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1. Introduction

A renewal of intercst in chiral Lagrangian theory was excited by recent progress in the con-
struction of realistic eflective chiral meson Lagrangians inciuding higher order derivative
terms as well as the gauge Wess-Zumino term from low-cnergy approximations of QCD. The
program of bosonization of QCD, which was started about 20 years ago, in the streng sence
is of course also bevond our present possibilities. Nevertheless there is some success related
to the application of functional methods to QCD-motivated effective quark models [1}-[7]
which are extensions of the well-known Nambu-Jona-Lasinio (NJL) model [8]. These func-
tional methods can be applied also to the bosonization of the effective four-quark nonleptonic
weak and electromagnetic-weak interactions with strangeness change |AS] = 1 by using the
generating functional for Green functions of quark currents introduced in (9], [10].

The NJL model, which we consider iv this paper. incorporates not only all relevant
symmetries of the quark flavour dynamics of low-energy QCD, but also offers a simple schieme
of the spontanecous breakdown of chiral symmetry arising from the explicit symmetry breakuy;
terms due to the quark masces. In this schemne the curtent quarks transit into constituent ones
due to the appearance of a nouvanishing quark condensate, and light composite pseudoscaiar
Nambu-Geldstone bosons emerge accompanied also by heavier dynamical vector and axixi
vector mesons with correct relative weights arising from rencrmalization.

Independently from the method of including the wector and axial-vector fields o ile
effective chiral Lagrangian, integrating out the vector and axial-vector meson resomasiocs

essentially miodities the coupling constans of the pseudoscalar low-energy interactions. iu
particular, in refs.f11]. [12] it was shown that the structire constants L; of the Gasser
Leutwyler gcneral expression for the O(p*) pseudoscalar Lagrangian {13] are largely saturst

by the resonance exchange contributions giving a product of terms of O(p?). But in this ¢

if the O{p?) Lagrangian contains meson resonances, their climination can lead to the downini-
counting meationed in ref.[11]. The resonance contributions o the purely pseudoscalar i
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weak Lagrangian and the modification of s structure, induced by integrating out the
3 &) ~ 2 2

meson exchanges, were discussed in rel.[14].
In this work we consider the effective nonlinear Lagrangian for peendoscalar mesens wins’
arises after integrating out the explicit vector and sxisl-vecior resonances in the genernting

Sy

functional of the bosonized NJL model. To perform such integration we use a ethad b
on the invariauce of the modualus of the quark determinant under a chiral trausformations. - &

on the application, of the static equations of motior to & special confignration of the ciral

rotated fields. The elivaination of vector and axial-vector degroes of freedom from the moduin:

of the quask determinant leads to a modification of the general structure of the effeciive sio
Lagrangiau for the pscudoscatar sector at (p'} and to 3 redefivivion of the correspondt vz

Gasser-Leutwyler structure coefficients L. This method of reduction of meson rosonance s
be extended to the pracedure [10] of chiral bosonization of weak and electromagueiic-wek
currents and can be uged for obtaining the corresponding rediced meson currents entering wo
the bosonized nonleptonic weak Lagrangians. In such approximation the problem of dovit.
countitig dos not arise. The cifect of 74, -mixing, being most important for the descrigtic.
of radiative weak decays, 15 taken intn actouut by the corrasponding xAi-diagonaliz -
factor.

In Section 2 we discuss the ba

- formalist: and display all definitions and consiu

related 1o the bosonization of quarks in NJL wedel, In Section 3 we consider the

equations of motion for chiral rotated ccllective meson ficlds in unitary gavge. Apply ag

of thin

these equations of motion we eliminate the heavy meson resunances from the modulu



quark determinant and obtain in such a way the effective pseudoscalar strong Lagrangian
with reduced vector and axial-vector degrees of freedom. The reduced pseudoscalar (V — A}
and (S — P) currents corresponding to the respective quark currents and quark densities are
obtained in Section 4. In Section 5 we discuss the results of some numerical estimations and
phenomenological analysis of the structure constants for the reduced strong Lagrangian and
currents.

