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Abstract. Besides being important to describe high energy processes themselves,
the dynamics of multiparticle production is part of the general field of non-linear
phenomena and complex systems. Multiparticle dynamics is one of the rare fields
of physics where higher order correlations are directly accessible in their full multi-
dimensional characteristics under well controlled experimental conditions. This allows
it to serve as an ideal testing ground for the development of advanced statistical
methods.

Higher order correlations have indeed been observed as particle-density fluctua-
tions. Approximate scaling with improving resolution gives evidence for a self-similar
correlation effect. Quantum-Chromodynamics branching is a good candidate for a
dynamical explanation of these correlations in e*te™ collisions at CERN/LEP and,
expectedly, also of those in pp collisions at future CERN/LHC energies, but also
other sources such as identical particle Bose-Einstein interference effects contribute.

A particular question at the moment is the smooth transition from the QCD
branching domain (gluon interference before hadronization) to the Bose-Einstein cor-
relation domain (identical pion interference after hadronization). Both mechanisms
have clearly been observed in ete~ collisions at CERN/LEP energies. The large
amount of high resolution data being collected at LEP in the near future will allow
to study the genuine (i.e. non-trivial) higher order correlations in both domains.

*Invited review given at the Fourth Annual Seminar on Nonlinear Phenomena in Complex Sys-
tems, Minsk (Belarus), February 6-9, 1995



1. Introduction

Recent years have witnessed a remarkably intense experimental and theoretical activ-
ity in search of scale-invariance and fractality in multihadron production processes.
Besides being an important part of high energy physics itself, the dynamics of multi-
particle production in collisions of elementary particles at high energies (multiparticle
dynamics) is part of the general field of non-linear phenomena and complex systems.
Studies of classical and quantum chaos, non-equilibrium dissipative processes, ran-
dom media, growth phenomena and many more have all contributed to reveal the
pervasive importance of self-similarity, power-laws and fractals in nature. Research
in these fields is still in full swing and continues to uncover intriguingly simple and
often surprisingly universal behaviour in complex, non-linear systems.

While considerable experience already exists in many fields for the study of two-
component correlation, it is often in higher-order (i.e. multi-component) correlations
that the most interesting properties manifest themselves, in the simultaneous in-
terplay of a large number of components. The special significance of multiparticle
dynamics for the development of advanced statistical methods lies in the fact that it
is one of the rare fields of physics where higher order correlations are directly accessi-
ble in their full multi-dimensional characteristics under well controlled experimental
conditions.

Higher order correlations have recently been observed as particle-density fluctua-
tions in cosmic ray, nucleus-nucleus, hadron-hadron, e*e~ and lepton-hadron experi-
ments. To study these fluctuations in detail, normalized correlation integrals are being
analyzed in phase-space domains of ever decreasing size. Approximate scaling with
decreasing domain size is now observed in all types of collision, giving evidence for a
correlation effect self-similar over a large range of the resolution (called intermittency,
in analogy to a statistically similar problem in spatio-temporal turbulence).

Parton branching of Quantum-Chromodynamics predicts the type of correlations
observed in ete™ collisions at CERN/LEP and, expectedly also in pp collisions at
CERN/LHC energies. However, also other sources such as Bose-Einstein interference
of identical particles contribute. Fast development of the applied technology has taken
place over the last years, in particular in the extension from originally one-dimensional
to full three-dimensional phase space analysis.

2. Method and Technology

2.1 Particle densities

A collision between particles a and b is assumed to yield exactly n particles in a
sub-volume € of the total phase space Q4. The single symbol y represents the
kinematical variables needed to specify the position of each particle in this space (for
example, y can be the the full four-momentum of a particle and €2 a cell in invariant



phase space or simply the c.m. rapidity' of a particle and €2 an interval of length éy).
The distribution of points in 2 can then be characterised by continuous probability
densities P,,(y1,-..,¥n); n = 1,2,.... For simplicity we assume all final-state particles
to be of the same type. In this case, the exclusive distributions P,(y1,...,yn) can
be taken fully symmetric in %, ..., y,; they describe the distribution in 2 when the
multiplicity is exactly n.

