniques to even more efficiently extract information across various cosmological
probes on even smaller scales and with higher significance.
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Achieving these targets with further theoretical advances in combination with the next gen-
eration of CMB and LSS surveys, which will yield unprecedented maps of the universe, will
therefore provide us with an exquisite window into the primordial universe.

The future for inflationary cosmology is very bright, with clear directions for further
observational and theoretical explorations. Upcoming surveys of various observational probes
with increasing instrumental sensitivity, together with new developments in theory, simulations,
modeling and analysis, will enable us to probe this unique and spectacular epoch of our cosmic
history. Discoveries teaching us about the highest accessible energy densities of the universe can
be within reach in the near future. In our quest to understand the beginning of the universe,
nature has also given us the opportunity to learn about physics at the most microscopic scales
by making observations at the largest distances.
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