2. Bosonization of the NJL model

The starting point of our consideration is the NJL Lagrangian of the effective four-quark
interaction which has the form [g];

Lot = 7(id — 1103q + Lin, (1)

o J AN AN o S AN A
Lint = 201{((137) + (qi"r 3(1/\ } 2621 (qv“;q) + («n’“v 7!7) }

Here Gy and G, are some universal coupling constants; g = diag(mg, m3,...,ma} is the
current quark mass matrix (summation over repeated indices is assumed), and A* are the
generators of the SU(n) flavour group normalized according to trA°A* = 26,,. Using a
standard quark bosonization approach based on path integral techniques one can derive an
effective meson action from the NJL Lagrangian (1). First one has to introduce collective
fields for the scalar (S), pseudoscalar (P), vector (V) and axial-vector (A) colorless mesons
associated to the following quark bilinears:

with

a
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5% = 4G g—q. P* = 4Gy g Vi = 14G§y,.—q, A% = 14(12(1’7#’)5“;*(/ .
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After substituting these expressions into Lxy. the interaction part of the Lagrangian is of
Yukawa forn:. The part of Lxy; which is bilinear in the quark fields can be rewritten as

L= vq_ilﬂ)‘q
with D being the Dirac operator:
iD= 04V + Ay) = Pad - PO = [i(5+ An) - 1Py 1 (D4 ALy — oNPL (2)

Here & = S +iP, 7 = Vvt A= Ay Pryp = %(1_&:75) are chiral projectars; AZR/L =V+A
are right and left combinations of fields, and

) ,1«"\& , - aAa ; a/\a
S PP Vs A i

Wi

5=45"
are the matrix-valued collective fields.

After integration over quark fields the generating functional, corresponding to the effective
action of the NJL model for collective meson fields, can be presented in the following form:

Z .= /'Dq) D' DV DA exp[iS(9, &', V. 4)], (3)



where

1 ' ~
S(®,1, v, _A)j/d‘l»[-— — e[ ® — o) (D — mg)] - tr(V2 4+ A2)| —i Tr'llog(:D)] (4)
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is the effective action {or scalar, psceudoscalar, vector and axial-vector mesons. The first term
in {4), quadratic in meson fields, arises from the linearization of the four-quark interaction.
The second term is the quark determinant describing the interaction of mesons. The trace
Tt" is to be understood as a space-time integration and a “normal” trace over Dirac, color
and flavor indices:

I = /d“ITr, Tr = tr, tr, - try.

The quark determinant can be evaluated either by expansion in quark loops or by the heat-
kernel technique with proper-time regularization {15], [16]. Then, the real part of log ( det 7]5)
contributes to the non-anomalous part of the effective Lagrangian while the imaginary part
of it gives the anomalous effective Lagrangian of Wess and Zumino which is related to chiral
anomalies [17].

The modulus of the quark determinant is presented in the heat-kernel method as the
expansion over the so-called Seelev-deWitt coefficients hy:

4 - /1
ST DR TR S (3)

(1 " uzk

'le.r) = / ‘dt et

is the incomplete gamma function; p plays the role of some empirical mass scale parame-
ter which will fix the regularization in the region of low momenta, and A is the intrinsic
regularization cutofl parameter. It can be shown, that g arises as a nonvanishing vacuum
expectation value of the scalar field S. 1t corresponds to the constituent quark mass. The
formulae for the Seeleyv-deWitt coefficients hy up to k = 6 are presented in {16].

The effective mesen Lagrangians in terms of collective fields can be obtained from the
quark determinant after calculating in tr'h;(x) the trace over Dirac indices. The “divergent”
part of the effective meson lLagrangian is defined by the coeflicients kg, hy and hy of the
expansion (5}):

. Y f ﬂz ot 1 R
Lain = 1“@?2”{1 (0, —2-> [D"d) D¢t - M? 4 5 ((PW) F(FRY )
. 2\
zlt\ze"“‘/“ — uir (0 TZ)} M}. (6)

where M = &' — ;2. D* and D, are covariant derivatives defined by

log | det :.ﬁ] [
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where
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FRL = g AR g AR L [ARIE 4814
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are field-strength tensors.



The p*-terms of the finite part of the effective lagrangian arise from the coeflicients fy
and hy. Assuming the approximation I'(k, u*/A?) = I'{k) (valid for & > 1, and p?/A? < 1}
one can present this part of the effective meson Lagrangian in the form

(y* N, Ir =2 — 2 i — 2
£9) = Ll DD - (Do D, oY + - (D4 D, !
i o r{3 (' D*®D (D*¢ T,9") ] Ho (D D@

w MDD T+ MDD, ¢)

2 - - !
- g (D"(b Dot FL 4 D et Do FR) ,iulf'l’j[d)‘F" v

v
Coalipbaz g prye] ) )
Sl (G LA (4)
where M = ¢1¢ — 4%

We will consider a nonlinear parameterization of chival symmetry corresponding to the
following representation of ¢: \

¢ =nNa.