The corresponding inclusive distributions are given for n = 1,2, ... by:

pn(yla--'ay‘n) = Pn(ylw--ayn)

oo 1 m
+Z——,/Pn+m(y1,‘-~,ymy1,-~,y£n)dei- (1)
m=1 m. JQ =1
The inverse formula is

Pn(yla' "’yn) = pn(ylv-'-ayn)

o - 1 m
+ Zl('_l) m/ﬂpnﬁ-m(yl)'"aynayiw"’y:n) de: : (2)

i=1

Here, p,(y1, . - ., yn) is the probability density for n points to be at yy, ..., yn, irrespec-
tive of the presence and location of any further points. Integration over an interval
Q in y yields

/Q p1(y)dy = (n)

/Q/sz(yhyz)dyldyz = (n(n—1))

/Qdyl.../ndyqpq(yl,...,yq) ={nn-1)...(n—q+1)), (3)
where the angular brackets imply the average over the event ensemble.

2.2 Cumulant correlation functions

Besides the interparticle correlations we are looking for, the inclusive g-particle densi-
ties pg(y1, - - -, Yq) in general contain “trivial” contributions from lower-order densities.
It is, therefore, advantageous to consider a new sequence of functions Cy(y1,.-.,¥q)
as those statistical quantities which vanish whenever one of their arguments becomes
statistically independent of the others. Deviations of these functions from zero shall
be addressed as genuine correlations.

The quantities with the desired properties are the correlation functions—also called
(factorial) cumulant functions-or, in integrated form, Thiele’s semi-invariants [1].
A formal proof of this property was given by Kubo [2]. The cumulant correlation

t Rapidity y is defined as y = %ln[(E—ka)/(E —p1)], with E the energy and p; the longitudinal
component of momentum vector 7 along a given direction (beam-particles, jet-axis, etc.); pseudo-
rapidity is defined as n = ZIn[(p + pL)/(p — pL)]-
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functions are defined as in the cluster expansion familiar from statistical mechanics
via the sequence [3, 4, 5]:

pi(1) = Ci(1), (4)
p2(1,2) = Ci(1)C1(2) + Cu(1,2), (5)

p3(1,2,3) = Ci(1)C1(2)C1(3) + C1(1)C(2,3) + C1(2)Ca(1, 3) +
+ C1(3)C2(1,2) + C3(1, 2, 3); (6)

and, in general, by

pallym) = X T (G0 G0JC) o]

{3, perm. tlfa;;cors Iy factors
(Gl ) Cnls )] (7)

1. factors

Here, [; is either zero or a positive integer and the sets of integers {l;},, satisfy the
condition o

i=1
The arguments in the C; functions are to be filled by the m possible momenta in

any order. The sum over permutations is a sum over all distinct ways of filling these
arguments. For any given factor product there are precisely [4]

m! 9

(A8 (2N - (mD] L - - 1! )
terms.
The relations (7) may be inverted with the result:
C2(1,2) = po (1 2) = pi();(2) ,
Cs(1,2,3) = p3(1,2,3) Zm (1)p2(2,3) + 201(1)p1(2)p1(3)
C4(1a2,374) = 1 2 3 4 Zpl P3 1 2 3 Zp2(172)p2(374)
(4) 3)

+2 z p1(1 2)p2(3,4) — 60,1(1)p1(2)p1(3)p1(4)- (10)

(6)

In the above relations we have abbreviated Cy(y1,...,¥,) to Cg(1,2,...,q); the sum-
mations indicate that all possible permutations have to be taken (the number under
the summation sign indicates the number of terms). Expressions for higher orders
can be derived from the related formulae given in [6].



It is often convenient to divide the functions p, and C; by the product of one-
particle densities. This leads to the definition of the normalized inclusive densities
and correlations:

Te(Wis %) = gy, - ¥g)/Pr(y1) - - p1(Yg)s (11)
Koy, %) = Colyr,- - ¥g)/o(y1) - 01(yq)- (12)

In terms of these functions, correlations have been studied extensively for ¢ = 2.
Results also exist for ¢ = 3, but usually statistics (i.e. number of events available for
analysis) is too small to isolate genuine correlations. To be able to do that for ¢ > 3,
one has to apply moments defined via the integrals (3), but in limited phase space
cells.

