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Abstract The conceptual design study of a hadron Future Circular hadron-hadron Collider (FCC-

hh) with a center-of-mass energy of the order of 100 TeV assumes using in the experimental 

detector the superconducting magnetic system with a central magnetic flux density of an order of 

4 T. A superconducting magnet with a minimal steel yoke was proposed as an alternative to the 

baseline iron-free solenoids. In a present study, both designs are modeled with Cobham's program 

TOSCA and compared. All the main parameters are discussed. 
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1 Introduction 

The conceptual design report study of the Future Circular hadron-hadron Collider 

(FCC-hh) [1] with a center-of-mass energy of the order of 100 TeV, assumed to 

be constructed in a new tunnel of 80–100 km circumference, is to be presented at 

the end of 2018. As a part of this study, a conception of a detector for hadron-

hadron physics is developing. The FCC-hh detector comprises an iron-free 

magnetic system that consists of three superconducting solenoids: the main coil 

with a central magnetic flux density of 4 T and two auxiliary forward coils with a 

central magnetic flux density of 3.2 T each [2].  

Following the recent alternative study of the magnetic system for the FCC-hh 

detector based on the superconducting solenoid with a minimal steel yoke [3], a 

possibility of using the steel yoke in the same baseline layout of the coils and the 
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particle sub-detectors [4] is considered in present paper, and the main parameters 

of both magnetic systems are compared. For these comparisons, both, the baseline 

FCC-hh detector magnetic system [2], and the magnetic system with the minimal 

steel yoke, are calculated with a program TOSCA from Cobham CTS Limited [5]. 

2 Modelling the Magnetic Systems 

The FCC-hh detector baseline magnetic system design, shown in Fig. 1, includes 

three components: the main superconducting coil with a total current of 69.6 MA-

turns, and two superconducting forward coils with a total current of 12.6 MA-

turns each. 

 

Fig. 1 3-D model of the FCC-hh detector baseline magnetic system comprising the main 

superconducting coil with 10.9 m inner diameter, and two superconducting forward coils with 

5.6 m inner diameter. The distances between the coils are of 2.823 m each side. 

 

In the calculations, the radial thickness of the main coil is assumed of 0.5 m, 

and the radial thickness of each forward coil is of 0.23 m. The distances between 

the main and each forward coils are of 2.823 m. Preparing the design of the 

baseline magnetic system this distance is chosen as a compromise between the 

value of the magnetic flux density in the transition region between the coils, and 

the attractive axial force onto the forward coil that is minimized to 61.8 MN. The 

compression axial force in the main coil middle plane is of 610.7 MN that creates 

a pressure of 34.1 MPa. The radial pressure in the main coil is of 1.55 MPa, and in 

each forward coil of 2.66 MPa. The stored energy of the baseline magnetic system 

is of 13.8 GJ. 

To realize the minimal steel yoke conception [3], the coil is surrounded with 

five barrel wheels of 17.7 m outer diameter and 3.9 m width each as is shown in 
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Fig. 2. Each barrel wheel has two steel layers of 0.75 m thick with a radial gap of 

0.5 m between them.  

 

Fig. 2 3-D model of the FCC-hh detector minimal yoke magnetic system viewed from outside. 

At the distances of 0.75 m off the extreme wheels, two end-cap disks of 17.7 m 

outer diameter and 0.75 m thickness are located at each barrel end. Four smaller 

disks of 14 m outer diameter at each yoke end follow these disks. The thicknesses 

of the first small disks is 0.5 m, other disks have the thicknesses of 0.75 m.  

 

Fig. 3 The main superconducting coil of 11.9 m outer diameter, the five barrel wheels of 3.9 m 

width each, the two conical-cylindrical shields of 10 m outer diameter each, the four end-cap disks 

of 17.7 m diameter each, and the eight end-cap disks of 14 m diameter each. The solenoid coil is 

visible between the barrel wheels in the air gaps of 0.125 m each. The length of the barrel part is 

20 m; the total length of the yoke is 35 m 

The air gaps of 0.5 m between all the end-cap disks serve for an installation of 

the muon detection chambers located in the same positions as in the baseline 

design of the FCC-hh detector [4]. As shown in Fig. 3, the inner parts of the end-
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cap disks rely on the cylindrical radiation protection shielding of 1 m radial 

thickness assumed to be made of a carbon steel. Inside the main coil this shield 

has a conical shape following the polar angles corresponded to the pseudorapidity 

region from ±2.1 to ±2.5 [4]. In opposite, in the baseline design of the magnetic 

system this shield is assumed to be made of non-magnetic material. The total 

length of the minimal steel yoke is 35 m. 

3 Comparison of the Magnetic Systems 

In Figs. 4 and 5, the magnetic flux density distribution is displayed in a vertical 

YZ-plane of the baseline and minimal steel yoke magnetic systems, respectively. 

