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Today one can choose from a wide range of neural network hardware. The most important
benefit of such hardware is the great increase in speed over conventional sequential processors.
The review here surveys a sample of neural network VLSI chips, accelerator boards, and multi-
board neurocomputers. We look at the hardware from the potential users viewpoint and discuss
some systems developed for high energy physics applications.
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1. Introduction

While many neural network applications, such as optical character recognition programs, run
well enough on conventional von Neumann processors, some applications, such as in high energy
physics, require the speed of hardware implementations'. The architectures of neural networks,
many simple processors connected together, allow for fast parallel processing. On the other
hand, designing hardware with both a large number of processors and high connectivity can be
quite difficult. The human brain has ~ 10'? neurons with 1000 synapses each, while current
VLSI chips typically have 50-100 interconnected neurons. To build larger hardware networks,
multi-chip boards and even mult-board systems can provide a few thousand interconnected
neurons but require at least some sequential chip and board communication.

We review here a sample of the neural network hardware available commercially or via beta
testing or collaboration with the manufacturer. Although the growth has been somewhat slow,
there is now a fairly wide range of products available. Such hardware includes digital and
analog hardware chips, PC accelerator boards, and multi-board neurocomputers. While the
range is wide, it is fairly thin. For a given architecture and technology, e.g. an analog chip with
50-100 neurons running in less than 10us, there may be only one or two products available. See
references 2-6 for further information on hardware neural networks. ’

2. Hardware Specifications

Basic specifications of a neural network include the network architecture (e.g. feedforward
multi-layer, radial basis functions (RBF), etc.), number of external inputs/outputs, numbers
of neurons and synapses per neuron, number of layers, etc. For a hardware implementation,

*Plenary talk given at the Third Workshop on Neural Networks: From Biology to High Energy Physics, Marciana
Marina, Isola d’Elba, Italy, Sept. 26-30, 1994.
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specifications include the technology used (analog, digital, or hybrid), the precision (in num-
bers of bits) of the input/outputs, of the weights, and of the accumulators, etc. Various figures
of merit indicate the hardware performance. The most common performance rating is the
Connection-Per-Sec (CPS), which is defined as the rate of multiplication and accumulate op-
erations during recall processing. The Connection-Update-Per-Second (CUPS) value indicates
the rate of weight changes during learning. There are no widely accepted benchmark tests for
hardware neural networks, although the learning time for NetTalk is often given’.

Because of the wide variety of network architectures and hardware implementations, no one
or two numbers can give a true picture of the hardware capabilities. Normalizing the CPS value
by the number of weights on the chip (CPSPW, or CPS per weight) was suggested as a better
way to indicate the processing power of the chip®. Also, the Connection-Primitives-Per-Sec
value, CPPS = b;, x b, x CPS, includes the precision in the processing performance®.

Similar ratings could be defined for CUPS. Normally, CUPS refers to back-propagation learn-
ing but the value is often given for other algorithms as well. An algorithm such as Boltzmann
learning may only need a few passes through the training set as compared to perhaps 1000’s
of epochs for back-prop. So a Boltzmann chip may have a lower CUPS value than a back-prop
chip yet still accomplish the learning in a shorter time. Further, the CPS and CUPS values
do not apply to radial basis function networks where pattern presentation rates are the most
relevant performance parameters.

3. Neural Networks in VLSI

We divide the neural network VLSI world into three broad categories: digital, analog, and
hybrids. Within these categories are included the various network and VLSI architectures,
on-chip learning, etc. Table I shows a list of some neural network chips.

3.1. Digital

The digital neural network category encompasses many sub-categories including slice archi-
tectures, SIMD and systolic array devices, and RBF architectures. For the designer, digital
technology has the advantages of mature fabrication techniques, weight storage in RAM, and
arithmetic operations exact within the number of bits of the operands and accumulators. From
the users viewpoint, digital chips are easily embedded into most applications. However, dig-
ital operations are usually slower than in analog systems, especially in the weight X input
multiplication, and analog inputs must first be converted to digital.

3.1.1. Slice Architectures

Following the bit slice concept of conventional digital processors, the neiral network slice chips
provide building blocks to construct networks of arbitrary size and precision. Such chips typ-
cially cost only about $50/chip, perform at moderate speeds, and are without on-chip learning.