where U{r) i+ the matrix of scalar fields belonging to the diagonal Alavor group while matrix
Qx) represcuts the pseudoscalar degrees of freedom ¢ living in the coset space {'(n),, x
U(n)r/Uy(r, which can be paranieterized by the unitary matrix
Q) <l (\\ (2] = ()2
r)=exp | e elel ) pfr) = et (a)—.
NO¥oN ) 2
with Fp being the bare 7 decay constant. Under chiral rotativns
¢ q=(PLé+ IréR) g
the fields ¢ and Af/l“ are transforined as
+ 5t
® — b = ¢, b,

and

E S A L0 T GRS WO T MUY S | e T A (- P L3 (9)

I

For the unitary gauge ;} = €r = ) the rotated Dirac vperator (2) gets the form

D -+ iD = (P90 - PR D(PLO + PROT = HH+ V4 Ay) - T (10

It is worth noting that under local Up{n) « Ug{n) transiormations the modulus of the quark
determinant is iuvariant, while the quadratic terms of 1), A, und the chiral ancmaly do not
respect this ivariance,

Taking into account the equations of motion for nonrotated scalar and psendoscalar meson
fields in nonlinear parameterization one can reproduce from (4} and eqs.(6,8) the following
general expression of the effective ineson Lagrangian including p*- and p*-interactions:

: R .
chorred uiigt.r{l,“[,“)nt S (MU + UTM)

1N 2 1 P 3 ' Y
Ly — ;2112 } (Ll‘L“L") + Lotr E[Lu-[w] + 3L LEY )+ Lgtr((L,,L ) )



= Latr(Lu L) (MU + UMY~ Lot [L L (MU + UMT)]
2 2
+ Lo (tr(MU" + UM)) 4 Ly (MU - )
+ Letr(MUTMUY + UMTUMY) — Lgtr(F:iR“R" +FL L“L")

Lot (UTERUPE) - Hyr((FRY + (FL)?) + HatrM M* | (1)

where the dimensionless structure constants Li(s = 1,...,10) and H,, were introduced by
Gasser and Leutwyler in ref. [13]. Here we use the rotations

U=QF: h,=DUU . R =UDU ; Ft=y=t
with

y=T(0,12/A%) 1 M= diag(x2, 2% 0 X2) . xP=mgp/(C Fhy= —omb<iq>Fg

and < gq > being the quark condensate. Moreover, the coeflicients L; and Hy, are given by
Ly — %Lz = 4= L¢ =0 and

N1 v, 1
Ly = ———, 37 T IS
167212 16726
N. Nif 1
L. = -—- fy —-1). L7 — e Y — = }.
s = gtV 167[‘26(‘”” 12)
NoT(Y 1 N. |
o= |G e
N1 N1 i
To = =i =t [y o),
10 6rz6 T T Tewed (3’ 7)
", - N (x4 20 11 (12)
S el S T =

where x = —uFE/ (2 <gy>).

The effective (nonreduced) Lagrangian for the pseudosczlar sector, taking also into ac-
count the emission of the “structural” photons A,, can be obtained from (11) when V, =
A, = 0in the covariant derivatives and when the tensor FRIL s vepiaced by ie(,4, — 8,4,).
In the following section we will discuss the reduced nonlincar Lagrangian for pseudoscalar
fields, which arises from generating functional (3) after integrating out the vector and axial
vector degrees of freedom in the modulus of quark determinant.

3. Strong Lagrangians with reduced vector and axial-
vector fields

To perform the integration over vector and axial-vector fields we will use the fact that the
modulus of quark determinant is invariant under chiral rotations. Then, the pseudoscilar
fields can be eliminated from the medulus of quark determinant in the effective action (4)
by using the rotated Dirac operator (10) for unitary gauge. After such transformation ihe
pseudoscalar degrees of freedom still remain in the mass term of eq.(4), quadratic in meson
fields, which are not invariant under chiral rotations. Since the masses of the vector and

o



axial-vector mesons are large compared to the pion mass it is possible to integrate out the
rotated fields V, and A, (9) in the effective mesor action using the equations of motion which
arise from the mass terms of tie cffective action {4) in the static limit [18]. In such an
approximation the kinetic terms (ﬁf/LV for the rotated fields ‘Ny and /Iu as well as higher
order derivative nonanomalous and Wess-Zumino terms are treated as a perturbation.

In terms of the rotated fields v, /L {9) the quadratic part of the effective action (1) leads
to the Lagrangian

F2 0 2 . ’ -
Ly = qo—tr([\llf +hoe) - (7;—10‘1) bV = v.)% + (A, —a)?]. (13
v

wiiere (my, /g% )2 = 1/(4(,), with mi: and g§ being the bare mass and coupling coustant of
the vector gauge field, and

v = f,- (swun* + s‘z*aﬂﬂ‘), 4y = l,(nauof - 0tg,0).