 

Fig. 4 Magnetic flux density distribution in a vertical plane of the FCC-hh detector baseline 

magnetic system. The color magnetic field map plotted with the cell size of 0.05 m has the width 

of 50 m and the height of 20 m. The color scale unit is 1 T. The minimum and maximum magnetic 

flux density values are 0.0142 and 4.1595 T. 

The magnetic flux density in the center of the main coil is 4 T in the baseline 

and 4.26 T in the minimal steel yoke magnetic systems, accordingly. As displayed 

in Fig. 6, the contribution of the steel yoke in the central magnetic flux density at 

the level of 6.5 % is compensating by the decreasing the magnetic flux density at 

the axis of the forward coils. At the distances of ±13.53 m from the main coil 

center, it is 3.2 T in the baseline and 3.07 T (4 % lower) in the minimal steel yoke 

magnetic systems, respectively. Fig. 5 shows that the magnetic flux density in the 

conical parts of the shielding is extremely high and in any design this part should 

be made of a non-magnetic material. Being ferromagnetic, this part creates 

enormous attractive axial force on the shield of 131 MN. This gives the main 

contribution into compression axial force onto the central barrel wheel of 

240.5 MN and into attractive axial force onto each end-cap of 168.7 MN. 
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Fig. 5 Magnetic flux density distribution in a vertical plane of the FCC-hh detector minimal yoke 

magnetic system. The color magnetic field map plotted with the cell size of 0.05 m has the width 

of 50 m and the height of 20 m. The color scale unit is 1 T. The minimum and maximum magnetic 

flux density values are 0.0002 and 5.1425 T. The maximum magnetic flux density in the barrel 

wheel layers is 2.3 T. The magnetic flux density in the first end-cap disks at the radius of 6 m is 

2.4 T. 

 

Fig. 6 Magnetic flux density variation along the coil axis in the baseline (smooth curve) and 

minimal yoke (dashed line) magnetic systems. 

The axial force on each forward coil in the minimal steel yoke magnetic system 

is of 66.6 MN. The compression axial force in the main coil middle plane is of 

515.3 MN that creates a pressure of 28.8 MPa. The radial pressure in the main coil 

is of 2.49 MPa, and in each forward coil is of 2.28 MPa. The stored energy is of 

14.6 GJ that is larger than in the baseline design. 

Fig. 7 presents the stray magnetic flux density variation vs. a radius in the 

middle plane of the main coil, and vs. a distance from the main coil center along 

the coil axis. The stray magnetic flux density drops to the safety level of 5 mT at a 

radius of 59.4 m (46 m) from the coil axis in the baseline (minimal steel yoke) 
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design. The stray field drops to 5 mT at a distance of 64.9 m (60.4 m) from the 

main coil center along the coil axis in the baseline (minimal steel yoke) design. 

 

Fig. 7 Magnetic flux density out of the coil in the main coil central plane vs. a radius (smooth and 

dotted lines) as well as along the coil axis vs. a distance from the main coil center (dash-dotted and 

small dotted lines). Smooth and dash-dotted lines correspond to the baseline magnetic system. 

Dashed and small dotted lines correspond to the minimal steel yoke magnetic system. 

 

Fig. 8 Magnetic flux density bending component integrals (left scale, solid and dash-dotted lines), 

and the length of the charged particle trajectory (right scale, dashed and small dotted lines) in the 

inner tracker (smooth and dashed lines), and in the muon system (dash-dotted and small dotted 

lines) of the baseline FCC-hh detector design vs. the pseudorapidity. 

The last but not the least parameters for the comparisons are the integrals of the 

magnetic flux density bending component orthogonal to the charged particle 

trajectory vs. the pseudorapidity inside the inner tracker of 1.5563 m radius and 

16 m length, and through the muon system. For both magnetic systems, the 

bending powers and the track lengths passing by the charged particles in the inner 

tracker and in the muon system are shown in Figs. 8 and 9. 
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Fig. 9 Magnetic flux density bending component integrals (left scale, solid and dash-dotted lines), 

and the length of the charged particle trajectory (right scale, dashed and small dotted lines) in the 

inner tracker (smooth and dashed lines), and in the muon system (dash-dotted and small dotted 

lines) of the FCC-hh detector with the minimal steel yoke vs. the pseudorapidity. 

These plots finally display that the minimal steel yoke design has no substantial 

advantage in comparison with the baseline magnetic system. 

4 Conclusions 

This study investigates the advantages of the superconducting solenoid magnetic 

system with a minimal steel yoke in comparison with the baseline iron-free 

magnetic system for the detector at the Future hadron-hadron Circular Collider 

with a center-of-mass energy of 100 TeV. The compared parameters of two 

magnetic system confirm the choice in a favor of the baseline design with respect 

to the minimal steel yoke design. The latest is more expensive and has no 

substantial advantages in comparison with the FCC-hh detector baseline magnetic 

system. 
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