2.3 Cell-averaged factorial moments and cumulants

In practical work, with limited statistics, it is almost always necessary to perform
averages over more than a single phase space cell. Let §,, be such a cell (e.g. a
single rapidity interval of size y) and divide the phase space volume into M non-
overlapping cells 2, of size 692 independent of m. Let n,, be the number of particles
in cell ,,. Different cell-averaged moments may be considered, depending on the
type of averaging.

Normalized cell-averaged factorial moments [7] are defined as

1 ¥ (i —1)... (n — g+ 1))

Fo(by) = 7 e (13)
m=1 m
1 M [, 0y, yg) T, dys
= — . - 14)
M (fsy P(y)dy) (
1 &y pely, - ye) T dw
= MGay 2 e o)’ ' (15)

The whole rapidity interval AY is divided into M equal bins: AY = Méy; each y; is
within the éy-range and (nm) = 5,,0¥ = [5, p1(y)dy. An example for ¢ = 2 is given
in Fig. 1a.

Likewise, cell-averaged normalized factorial cumulant moments may be defined as

1 M Colyr, .-y TIL, dys
K,(6y) = / g 2 Yo) iz 16
R IR S P 19
They are related to the factorial moments by?
F, = 1+K, ,
F, = 1+3K,+ K3
Fy = 14+6K,+3K2+4Ks+ K. (17)

t The higher-order relations can be found in (8]
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a Yo b Yo Y=Y

F,(3y)

Figure 1. Integration domains for a) the second order factorial moment and b) the second
order correlation integral. The small star in a) indicates the position of a particle pair with
|y1 — y2| < 8y that is excluded from the F; calculation due to the binning. In b) the star is
included.

In Fy and higher-order moments, “bar averages” appear defined as AB = 5" A, B, /M.

To detect dynamical fluctuations in the density of particles producefa in a high-
energy collision, a way has to be devised to eliminate, or to reduce as much as possible,
the statistical fluctuations (noise) due to the finiteness of the number of particles in
the counting cell(s). This requirement can to a large extent be satisfied by studying
factorial moments. It forms the basis of the factorial moment technique, known in
optics, but rediscovered for multi-hadron physics in [7]. This crucial property does
not apply to e.g. ordinary moments (n?)/(n)9.

The property of Poisson-noise suppression has made measurement of factorial
moments a standard technique, e.g. in quantum optics, to study the statistical prop-
erties of arbitrary electromagnetic fields from photon-counting distributions. Their
utility was first explicitly recognised, for the single time-interval case, in [9] and later
generalised to the multivariate case in [10].

2.4 Correlation integrals

A fruitful recent development in the study of density fluctuations is the correlation
strip integral method [11]. By means of integrals of the inclusive density over a strip
domain of Fig. 1b, rather than a sum of the box domains of Fig. 1a, one not only
avoids unwanted side-effects such as splitting of density spikes, but also drastically
increases the integration volume (and therefore the statistical significance) at a given
resolution.

Let us consider first the factorial moments F, defined according to (14). As shown



in Fig. 1a for ¢ = 2, the integration domain Q5 = ¥_ O, thus consists of M g¢-
dimensional boxes ., of edge length éy. A point in the m-th box corresponds to a
pair (y;,y2) of distance |y; — 2| < 6y and both particles in the same bin m. Points
with |y, — y2| < 6y which happen not to lie in the same but in adjacent bins (e.g.
the asterix in Fig. 1a) are left out. The statistics can be approximately doubled by a
change of the integration volume Qp to the strip-domain of Fig. 1b. For ¢ > 2, the
increase of integration volume (and reduction of squared statistical error) is in fact
roughly proportional to the order of the correlation. The gain is even larger when
working in two- or three-dimensional phase-space variables.