The modulus of quark determinant contributes 1o divergeni and finite parts of the effective
meson Lagrangian. In terins of the rotated fields. taking into account that for unitary gange
¢ — X, the divergent part of the quark determinant (6} gives

. K r Lrmaye | owmne ,
Con = gl e LR (P (1

where the approximation ¥ = 4 was used. The p*-terms of the finite part of the effective
meson Lagrangian: (8) are of the form

4 N, ~ 8 ~ ~ R ~
[V c 172 2 2 -2 “R
E;:n = ﬁznstr{[‘/"" AR 4 E(A“A,,) - §AUA (F, + ‘Lw)
Lim i Yhzn e =raa .
© R gl (15)

The kinetic terms (F[.i,/l ). arising from the sun of Lagrangians (14) and (15), lead to the

standard form after rescaling the rotated nonphysical vector and axial-vector fields V.. A

s Nyl
1) 4]
Vo9V Tk 79 T ;
e A A= A (15)
Here
. P -1y . .

oo | N (Bl NP L Ngh)? (17)

BT me\ N C 7T g

and VJph), /’i‘(}m) are the physical fields of vector and axial-vector mesons with masses

042
2 (m) 2 _ (my)
mé = TR M =

72, (18)

where Z3 =1 — (Fogl /m%)? is the 7 Aj-mixing factor.

Since in the following we also want to investigate the radiative processes with “structural”
photon emission in addition to inner bremsstrahlung ones, it is necessary to include electro-
magnetic interactions in the bosonization procedure. Obviously, one then simply has to use



the replacements V" — V™ e AP or V, o V, +1c04,Q, where Q is the matrix
of electric quark charges and

0 ~y1/2
Al v A (ph) _ co(l +7)
T e o
are the physical electromagnetic field and charge respectively.
The static equations of motion arise from variation the mass terms of eq.(13) in chiral

limit over rotated fields V. A4, and lead to the relations

Ol A= 22al) (19)
and
FRI =74 =1l 4 ieoQF D)+ ool A Qv — A0Q.vM])
+ leoZi (AR )~ AQ al)). (20)
Here
o = %(Qofjm* +Q0I0). ) = %(nay)m — Q) = kL

A = A+ HiegA Q. H] = D s TP AYMQ. #] s the prolonged derivative describing
the emission of the inner bremsstrahlung photon while the electromagnetic field strength
tensor FiD = 9,A, — 3, A, corresponds to the structural photon (eo}'ﬁl) = e;""‘)fﬁl'ph)); and
LY = (B0 UL, Further, we will omit for simplicity the upper indices () corresponding
to the inner bremsstrahlung photon and only teusors FI will be kept explicitly. We will
also omit everywhere the upper indices (ph) assuming that all photons and electromagnetic
charges in further formulae are physical.

Applying the equations of motion (19} to the terms of the effective actions (13,14).
guadratic in vector and axial-vector fields. one reproduces the standard kinetic term for
the pseudoscalar sector:

F‘Z
Liin = — ——{in(l,uu)‘ {21)

In the same way the pi-terms of the actions (14,15) lead to the reduced Lagrangians for
pseudoscalar mesons of the types

Lltred ;Zm(u,“, LV]Z) + (3L, + Z;;)u((L“L“)‘Z)
- ‘ZIj,z,tr(l‘“L“ﬁm\’lfg) — 2ieF ) Totr (QEhL 1)
- z(ie)zlmn[AZ (Q{LLuﬁR QERL R — Qzékliifn)
— A A (QERL R QERL tr - QL L*R) (22)
corresponding to the effective p*- Lagrangian in the Gasser- Leutwyler representation with the
structure coefficients L; defined by the relations,

= N, | 4 7 74
= o 70405 G )




Iy = - /4”

Ls =

Lo =

1:10 = (23

where

4. Reduced currents

The path-integal bosonization method can be applied to the weak and electromagnetic-weak
currents by using a generating {unctional for Green functions of quark currents introduced
in [9] and [10]. After transition to collecuive fields in sucht 2 generating functional the latter

is determined by the analog of formuta (5) where now 11D is replaced by
D) = {0+ Ar - GiR) — (P + 0 - nr) PR plo+ A=) = 197 mg - n P (24)