The Micro Devices MD1220 was probably the first commercial neural network chip®. Each
chip has eight neurons with hard-limit thresholds and eight 16-bit synapses with 1-bit inputs.
With bit-serial multipliers in the synapse, the chip provides about 9MCPS. Bigger networks and
networks with higher bit inputs can be constructed with multiple chips. A 16-bit accumulator
limits the total number of inputs because of overflows.

A similar chip is the Neuralogix NLX-420 Neural Processor Slice?, which has has 16 process-
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Table 1. Neural Network Chips. Architectures include feedforward (FdFwd), mult-
layer (ML), general processor (GP), floating point (FP), radial basis function (RBF),
fully connected and recurrent (FCC). Precision refers to the number of bits (b) for
the neuron values and weights (the effective bits for analog). Here, na indicates
the information is either not available or not applicable.

Type Name Architecture Learn Precision | Neurons Synapses Speed

Analog | Intel FdFwd, ML no 6b x 6b 64 10280 2GCPS
ETANN?’
Synaptics Neuromorphic no na 48x48 Resistive net | na
Silicon Retina?®

Digital | NeuraLogix FdFwd, ML no 1-16b 16 Off-chip 300CPS
NLX-420°
HNC GP,SIMD,FP program 32b 100 PE | 512K off-chip | 2560MCPS
100-NAP!34 64MCUPS
Hitachi Wafer, SIMD Hopfield 9b x 8b 576 32k 138MCPS
WsI%
Hitachi Wafer, SIMD BP 9b x 8b 144 na 300MCUPS
WSIG,24
Inova GP,SIMD,Int program 1-16b 64 PE 128K 87T0MCPS
N640001:12 220MCUPS
IBM RBF ROI 8b 36 64x64 250k pat/s
Z1SC03618
MCE FdFwd, ML no 13b 8 off-chip 32MCPS
MT19003%
Micro Devices | FdFwd, ML no 1b x 16b 1PE 8 8.9MCPS
MD-12208
Nestor/Intel RBF RCE,PNN 5b 1PE 256x1024 40k pat/s
NI1000%°
Philips FdFwd, ML no 1-16b 16 PE 64 26MCPS
Lneuro-1°
Siemens matrix ops no 16b 16 PE 16x16 400MCPS
MA_1615,16

Hybrid | AT&T FdFwd, ML no 3b x 6b 16-256 4096 2.1GCPS
ANNA?Z®
Bellcore FCR Boltzmann | 6b x 5b 32 * 992 1060MCPS
CLNN-32% 100MCUPS
Mesa Reseach | FdFwd, ML no 6b x 5b 6 426 21GCPS
Neuroclassifier32
Ricoh FdFwd, ML BP na 16 256 3.0GCPS
RN-200%*
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ing elements (PE). A common 16-bit input is multiplied by a weight in each PE in parallel. New
weights are read from off-chip. The 16-bit weights and inputs can be user selected as 16 1-bit, 4
4-bit, 2 8-bit or 1 16-bit value(s). The 16 neuron sums are multiplexed through a user-defined
piece-wise continuous threshold function to produce a 16-bit output. Internal feedback allows
for multi-layer networks. Multiple chips can build large networks .

The Philips Lneuro 1.0 chip!®, which is designed to be easily interfaced to Transputers, also
has 16-bit processing in which the neuron values can be interpreted as 8 2-bit, 4 4-bit, etc.,
sub-values. Unlike the NLX-420, there is a sizable (1kByte) on chip cache to hold weights.
The transfer function is done off-chip, which allows for multiple chips to provide synapse-input
products to the neurons to build very large networks.

3.1.2. Multi-processor Chips

A far more elaborate approach is to put many small processors on a chip. Two architectures
dominate such designs: single instruction with multiple data (SIMD) and systolic arrays. For
SIMD design, each processor executes the same instruction in parallel but on different data. In
systolic arrays, a processor does one step of a calculation (always the same step) before passing
it’s result on to the next processor in a pipelined manner.

