
A
TL

-D
A

Q
-P

R
O

C
-2

02
1-

01
0

08
O

ct
ob

er
20

21

Computing and Informatics, Vol. XX, 2021, 1–14, V 2021-Oct-8

THE TRIGGER PERFORMANCE MONITORING
AND RATE PREDICTIONS PREPARATION
FOR RUN 3 AT ATLAS EXPERIMENT

Aleksandra Poreba on behalf of the ATLAS Collaboration

CERN
211 Geneva 23
Switzerland
e-mail: aleksandra.poreba@cern.ch

Abstract.
Bespoke Cost Monitoring software collates data on the performance of all aspects

of the ATLAS experiment’s High Level Trigger software. These data are exported
for subsequent analysis offline, and are used to understand the resource usage of the
individual trigger selections in terms of the amount of CPU time and the amount
of raw detector data which was required to perform the selection.

For the LHC’s Run 3, the ATLAS High Level Trigger is re-implemented in a multi-
threaded framework with both intra-event and inter-event algorithm parallelism.
We will describe some of the complications and considerations which arise from
monitoring event metrics in a highly parallel environment.

Keywords: CERN, ATLAS, Trigger, Cost Monitoring

Mathematics Subject Classification 2010: AB-XYZ

1 INTRODUCTION

The ATLAS experiment [1] at the LHC is a multipurpose particle detector designed
to record physics events for a wide range of measurements and searches. It consists
of inner and muon tracking detectors, electromagnetic and hadronic calorimeters,
and uses magnetic fields produced by solenoid and toroid magnets. The detector

Copyright 2021 CERN for the benefit of the ATLAS Collaboration. CC-BY-4.0 license

2 A.Poreba

records the collisions delivered by the LHC at a rate of 40 MHz (for proton-proton
data taking).

The ATLAS experiment was not designed to record all these collisions, as most
of these are not interesting for physics analysis. The ATLAS trigger system (ar-
chitecture is presented in the Figure 1) aims to select the interesting collisions in
real-time. The first-level trigger is implemented in hardware and uses a subset of
the detector information to accept events at a rate below 100 kHz. It is followed by
a software-based trigger HLT (High Level Trigger) that reduces the accepted event
rate to 1.5 kHz on average, depending on the data-taking conditions. An extensive
software suite [2] is used for real and simulated data reconstruction and analysis, for
operation and in the trigger and data acquisition systems of the experiment.

The HLT runs on a large computing farm of CPUs. During the shut-down
between data-taking periods, the machines are being upgraded in order to achieve
higher processing efficiency. However, estimations of HLT resources usage are also
required to inspect if the new software will be able to process the data with a desired
frequency. The Trigger system is equipped with such tools to predict the software
performance in advance of collisions.

Level-1

Le
ve

l-
1

A
cc

ep
t

Level-1 Muon

Endcap
sector logic

Barrel
sector logic

Level-1 Calo

Central Trigger

MUCTPI

L1Topo

CTP

CTPCORE

CTPOUT

Preprocessor
nMCM

Detector
Read-Out

ROD

FE

ROD

FE FE...

DataFlow

Read-Out System (ROS)

Data Collection Network

Data Storage

Muon detectors including NSW

Calorimeter detectors

High Level Trigger
(HLT)

Processors

RoI

Event
Data

TileCal

Accept

Tier-0

e/j/g
FEX

FELIX

TREX

Fig. 1: Functional diagram of the ATLAS Trigger and Data Acquisition system in
Run 3 [3].

1.1 Trigger Menu

The HLT filtering process consists of selection steps, referred to as chains. Each chain
has defined physics thresholds that are required to consider an event as interesting

The ATLAS Trigger performance monitoring 3

for physics analysis. The chains are defined in the Trigger Menu, different menus
are prepared for different data taking types (heavy ion, proton-proton physics).

In each step, a series of physics reconstruction algorithms are executed in order
to retrieve the details of the recorded event. Afterwards, the chains are tested to
check if the given chain’s criteria were fulfilled. If not, further algorithms won’t be
executed and an event is rejected. The chain’s steps are processed until either the
chain rejects the event at the end of a step, or passes the final step and hence passes
the event.

The order of algorithms within a chain relies on an early-rejection mechanism.
The early steps should be the most selective and rejective. If a step fails, steps that
depend on it are removed and, as a consequence, many chains will be rejected. This
way the computing resources usage can be reduced.