In terms of the strips (or hyper-tubes for ¢ > 2), the correlation integrals become

/Q Pe(y1 - .. Yy )ILidy;

A p1(y1) - - p1(yg)ILidy;

FJ(8y) = (18)

These integrals can be evaluated directly from the data after selection of a proper
distance measure (|y; — y;, [(v: — y;)* + (¢: — ¢;)?]*/2, or better the four-momentum
difference Q% = —(p; — p;)?) and after definition of a proper multiparticle topology
(GHP integral {11], snake integral [12], star integral [13]).

The numerator of the factorial moments F, can be determined by counting, for
each event, the number of ¢g-tuples that have a pairwise Q?j smaller than a given value
@? and then averaging over all events. Using the Heaviside unit step function ©, this
can mathematically be expressed as

1
5007 — ! 2 _ Q2 19
$@) = m (e T JLe@-ai) (19)
1-%2

where the factor ¢! takes into account the number of permutations within a g-tuple.

The normalization is obtained from ”mixed” events constructed by random se-
lection of tracks from different events in a track pool. The multiplicity of a mixed
event is taken to be a Poissonian random variable, thereby ensuring that no extra
correlations are introduced. A correction factor is applied for the difference in average
multiplicity of the Poissonian and the experimental distribution. The mixed events
are treated in the same way as real events.

2.5 Power-law scaling

The technique proposed in [7] consists in measuring the dependence of the normalized
factorial moments (or correlation integrals) F,(éy) as a function of the resolution
oy. For definiteness, 6y is supposed to be an interval in rapidity, but the method
generalises to arbitrary phase-space dimension, so also to the use of Q2.

As pointed out above, the scaled factorial moments enjoy the property of “noise-
suppression”. High-order moments further act as a filter and resolve the large n,, tail
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of the multiplicity distribution. They are thus particularly sensitive to large density
fluctuations at the various scales éy used in the analysis.

As proven in [7], a “smooth” (rapidity) distribution, which does not show any
fluctuations except for the statistical ones, has the property that F,(6y) is independent
of the resolution 6y in the limit 6y — 0. On the other hand, if dynamical fluctuations
exist and F, is “intermittent”, the F, obey the power law

Fy(8y) o« (6y)~% , (by — 0). (20)

The powers ¢, (slopes in a double-log plot) are related [14] to the anomalous
dimensions

dg = ¢g/(q—1) , (21)
a measure for the deviation from an integer dimension. Equation (20) is a scaling law
since the ratio of the factorial moments at resolutions L and ¢

R = F(0)/F(L) = (L/0)* (22)

only depends on the ratio L/, but not on L and ¢, themselves.

As pointed out above, the experimental study of correlations is difficult already
for three particles. The close connection between correlations and factorial moments
offers a possibility to measure higher-order correlations with the factorial moment
technique at smaller distances than previously feasible. Via (21), the method further
relates possible scaling behaviour of such correlations to the physics of fractal objects.

One further has to stress the advantages of factorial cumulants compared to fac-
torial moments, since the former measure genuine correlation patterns, whereas the
latter contain additional large combinatorial terms which may mask the underlying
dynamical correlations.

The definition of “intermittency” given in (20), has its origin in other disciplines’.
It rests on a loose parallel between the high non-uniformity of the distribution of
energy dissipation, for example, in turbulent intermittency and the occurrence of
large “spikes” in hadromnic multiparticle final states. In the following we use the
term “intermittency” in a weaker sense, meaning the rise of factorial moments with
increasing resolution not necessarily according to a strict power law.

3. The state of the art

The suggestion that normalized factorial moments of particle distributions might show
power-law behaviour has spurred a vigorous experimental search for (more or less)
linear dependence of In F;, on —Inéy. A review of the present situation is given in
[16].

As an example, we give Fig. 2 where NA22 data [17] are plotted as a function
of —In@?, with all two-particle combinations in an n-tuple having Q% < Q. The

§ For a masterly exposé of this subject see [15].
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Figure 2. Correlation Integral Method applied to NA22 data in terms of Q2.

following observations can be made:

i) with the (one-dimensional) distance measure Q?, the moments show a steep rise
with decreasing Q?;

ii) negatives are much steeper than all-charged,

iii) Fy is flatter for (+—) than for all charged or like-charge combinations.