SIMD chips include the Inova N64000 and the HNC 100 NAP. The Adaptive Solutions
CNAPS systems uses the Inova N64000 to build a SIMD array. The chip contains 64 PE’s,
with each PE possessing a 9x16 bit integer multiplier, 32-bit accumulator, and 4KBytes of
on-chip memory for weight storage!!'2. All chips execute the same instruction and common
control and data buses allow for multiple chips to be combined. The Hecht-Nielson Computers
100 NAP (Neurocomputer Array Processor) contains only 4 PE’s but each PE performs true
32-bit floating point arithmetic'®'*. Weights are stored in off-chip memory and multiple chips
can be cascaded.

A systolic array system can be built with the Siemens MA-161%1¢, The MA-16 provides
for fast matrix-matrix operations (mult, sub, or add) of 4x4 matrices with 16-bit elements.
The multipler outputs and accumulators have 48-bit precision. Weights are stored off-chip and
neuron transfer functions are off-chip via lookup tables. Multiple chips can be cascaded.

3.1.3. Radial Basis Functions

RBF networks provide fast learning and straight-forward interpretation!”. The comparison of
input vectors to stored training vectors can be done quickly if non-Euclidian distances, such
as the Manhatten block norm (sum of element differences), are calculated with no multiplica-
tion operations. Two commercial RBF products are now available: the IBM ZISC036 (Zero
Instruction Set Computer) chip'® and the Nestor Nil000 chip'®. The ZISC036 contains 36
prototype-vector neurons, where the vectors have 64 8-bit elements, and can be assigned to
categories from 1 to 16383. Multiple chips can be easily cascaded to provide additional pro-
totypes. The distance norm is selectable between Manhatten block and the largest element
difference. The chip implements a Region of Influence learning algorithm Z° using signum basis
functions with radii of 0 to 16383. Recall is according to the ROI identification or via nearest
neighbor readout. Recall processing takes 4us for a 250k /sec pattern presentation rate. The
Nestor Ni11000, developed jointly by Intel and Nestor, contains 1024 prototypes of 256 5-bit ele-
ments.: The chip has two on-chip learning algorithms, RCE?! and PNN?2, and other algorithms



Review of Hardware Neural Networks 5

can be microcoded. The processing rate is about 40k patterns/sec with a 40MHz clock.

3.1.4. Other Digital Designs

Some digital neural network chips don’t quite fit into the above three sub-categories. Examples
include the Micro Circuit Engineering MT19003 NISP Neural Instruction Set Processor?® and
the Hitachi Wafer Scale Integration chips 24. The NISP is basically a very simple RISC processor
with seven instructions, optimized for implementation of multi-layer networks, and loaded with
small programs to direct the processing. Feed-forward processing reaches 40MCPS. At the
other end of the complexity scale are the Hitachi Wafer Scale Integration chips. Both Hopfield
and back-propagation wafers have been built. A neurocomputer with 8 of the back-prop wafers,
each with 144 neurons, achieved 2.3GCUPS ©.

3.2. Analog

Analog hardware networks can exploit physical properties to do network operations and thereby
obtain high speed and densities. A common output line, for example, can sum current outputs
from synapses to sum the neuron inputs. However, analog design can be very difficult because
of the need to compensate for variations in manufacturing, in temperature, etc. Creating an
analog synapse involves the complications of analog weight storage and the need for a multiplier
linear over a wide range. While many designs use analog techniques to carry out conventional
architectures like multi-layer feedforward networks, neuromorphic designs, such as the Synaptics
Silicon Retina 2%, emulate biological functions as closely as possible .

The first analog commercial chip was the Intel 80170NW ETANN (Electrically Trainable
Analog Neural Network) that contains 64 neurons and 10280 weights?”. The non-volatile weights
are stored as charge on floating gates and a Gilbert multipler provides 4-quadrant multiplication.
A flexible design, including internal feedback and division of the weights into two 64x80 banks
(including 16 biases), allows for multiple configurations including 3-layers of 64 neurons/layer,
and 2-layers with 128 inputs and 64 neurons. No on-chip training was provided so a chip-in-
the-loop mode with a PC is necessary.

3.3. Hybrid

Hybrid designs attempt to combine the best of analog and digital techniques. Typically, the
external inputs/outputs are digital to facilitate integration into digital systems, while internally
some or all of the processing is analog. The AT&T ANNA Artificial Neural Network ALU 29
for example, is externally digital but uses capacitor charge, periodically refreshed by DAC’s, to
store the weights. Similarly, the Bellcore CLNN-32 chip has 5-bit weights loaded digitally but
the processing of the network with Boltzmann style annealing is done in analog®C.