1.2 Cost Monitoring

During online data taking or data reprocessing monitoring data is collected in addi-
tion to physics data. One of the available monitors is the Cost Monitor that enables
data-driven CPU usage predictions. The "cost" stands for the execution time of
algorithms or events, based on which the resources estimations can be performed
in advance of collisions. In the Trigger development phase, it can be used to spot
problematic resource usage and optimize the framework.

When collecting the data, 10% of all the events are monitored by the Cost
Monitor. With the HLT execution reaching up to 100 kHz rate, up to 10 kHz of
monitoring data is recorded. Statistics relating to the execution of the algorithm
and its request for raw detector data are saved to perform the offline analysis: start
and stop timestamps, requested data size, and status flags.

The Cost processing is based on a separate HLT output data stream containing
recorded cost monitoring details. After processing the monitoring data a ROOT [4]
file is produced with a set of histograms illustrating the execution performance of
different Trigger areas, for example, algorithms, chains, threads occupancy, or the
read out system. A set of Comma Separated Value files is created from the moni-
toring histograms with different available summaries presenting alternate overviews
of the resource usage. The result can be displayed on the Trigger Cost Browser
website, equipped with tools to enable easy browsing of the summary tables. The
process and result structure was described in detail in Ref. [5].

1.3 Multithreaded Framework

The frameworks used in the Trigger, Athena [6] and Gaudi [7], were designed for
single threaded operations. Since that time the computing market has changed to
favoring multi-core processors for higher processing efficiency. The same is not true
for memory; the prices are oscillating over the last years and no longer matching the
decreasing trend. The observed trends are presented in Figures 2a and 2b. These

4 A.Poreba

changes encourage a concurrent framework approach with shared memory rather
than single threaded processing.

10
0

10
1

10
2

10
3

10
4

 1970 1980 1990 2000 2010 2020

Year

Number of

Logical Cores

Frequency (MHz)

(a)

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

 1970 1980 1990 2000 2010 2020

M
e
m

o
ry

 p
ri
c
e
 U

S
D

/M
b
y
te

Year

(b)

Fig. 2: Left: CPU frequency and logical core count trends are presented based on
data [8]. Right: illustrates memory price trends between 1975 and 2019, based on
data [9].

During Run 1 and 2 chains and their algorithms were executed linearly using
a single-threaded approach. The results of algorithm executions were cached and
could be reused in the future if required by other chains to minimize the computing
costs.

For Run 2 the framework was upgraded to support a multi-processing approach
with Athena instances being forked after initialization. The processes shared the
memory at the OS level as long as the pages stayed the same. In case of any change
in execution between forks, each one received its own copy of that page.

For Run 3 both Athena and Gaudi are redesigned to support both the multi-
process and multi-threaded mode. The new version of Athena, AthenaMT [10] is
based on Gaudi Hive [11] with a concurrent task scheduler based on Intel Thread
Building Blocks (TBB) [12].

The High Level Trigger was re-implemented in the new concurrent framework.
Instead of processing a single chain at a time then caching a result, a step is now
executed for all of the chains with the same input only once. The processing is
parallel both inter-event (multiple events can be processed in parallel), intra-event
(algorithms for one event can be executed in parallel provided they have needed
input), and also in-algorithm (algorithms can use multithreading specific operations,
for example concurrent loops). A schematic example of concurrent events processing
in HLT is shown in Figure 3.

2 COST MONITORING IN ATHENAMT

The multi-threading redesign changes also affected the Cost Monitoring. An algo-
rithm execution can no longer be associated with only one chain, which required
revising the way the Cost data is created.

The ATLAS Trigger performance monitoring 5

Fig. 3: Schematic flowchart describing concurrent event processing in AthenaMT.
Each shape corresponds to a type of algorithm and each colour corresponds to data
associated with one event. Data flow is represented by arrows.

Which chains actually executed the algorithm (i.e. chains which weren’t already
rejected in an earlier step) can be determined based on the navigation data generated
during the HLT’s execution. After each algorithm execution the summary with a
result is created and, in the end, saved in the output data stream file for further
physics analysis. Based on these results the Cost "Chain Summary" is created by
checking if a chain’s algorithms navigation item was created for the processed event.

In AthenaMT the execution time is the same for all chains that include a given
algorithm. In the past if the algorithm result was cached, the second execution time
was 0 - cached result was used. This created an illusion of "free" chains, that used
only cached results when in fact the cost was spread between other chains that were
executed earlier. The new approach is more reliable showing the true cost of the
chain.