Here 7p.p = 1/,‘/'_,2“',“% and nun = Ny 72 are the external sources conpling te the quark
currents ﬁl"{”n‘y“%q and quark densities (71)[”1(\/‘;(1 respectively. The quark densities define
the contributions of the penguin-type four-quark operators of the effective nonleptunic weak
Lagrangian {19} t. the matrix elements of relevant kon decays. The bosonized (V 3 4) and
(S ¥ P) meson currents, corresponding to the quark currents JPLJn\,L-‘\,%q and quark densitics
EPL,R%ZQ, can be obtained by varying the quark determinant with redefined Dirac operator
(24) over the externel sources conpling with these quark bilinears [10]

For further disrussions it is convenient to present the bosonized weak and electromaguetic-
weak (V — A)-curreat for psendoscalar scetor, generared by the nonreduced Lagrangian (11}
and inciuding the electromagoetic-weak structural photon emissior, i the form:

2

(nom—red)a i [\ A
g = imt(N)

. m{xi;;ﬁ;(“{(lm C DAY LU 4 B L

& L L) /z‘,a([lﬂt.L"})l'}
J

+ pﬂjhv{/\‘ (Rs({Q. L]+ QU LY]) + Re 1)*((/(9(;‘*)}} A

Here. the first tert s the kinetic current and all other terms originate {rom the p*-part of
]
Lagrangian (11); R; are the structwe coetlicients:

) I |- PN
Ry= Ly, Ro=2Ly. He=20Ly+ s, Ri=—5lo, Ry = 72"107 Re = Lyy. (261

The hosonized (S = P) current for pseudoscalar sector, generated by the Lagrangian (11)
and including the structural photons, has the form:

2

F , -
e o To,lmr(xﬂu)+,,H(:lu(,x“Lﬁu), (27)



where R = —1/(2r) and G, = —L;. Here, the first term i generated at p?-level by mass
terins of Lagrangiau (11}

Combining the method of ithe chiral bosonization of quark currents with the static equa-
tions of motions it is possible to abrain the busonized meson currents for pseudoscalar sector
with the reduced vector and axial-vector degrees of freedom. In this way one can reproduce
the standard kinetic (V' — 4) current for pseudoscalar mesous

22
{kin)a L0, (e
H = —41‘— r{A l“) R

which arises from the terms of effective astious {13,14), quadratic in vector and axial-vecior
rotated fields, ofter redefinition of the rotated fields

Vi Vi = 18] + Canmaél) . A — Ay 4 (&0, 6L~ Ernputl) |

and variation over 5., with applying the static equations of motion.

Applyving the same procedure to the pirerms (15) of the effestive action we also chtain
the bosonized weak and electromagnetic-weak 1V — A) currents for pseudoscalar sector with
the reduved vector and axial-vector degrees of fieedom. It is cenvenient to present these
reduced currents in the forn

y

Y
- mi,f‘ (Raly L7+ Rall, 1,17} + Rt (bl LY1ER)ED }

JE L R (A ErMEL L

v} v e
)(fw HS“ % KRGk, L U )
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with R; beisg the structuie voeificients, issociated with the corresponding parameters K, of
the representaiion (25}

1‘1 == 16—77'2 7215]1(5’_1)

Ry - 10 RN SR

T R TR L e A

~ I N

o gt = sy

A | S

R 4 {28,
& Tor? 13 741 o

Thus, the reduction of the vector and axial-vedlor Aiclds does not change the kineuc terns
of the bosonized (V' — A) currens while the stracture of the p*-part of {V — A) current is
strongly modified {compare (25) and (28)).

Using the bosonization procedure of ref.{10] and the equations of motion (19} we obtain
also the reduced (S -~ P) meson currents. After redefinition of scalar fields

5o 8= 2%nrtl. DA 1 13 (30)

[

and variation over 7, with applying the static cquations of motion the divergent part of the
effective action (14) and the finite part of the effective action {15) lead to the scalar cuirent

=i

3 f o 2 .
Jehe = ~ERRZE(\U) + pRZGGr (ML) (1)



with

: N,
7= . - —22
o= G I( )

It can be easily shown that the reduction of the vector and axial-vector fields does not
change the physical results for matrix elements of the bosonized gluonic penguin operator,
arising from the product of scalar currents geuerated by the divergent part of the effective
action. In fact, both for the reduced and for nonreduced currents the corresponding con-

tributions to the penguin operator matrix element can be presented effectively in the same
form:

< P AR < {0,U 0"UNys > .

On the other hand the structure of the pseudoscalar mesen (S — P) current generated hy
finite part of the effcctive action proves to be strongly modified by the reduction of the vector
and axial-vector fields.