The NeuroClassifier from the Mesa Research Institute at the Univ. of Twente has 70 analog
inputs, 6 hidden and 1 analog output with 5-bit digital weights®*. The feed-forward processing
rate is an astounding 20ns, representing 20GCPS. The final output is without a squashing
function so that multiple chips can be added to increase the number of hidden units.

The use of pulse rates or pulse widths is another method to emulate nets in hardware.
The first commercial implementation was the Neural Semiconductor chip set with the SU3232
synapse unit and the NU32 neuron unit®®. The Ricoh Company has reported a pulse chip with
a special back-propagation algorithm implemented on-chip®*. The RN-100 contained only a
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single neuron with 8 inputs and 8 outputs. An array of 12 RN-100’s learned to balance a 2-D
pendulum in just 30s. A later chip, RN-200, has 16 neurons each with 16 synapses®*.

4. PC Accelerator Cards and Neurocomputers

Very large networks (e.g. 1000’s of neurons) may only be practical with specialized neural net-
work hardware. While large general purpose parallel machines (e.g. Connection Machine) can
certainly provide sufficient performance, cheaper alternatives are available with co-processor, or
accelerator, cards for PC. There are also more elaborate neurocomputers with multiple boards
in separate enclosures, e.g. VME, with extensive software environments. Such neurocomputers
may be expensive (e.g. > $20USD) but are still much cheaper than the big parallel mainframes.

Table 2 lists some of the accelerator cards and neurocomputers now available. Several of
the cards simply use fast RISC chips (e.g. Intel i860) or DSP’s as coprocessors to speed up
the network processing. The boards usually come with software that includes several neural
network algorithms. Other boards, like the IBM ZISC board, take advantage of neural network
chips to optimize network performance. A d.isadvahtage with many such co-processor cards is
that they do not allow signals to enter directly to the card but must come over the slow PC
bus. This reduces the advantage of using such cards for real-time processing.

Three neurocomputer systems are listed. The Adaptive Solutions CNAPS uses the Inova
N64000 chip on on VME boards in a custom cabinet run from a UNIX host!?. Boards come
with 1 to 4 chips and two boards can process the same network to give a total of 512 PE’s. The
software includes a C-language library, assembler, compiler, and a package of NN algorithms.
Similarly, the HNC SNAP Neurocomputer comes with typically include 2 VME boards, each
with four NAP 100 chips, providing 32 PE’s total**. The boards are controlled from a PC by
the HNC Balboa accelerator card. The Siemens SYNAPSE-1 uses a systolic array of 8 MA-16

chips in a custom cabinet with a Unix host?®.

Table 2. Neural network accelerator cards and neurocomputers. Here, nna indicates
the information is not available, prop indicates a proprietary chip.

Type Name Chip Performance
PC Accelerators | AND HNet Transputer 1.0 35 Transputer T400 na
BrainMaker Accel. ¢ TI TMS320C25 DSP | 40MCPS,500MFLOPS
Current Tech. MM32k 37 prop. 2048 PE/chip | 4.9MCPS, 2.6MCUPS
HNC Balbo 860 1* Intel i860 80MFLOPS
IBM ZISC ISA 38 IBM ZISC036 800k pat/sec
Neural Tech NT6000%° TI TMS320C20 DSP 2MCPS
NeurodynamX XR50%0 Intel 1860 45MCPS
Nestor Ni1000 %1 Nestor Nil1000 " 40k pat/sec
Rapid Imaging 0491E1-1SA%? Intel ETANN 2GCPS
Telebyte 1000 NeuroEng.43 Pprop. 140MCPS
Vision Harvest NeuroSim.** Intel i860 30MCPS,100MFLOPS
Ward Sys. NeuralBoard?® 50MHZ RISC 25MFLOPS
Neurocomputers | Adaptive Solutions CNAPS 2 Inova N64000 5.70GCPS, 1.5GCUPS
HNC SNAP 14 HNC 100 NAP 500MCPS, 128MCUPS
Siemens SYNAPSE-1 ¢ Siemens MA-16 800MCPS
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Table 3. Neural network hardware systems developed for experimental high energy