The last two observations directly demonstrate the large influence of identical
particle correlations on the factorial moments and their scaling behaviour. These
results agree very well with results from the UA1 collaboration [18]. In [19] it has,
furthermore, been shown in terms of the K, (éy) of (16) that genuine correlations exist
at least up to order ¢ = 5 in hadron-hadron collisions.

Of particular interest is a comparison of hadron-hadron to ete™ results in terms
of same and opposite charges of the particles involved. This has been done for UA1
and DELPHI data in [20] and is shown in Fig. 3 for ¢ = 2 (in fact, in this figure
a differential form of (18) is presented). An important difference between UA1 and
DELPHI can be observed on both sub-figures: For relatively large Q%(> 0.03 GeV?),
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Figure 3. Comparison of correlation integrals for ¢ = 2 in their differential form (in intervals
Q?, Q% +dQ?) as a function of ; log(1/Q?) for e*e~ (DELPHI) and hadron-hadron collisions

(UA1).
where Bose-Einstein effects do not play a major role, the ete™ data increase much
faster with increasing —;log @Q? than the hadron-hadron results. For ete™, the in-
crease in this Q? region is very similar for same and for opposite-sign charges. At
small Q?, however, the e*e™ results approach the hadron-hadron results. The authors
conclude that for eTe™ at least two processes are responsible for the power-law be-
haviour: Bose-Einstein correlation following the evolution of jets. In hadron-hadron
collisions at present collider energies mainly Bose-Einstein effects seem relevant.
The exact functional form of F} is derived from the data of UA1 and NA22, again
in its differential form, in Fig.4. Clearly, the data favour a power law in @) over a
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charged pairs in UA1 (preliminary) and NA22, compared to power-law, exponential, double-
exponential and Gaussian fits, as indicated.

(non-scaling) exponential, double-exponential or Gaussian law.

If the observed effect is real, it supports a view recently developed in {21]. There,
intermittency is explained from Bose-Einstein correlations between (like-sign) pions.
As such, Bose-Einstein correlations from a static source are not power-behaved. A
power law is obtained if i) the size of the interaction region is allowed to fluctuate,
and/or ii) the interaction region itself is assumed to be a self-similar object extending
over a large volume. Condition i) would be realised if parton avalanches were to
arrange themselves into self-organised critical states [22]. Though quite speculative
at this moment, it is an interesting new idea with possibly far-reaching implications.
We should mention also that in such a scheme intermittency is viewed as a final-state
interaction effect and is therefore not troubled by hadronisation effects.

In perturbative QCD, on the other hand, the intermittency indices ¢, are directly
related to the anomalous multiplicity dimension vy = (6a,/ 7)/2 (23, 24, 25, 26] and,
therefore, to the running coupling constant ;. In the same theoretical context, it has
been argued [24, 25, 26] that the opening angle x between particles is a suitable and
sensitive variable to analyse and well suited for these first analytical QCD calculations
of higher order correlations. It is, of course, closely related to Q>

A first analytical QCD calculation [24] is based on the so-called double-log-ap-
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proximation with angular ordering [27] (for a recent experimental study of angular
ordering see [28]) and on local parton-hadron-duality [29]. A preliminary comparison
with DELPHI data {30] gives encouraging results, even including an estimate for the
running of the strong coupling constant as.

4. Summary

Multiparticle production in high-energy collisions is an ideal field to study genuine
higher-order correlations. Methods also used in other fields are being tested and
extended here for general application. Indications for genuine, approximately self-
similar higher-order correlations are indeed found in hadron-hadron collisions, but
need to be establised in their genuine and self-similar character in e*e™ collisions at
high energies. At large four-momentum distance Q?, they are not only expected to
be an inherent property of perturbative QCD, but are directly related to the anoma-
lous multiplicity dimension and, therefore, to the running coupling constant a,. At
small Q?, the QCD effects are complemented by Bose-Einstein interference of identi-
cal mesons carrying information on the unknown space-time development of particle
production during the collision. The interplay between these two mechanisms, partic-
ularly important for an understanding of the process of hadronization, is completely
unknown, at the moment.
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