5. Numerical estimates

To discuss some physical consequences for pseudoscalar nonet of mesons we have to fix ivi-
tially the numerical values of the various parameters entering in the reduced Lagrangian and
currents. The pardmetcrx 1’ can be fixed by the spectmm of pseudoscalar mesons. Here we
use the values v2 = 0.0114GeV?, y3 = 0.025GeV?, and x? = 0.47GeV?: To fix other empir-
ical constants of our model we will use the experiinental parameters, listed in Table 1: the
masses of p- and Aj-mesons, the coupling constant of the p — wn decay , the mm-scattering
lengths ¢!, the pion electromagnetic squared radii <r?_>>.+ and pion polarizability a.+. We
also include in our analysis the data on the 4y — 777~ cross section near to the threshold
(see Fig.1). We will use the relations (17)‘ (18), gv = ¢% (1 +5)~Y% and

o (N . R L ‘
G “"g"[ )F(f ot i ywril A=Z0)|

The wr-scattering lengths are defined by the structure coefficients L, and Ls. For nr-
scattering lengths a! {indices I and [ refer here to the isotopic spin and orbital momentum.
respectively) in one-loop approximation we obtained [20]

W = a9 56)+ 'gag [511 3B 42D + 30 — 6(6% + b+ 3)] .
i = %am n %ug'_’lﬂ%— D - :;(52+b+3)},
m T o,1 1. . .
t’t} = 500 + QQSE[B + 65+a *3 + 5(62 — b“‘ 3)] s
o ™ 1, 2 36 —2a+6 & +4b+3
= C4aDy = - ),
2 2“0[1"( +4D) o( Tty 15
T ; 1 66 —a+3 2 .
2 = Zal|—(C+D 44 — — (P b+3) )
2%[15« L D) - ( R T LT )>]
Here op = = (m,r/() 7 ))2; (l — ), with 3 being the parameter of chiral symmetry

breaking Whl(‘h takes here the leuc B=1/2;a=21(1 — &) and b = (118* — 158 + 3). The
parameters

A = AB 4Am)p B = [3B + Bfoop . = CVB + (,,VYIDOPW D = [)B + Dlonp
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Table 1: Physical input parametors used for the fixing of the empirical constants of the model

Input parameters } Experiment Theory
- ", \ TT0MeV TI2MeV
ma, 1260M eV 1160 MeV’
Gpir 6.3 J 6.8
P T 0.23 £0.05 [23] 0.20
\ aom, —~0.05 + 0.03 23] ~0.04
al . m? | 0036 +0.010 [23] 0.038
al - 1T E3 107 2] 171071
{ ad o (1.3 £ 3} 107 [24] 2. 10
S (0,439 £ 0.030) /7 [25] 0.53 fm?
L Oyt (68414107 fm [26] | 8.0 - 1074 fn? |

include in themselves the Born centribuitions
AP = _l4ar¥(l, - La). BY = 576n%L.. Y =576 (Ly+ sy, DP =576rL,
and the pion-loop rontiibutions caleulated, using the superpropagator method [21]. in ref.[22]:

AP = 15 BT =30 O =55, DT =1L

The electiomagnetic squared radius of the pion is defined as the coefficient of the q*-
expausion of the electromagnetic form factor f7™(¢*):
< "(Pz)”:mh(l’l) >= f:m(‘lz)(l)\ = P2)us

i
LMt =1+

2 2
< et

Being restricted only by pion loops, one gets in the SP-regularization the correspondin
Yy b g >
contribution o the electromagnetic sqnared radins [27]:

. i 1 m 2
2 o teepy b 30 LU — 3 2
<pi oy ar ki) [1(, + In (27rFC) l} 0.062fm* .

where C = 0.577 is the Euler constant. Because the main contribution to this value arises
from the logarithmic term, the kaon loop contribution, which contains the small logaritlim

2
In (m;\-/(27r1'}))) . can be neglected. At the Born level, the contribution to the pion electro-

magnetic squared radins originates from the Ly-term of the rednced Lagrangian (22}

2 (Rorm)_ 127
et B,
o
The pion polarizability can be determined through the Compton-scattering amplitude:

< T (puma(p IS (90, (g2) >= Tulpipe | el + Talpipl i)

11
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[1(i) ~ 2"25/\,5A2 (g,i _ P ]1P2)‘ TI[O) -0

\ Paq P24y

Ty =< oL ()9 — qog2.) Fla192).
where 3(qi¢z) is the so-called dynamical polarizability function. Defining the polarizahility
of a meson as the coeflicient of the effective interaction with the external electromagnetic
field
Viee = —a(E* — H*))2

one obtains

_ Balqiga)

i 8rm,

(9192)=0

The pion-loops give the finite contributions without {/ V.divergences:

2 . 2 &
gloem) _ _ €[ glieer) . _ [0 Y gy
o BTI-'ZFOQ 2, 47?2["02 :;‘;r f(5r) )

where 5, = (q1q2)/(2m2) . f(<) = ¢TVIH() ~ 1, and

2

arctan(¢™! - 1)-1/2) D< (<l

(0 = %(In“’ o m) > 1

The meson-loop coutributions to the pion polarizabilities are

2
(loop) {loop) € E o -5 3
a . =0, a = - oo = 543 1077 f”
" m 384w3 Fm? /

At the Born level, the Ly and Z,y-terms of the reduced Lagrangian (22] give:

g(Born) _ 8_62

pert = F? (zs + ZIO) : }3,(,?0”” = 1.

In cur analysis the coastants Fy. i and m{ are treated as the independent empirical
parameters and their values are fixed as

Fo=92MeV, pu=186MeV, m| =840 MeV . (32)

The corresponding calculated values of the inputl parameters are also presented in Table 1.
The results for the vy — 77~ cross sections are shown in Fig.1. All other constants can be
calculated usiug the values (32):

G- =54, F=0185, Z%=0.653.

13

The value for the constituent quark mass y seems to he by a factor of 2 too small as compared
with the corresponding value from the usual phenomenological analysis, based on nonreduced
Lagrangian and currents. A similar shift of the constituent quark mass has been observed, for
example, in ref. [28] after taking into account the vector-scalar and axial-vector-pseudoscalar
mixing in the analysis of the collective mesons mass spectrum within the extended NJL
model.

12



Using the values of the parameters Z5 5 and {(g9)? vhich were fixed above, one can
compare nurerically the structural parameters L, (23) of the reduced effective Lagrangian
(22) with the -orresponding parameters L, of the nonreduced Lagrangian (11):

[y = 1200 = 1.90 - 107% Ty= 17010 = 541 107%, Lg=199-107,
Lu=1.35Le = 853-107° Loz 1360y = —4.33 1072, 32
After substituting the values owai .y and (gY )7 into eqs.(29) une can also compare numeri-
caily the structute parameters ff, and R;:
RBoo= 02851070, Ry= 076K, = 242107, Ky = -0.992.107° (Rs =0},
By= 2R = 062Ky = —1.95-107", K. =039Rs =1.23- 107", (34)

[

T'he electromagnetic-weak part of lie nonreduced current (25) corresponding to the struc
tural constant Ry {respectively, the :‘;’5 term of the reduced current (28)) describes the axial-
vector form factor Fy of the radiative decay x — lpy. The forui factors of this decay ore
defined by the parametervization of the amplitude

Tu(B m = vm) = 20 By aph®g e’ & il’)«(fu"kq) - qu(l»f))]’

where k is (he d-nomentum of the decaying meson, ¢ and ¢ are the 4-momentura and pola=-
ization 4-vecior of the photon, wnd the vector form factor fy is determined by the anomalcus
Wess-Zumino electromagnetic-weak current, originating from the anomalous part of the ef-
fective meson aciion. which is refated to the phase of the quark determinant. The ratic of
the axial-vector aud vertor forin factors is determined by the relation

R A

by

The theoretival valze of the ratio &4/ Fy == 32n%La + Lyo) = 1 arising {rom nonreduced
current (25) with structure constants Lo (12) is in disagreament with the experimentai
results on this ratic:

ha 05 £ 002 (29],
\ Fy- B AL+0.23 [30]

104

At the same tiue the K5 gives the value

_1_:;4 S (1 } lzﬁ ‘_1‘1\ = (.39
[‘\' AN N: (q‘;‘ }2/’
in agreement with thie expurimental dets and also corresponds with the result of ref. {1].
Thus, after reducing the vector and axial-vector degrees of freedom it proves to be possible
to remove the inselfconsistercy in the desciiption of the ratin F'4/Fy and pion polarizability
which arises seemingly in the pseudoscalar sector of the non reduced effective Lagrangian {11)
with the Lg jo-terms (see the detailed discussion of this inseliconsistency, for example, in ref.
(31, 32]). The same problem was also considered in ref.[33], where the values of the structure
constants combination (Le+ Lio) and pion polarizability cer+ determined from the fit of vy —
o cross section data were discussed. Fig.l shows that within the experimental errors the
MARK-1[ data [34] are consistent with the experimental result for pion polarizability obtained
from radiative 7 scattering in nuclear Coulomb fields {26]. We have taken into account one-
loop corrections, while this was not done iu ref.[33]. The description of the yy — mtaT cross
section data above m,, == 500MeV can be improved if one takes into account the unitary
corrections in a more compleie way [35, 36].
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Fig.l. MARK-II [34] cross section data for yy — w¥a~ for CM3 production angles |cosf] <
0.6. The experimental point: in the region mr,, <0.5 GeV were only included in the analysis.
The dotted line shows the QED Born contribution; the dashed and dash-dotted lines show
the results of the successive inclusion of p*-contributions and one-loop corrections. Both lines
are calculated with (Ls -+ L1o) = 4.2 - 1072, corresponding to the fit of the total cross section
data together with the parameters of Table 1. The solid line corresponds to the direct fit of