physics.
Group Experiment NNW Purpose NNW Description
Bologna *° CERN fixed target | Tag events with VME Card, ETANN
: WA-92 expt. 2nd vertex VME Card, MA-16
CDF/Michigan 47 Fermilab pp Tag events with Fastbus card, ETANN
collider, CDF Cal. shower ID
Max-Planck Miinchen | DESY HERA ep Level II trigger 10 CNAPS VME cards,
& Dortmund®® collider, H1 with 1 chip (64 PE) each
Royal Inst. of prototypes General purpose VME card, ETANN, 68070 control
Technology®!:52:53 General purpose ISA card, 2 ZISCO036
General purpose VME card, 4 ZISC036
General purpose VME card, 2 NLX-420

5. Neural Network Hardware in High Energy Physics

In accelerator experiments the interaction rates may reach up to 40MHZ. In such experiments
most of the data consists of background events that must be eliminated by on-line processing.
The final rate of events to tape may be only a few tens of Hz. This reduction of 10° is
accomplished by a hierarchy of filters or triggers, each doing ever more complex analysis on
the events that pass the preceeding trigger. The first level trigger, usually in pipeline style
hardware, does simple cuts, such as calorimeter pulse height discrimination, within about 2us.
A second level, also in hardware, runs in about 10 — 20us. The third and fourth levels, running
in software each have a few hundred msecs.

Hardware neural networks have thus far been used for 2nd level triggers!2. In table 3 we list
some systems developed for high energy physics (HEP) experiments using some of the neural
network hardware mentioned above.

The CDF experiment at CERN was the first experiment to use hardware neural networks
(ETANN) in a HEP experiment*’. While one ETANN was initially intended to identify b-jets
with trained networks*®, this never got beyond the test stage. The other two ETANN boards
did ‘electromagnetic shower isolations but were not trained networks. The chips merely executed
templates that compared the energies in the seed towers with the surrounding tower energies.
The parallel architecture of the ETANN provided fast template processing. However, there are
now plans to use these boards to identify tau particles with trained networks.

WA-92 experiment was an ongoing experiment that allowed a temporary neural network
trigger to be added as a demonstration of such technology*®. Only the ETANN board was ready
for the 1993 run but the MA-16 board has since been benchtested with similar input data. The
actual architecture implemented in the chips was a Fisher discriminate (FD) that required only
one layer of processing. A simulated 3-layer network performed slightly better than the FD but
the ETANN’s limited precision eliminated this advantage. Since the discriminate planes were
determined from example data, this is claimed the first true neural network trigger.

The H1 experiment at the HERA ep collider will implement the entire second level trigger
with a set of neural network cards®®. It will use the VME CNAPS boards, each with a single
N64000 (64 PE). They found that three layer networks (e.g. 64-64-1) executed within 10us with
these boards, meeting the trigger time constraints. With the use of off-the-shelf boards, the
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neural network hardware development was accomplished quickly and work could focus instead
on optimizing the algorithms and on the interface electronics.

Several prototype cards, with ETANN, ZISC036 and NLX-420 chips, have been built by our
group at the Royal institute of Technology for possible HEP applications®*%%:5%, The boards have
been tested with simulated data for tasks such as secondary vertex finding, Higgs identification,
etc.

6. Discussion

Hardware neural networks have now passed the novelty stage. From chips to PC coprocessors
to full scale neurocomputers, there are number of choices. However, one may find that for a
particular application the choices are limited and involve various tradeoffs. The ETANN, for
example, offers high speed analog processing but with low precision. The Neuroclassifier offers
extremely high speed but also low precision and only a few hidden units. Neurocomputers
like the CNAPS can offer high speed, large networks, and multiple net architectures, but are
expensive and have elaborate software environments. The radial basis function networks can
offer high performance, especially for learning, but may not have sufficient generalization powers
for some applications. Accelerator boards can suffice for running very large networks in a
reasonable time, but probably not in real-time, where the VME cards are most viable.

For high energy physics applications, there are now a number of options for the second level
trigger, especially when the network sizes involve around 60 inputs/neurons per layer. Both
digital and analog systems are available. So far the work has only involved feedforward layer
networks but it would be interesting to investigate applications of the radial basis function
networks. For the first level, the only real option is the Neuroclassifier, although several chips
must be combined for networks with more than 6 hidden units.
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