Table 1 presents a comparison of Run 2 and Run 3 cost performance results for
two chains: selections A + B and A + C in the order of execution. In the Run 2
Cost Summary the execution time of the A + C chain (executed later than the A +
B chain) is only 50 ms - cached A result from the first executed chain was used and
only C selection result had to be obtained. In AthenaMT the real execution time
of a chain is shown. In the A + C chain the A execution is no longer hidden as a
result of caching and the chain execution time does not depend on the order of the
chains.

If the order was switched, the results for Run 2 would be different: 250 ms for
A + C chain and 100 ms for the A + B chain. The new Cost Monitoring framework
is resistant to such changes.

6 A.Poreba

Algorithm Execution Time [ms]
Selection A 200
Selection B 100
Selection C 50

Chain Execution time per event
in Run 2 [ms]

Execution time per event
in Run 3 [ms]

Selections A + B 300 300
Selections A + C 50 250
Total measured time 350 350

Table 1: Representative numbers of mean execution time of two chains containing
selections: A+B and A+C recorded by the Cost Monitoring in Run 2 and Run 3
framework.

On the other hand, with the new way of measuring chains’ execution time, the
sum can be higher than the time of execution of the event. Knowing that two chains
can execute one algorithm, the sum of all the chains’ execution times won’t be equal
to the total time of algorithms’ execution. The new changes make a chain’s time
more accurate when comparing to each other. For a global HLT cost analysis, the
time and number of calls for each algorithm are the most important.

2.1 Saving Cost Monitoring Data

The new framework defines a number of processing slots. Incoming events are as-
signed to an available slot and the event will occupy the slot until it has finished
processing. Each slot has its own data store, where the details of the monitored
event are saved. Cost monitoring data from all of the slots are saved to the same
output data stream file.

However, during online data taking and reprocessing, additional details can be
saved to the Master Slot (set in configuration, by default Slot 0). When the event
processed by this slot is monitored by cost, data about events from other slots
is collected also into the master slot’s data store. The data saving mechanism is
illustrated on Figure 4.

This mechanism is used for thread monitoring in order to retrieve details of what
is happening in other slots during current event processing. Events are processed at
the same time on different slots (mentioned in the section 1.3 intra event parallelism).
With the full information we are able to compare the threading performance of the
HLT process over all slots and assigned threads.

The information about the source slot is also saved to the output data stream,
necessary for the Cost Processing. Events originated in non-master slots that are
saved in master slot’s data store should be ignored for other monitors, for example

The ATLAS Trigger performance monitoring 7

Fig. 4: Diagram illustrating cost monitoring data saving mechanism with additional
data saved to the master slot. Three cases are possible: master slot is monitored,
non-master slot is monitored or both master and non-master slots are monitored.

for algorithms and chains. Otherwise, the same data would be processed twice (the
third case on the Figure 4) and the monitored event rate would be higher than 1 in
10. In order to avoid the data bias, the thread monitoring uses only the master slot
saved data.

2.2 Thread Monitoring

Thread monitoring is a new feature possible inside a multi-threaded HLT implemen-
tation. Its purpose is to give an overview of the multi-threading efficiency for given
forks, event slots and threads configuration. The event execution time is not only
determined by all the algorithms execution time but also for "framework time". It
is defined as the time a thread spent outside of scheduled algorithms while waiting
for an algorithm to be dispatched.

By looking at how much time it took to process an event (from the earliest al-
gorithm executed on any of the threads for this event to the latest) and the sum of
all the algorithm’s execution on each individual thread, the time spent on executing
algorithms and on framework related operations can be determined. Algorithms
from other slots whose execution spans the global start and stop of the master
thread add a degree of uncertainty to this measurement, this component is com-
puted separately as unmonitored time. The three values: algorithm, framework
and unmonitored time are illustrated on Figure 5. The way they are computed is
described by equations 1, 2 and 3.

8 A.Poreba

eventTime = globalStart− globalEnd (1)

unmonitoredTime = (globalStart− threadStart) + (threadEnd− globalEnd) (2)

frameworkTime = eventTime− unmonitoredTime− algorithmTime (3)

Fig. 5: Graphic interpretation of event, unmonitored and framework time for Thread
2 based on the flowchart 3. During the event’s time window all algorithms are
monitored (not only algorithms that are running for given event).