the experimental points for m., <0.5 GeV without including the experimental parameters
of Table 1.
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Conclusion

In this paper we considered the modification of the bosonized Lagrangian and of the currents
for the pseudoscalar sec tor obtained after integrating out she vecior and axial-vector collective
fields in the generating functional of the NJL model. 1t has been shown, that the reduction
of the meson resonances does not affect the kinetic terms of the strong Lagrangian and the
bosonized (1" — A) curcent as well as the (S — F) current, generated by the divergent part
of quark determinant. On the other hand. the reduction of the vector and axial-vector fields
leads to an essential modification of those part of the pseudoscalar strong Lagrangian and
of the currents, which originate from O(p?) terms of the quark determinant. The reduced
Lagrangians and curreuts allow us to take into account in a simple way all effects arising
from resonance exchange contributions and 7A;-mnixing when calculating the amplitudes of
various processes with pseudoscalar mesons in the initial and final states.
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cussions and helpful comments. This work was supported by the Russian Foundation for
Fundamental Research (A A.Bel'kov and A.V.Lanyov) under grant No. 94-02-03973. A.B.
and A.L. are grateful to the Swiss Nat'onal Fund for the financial support extended to them
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Beaskos A.A., Jlanes A B, [LHaanc A, E2-94-371

O peaykKuuu BEKTOPHBIX U AKCHASIbHO-BEK TOPHBIX [0EH
B ME30HHOM addektusHomM - 1eikcTBnm

U3 acbdek TuBHOIO KBAPKOBOIO s3aumoaeicTeus Hamby — Mona-Jlasunmo
(HUJ) nosydeno >b@PekTuBHOE A€MCTBUE A4 ncesaockaasapHoro cekropa. C
TIOMOIIBIO CTATHYCCKUX YPABHCHUI JBHKCHMS 1POM3BELEHO MHTCTPHPOBAHAE
(peayKuMsl) 10 BEKTOPHbIM WM AKCHAIbHO-BCKTOPHBIM noasm. Obcyxnaercs
MoaMUKALMS CTPYKTYPHbIX Koodguumedros ['accepa-Jledreuanepa L; a1s
PEAYLMPOBAHHOIO J4rPAHKHAHA NCEBAOCKAISPHBIX MC30OHOB. DTOT XE METOA
HCIOJIb30BAH 118 PEAYKIUMHU BCKTOPHBIX # AKCUAIbHO-BEKTOPHBIX TTOJIEHN B CJa-
ObiX M JJAEKTPOMATHMTHO-CIa0bix  Fokax. PaccMoTpeHo npuMeHEHME
PEOYLUMPOBAHHOIO AAIPAHKMAHA M TOKOB 118 ONUCAHUA (DUSHUECKUX TIPOLLEC-
COB.

Pabora Bhinoanena s Jladopdaiopuu ¢sepxspicokux dHeprivid OUAN.

HIpenpu-n O6be e IO HHC LY 1A $ACPHBIX KCCael0Banmit. JlyOna, 1994

Bel’kov A.A., Lanyos AV, Schaalc A, E2-94-371
On the Reduction of Vector and Axial-Vector Fields
in a Mcson Effective Action at O(p*)

Starting from an effective NJL -type quark interaction we have derived an
effective mesor action for the pscudoscalar sector. The vector and axial-vector
degrees of freedom have been integrated out, applyving the static equations of
motion. As thc results we have found a (reduced) pseudoscalar meson
Lagrangian of the Gasser Leuiwvier ty pe with modified structure coefficients L.
This method has been also used to construct the reduced weak and
electromagnctic-weak currents. The applwation of the reduced Lagrangian and
currcnts has been considered tn physical processes.

The investigation has been performed at the Laboratory of Particle Physics,
JINR.
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