Figures 6 and 7 show the fraction of algorithm and framework time. It is ob-
served that in long events, algorithm time dominates whereas in short events the
fraction is closer to being equal, testifying to the good performance of the early
rejection system. The framework time is consistent in all events. Different time of
processing an event depends on the actual event details. The algorithms are only
executed when the conditions are fulfilled and the chain wasn’t rejected earlier. The
mean framework time should stay the same for a given configuration, only the al-
gorithm time varies. Analysing the distribution of algorithm time per event and
framework time per event the best configuration can be identified.

The ATLAS Trigger performance monitoring 9

(a) (b)

Fig. 6: Example of measured time of all the algorithms executed on the thread as
fraction of the monitored event time window. On the right plot the fractional time
is showed as a function of the monitored event time window. Three peaks can be
observed in the plots - one when thread processes algorithms 60% of total time, which
happens for short events (approximately 100 ms), when the event data doesn’t fulfill
the requirements to trigger execution of time consuming algorithms. The other two
peaks represent long events (approximately 300 ms and 3000 ms) when algorithm
processing takes majority of the total time. The peaks correlate with recorded times
of algorithm execution per event. For some of the events included in the data sample
the algorithm processing takes 0% of the time, which is happening when the event
does not fulfill requirements to trigger any of the algorithm executions. The rest
of the time is spent for so-called "framework time". The plots were created with
a small 2018 data sample that was preloaded into the HLT farm and processed
repeatedly. [13]

3 INTERPRETING THE COST RESULTS

Cost monitoring was written into the trigger infrastructure in order to perform de-
tailed offline studies of the system’s performance. Based on Cost data collected
during the data taking, one can not only estimate CPU resources but also access
the details of the HLT execution. The Cost summaries cover executed algorithms,
chains, sequences (groups of algorithms), data requests and the aforementioned
thread occupancies. One additional summary covers the global parameters of the
HLT execution, including mean processing time of the event, number of active events
within a given period of time, or number of algorithm calls in the event.

In the following paragraphs the contents of some of the summaries will be dis-
cussed. Starting with the "Algorithm Summary", different algorithms and their
parameters can be analysed, including:

• Number of calls per event,

• Mean time of execution per event,

• Total algorithm execution time and what fraction of total HLT walltime it is,

10 A.Poreba

(a)

(b) (c)

Fig. 7: Example of measured framework time on one thread as fraction of the moni-
tored event time window. On the plot 7c the fractional time is showed as a function
of the monitored event time window. Three peaks can be observed - one when thread
performs framework operations 40% of the time during short events processing (ap-
proximately 100 ms). The other two correspond to long events (approximately 300
ms and 3000 ms) when the framework time takes a minor fraction of the event time
window. For some of the events included in the data sample the framework time
takes 100%, what is happening when the event does not fulfill requirements to trig-
ger any of the algorithm executions. Based on the plot 7a it can be observed that for
all events the framework time is stable and its mean value equals to 20 ms, despite
fluctuations in framework fraction time. The plots were created with a small 2018
data sample that was preloaded into the HLT farm and processed repeatedly. [13]

• How often the algorithm was called and how often algorithm was executed in
an event,

• If the algorithm requested any data and if these data were cached locally or
fetched over the network.

An example of "Algorithm Summary" table is presented in Figure 8.
The expensive algorithms can be identified by a long algorithm total time. Not

only the measured time is important but also what percentage of the total time the
execution took.

The ATLAS Trigger performance monitoring 11

Fig. 8: Representation of Algorithm Summary table available on TriggerCost-
Browser website containing details about the algorithm executions. They include
number of events in which algorithm was activated, number of algorithm calls per
event, rate of algorithm calls, rate of events in which algorithm was executed, algo-
rithm call duration or total time of algorithm execution. Created based on repro-
cessing 2018 proton-proton collision data with the latest HLT software. [13]

The reasons for poor algorithm performance could be multiple algorithm calls
per event or the time spent waiting for data caused by a high rate of data requests
from the read-out system. The number of chains that executed the algorithm should
be also checked. A chain-algorithm mapping available on the website can be used to
directly access associated chains’ summaries. Naturally, some of the algorithms will
be more expensive than the others, the computational cost of each selection must
be balanced against the available resources and the ATLAS collaboration’s physics
goals.

Another important summary to take into the account performing cost analysis
is the "Chain Summary" containing details about chains’ execution, including:

• Number of events in which chain was active,

• Chain’s execution rate,

• Mean time spent for this chain per event,

• Total chain execution time and what fraction of total HLT walltime it is,

• How many algorithms were called by chain on average.

The table also shows information about the chain’s group, which tells the sig-
nature the chain belongs to. Using that feature signature experts can analyze the

12 A.Poreba

cost of chosen groups. An example of "Chain Summary" table is presented in the
Figure 9.

Fig. 9: Representation of Chain Summary table available on TriggerCostBrowser
website containing details about the chain executions. They include groups the
chain belongs to, number of events in which chain was activated, chain execution
rate, number of algorithm calls that chain made and chain duration. Created based
on reprocessing 2018 proton-proton collision data with the latest HLT software. [13]

The Chain Summary is created using collected details about the algorithm’s
execution. In the concurrent framework, chains executions overlap and they share
the same algorithms. Using chain-algorithm mapping presented in Figure 10 related
algorithms can be explored and the most expensive ones identified.

The Cost studies help to validate the framework by comparing expected and
measured Trigger performance. Based on global mean time per event one can use the
maximum input data rate to the Trigger to calculate the number of CPUs needed (in
terms of total HEPSPEC performance), also taking into account processor efficiency
when using a farm with mixed processor types.

The ATLAS Trigger performance monitoring 13

Fig. 10: Representation of Chain Item Summary on TriggerCostBrowser website that
lists all algorithms related to a particular chain. In this example a jet reconstruction
chain is presented. Each algorithm displays its class and the number of calls that
it made ("AllChains calls"). Created based on reprocessing 2018 proton-proton
collision data with the latest HLT software. [13]

14 A.Poreba

REFERENCES

[1] ATLAS Collaboration: The ATLAS Experiment at the CERN Large HadronCol-
lider, In: JINST3 (2008), S08003. doi: 10.1088/1748-0221/3/08/S08003.

[2] ATLAS Collaboration: The ATLAS Collaboration Software and Firmware, ATL-
SOFT-PUB-2021-001. 2021. url: https://cds.cern.ch/record/2767187

[3] ATLAS Experiment: Approved DAQ Plots, url:
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ApprovedPlotsDAQ

[4] R. Brun and F. Rademakers: ROOT: An object oriented data analysis framework,
In: Nucl. Instrum. Meth. A389 (1997). Ed. by M. Werlen and D. Perret-Gallix, pp.
81–86. doi:10.1016/S0168-9002(97)00048-X.

[5] ATLAS Collaboration: Trigger monitoring and rate predictions using Enhanced
Bias data from the ATLAS Detector at the LHC, ATL-DAQ-PUB-2016-002. url:
https://cds.cern.ch/record/2223498.

[6] ATLAS Collaboration: Athena (2020), url:
https://doi.org/10.5281/zenodo.2641996

[7] Barrand G and others: GAUDI – A software architecture and framework for
building HEP data processing applications, Comput. Phys. Commun. 140 45–55.
(2001)

[8] K. Rupp: Microprocessor Trend Data, url: [Online; accessed 30-08-2021]
https://github.com/karlrupp/microprocessor-trend-data

[9] J. McCallum. "Memory Prices (1957-2018)". url: [Online; accessed 30-08-
2021] http://jcmit.net/memoryprice.htm .

[10] ATLAS Collaboration: AthenaMT: upgrading the ATLAS software framework for
the many-core world with multi-threading," J. Phys. Conf. Ser. 898, 042009 (2017)

[11] B. Hegner, P. Mato, and D. Piparo: Evolving LHC data processing frame-
works for efficient exploitation of new CPU architectures, In: 2012 IEEE Nuclear
Science Symposium and Medical Imaging Conference Record (NSS/MIC). 2012, pp.
2003–2007. doi: 10.1109/NSSMIC.2012.6551463

[12] A. D. Robison: Intel®Threading Building Blocks (TBB), In: Encyclope-
dia of Parallel Computing. Ed. by D. Padua. Boston, MA: Springer US, 2011,
pp. 955–964. isbn: 978-0-387-09766-4. doi: 10.1007/978-0-387-09766-4_51. url:
https://doi.org/10.1007/978-0-387-09766-4_51

[13] ATLAS Experiment: Trigger Operation Public Results,
url: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/
TriggerOperationPublicResults

