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This work proposes a novel longitudinal phase-space reconstruction method for hadron machines. The
proposed method is based on a Kalman filter and can therefore provide real-time estimates of the phase-
space reconstruction. The main input for the method is real-time measurements of the longitudinal bunch
profile. Beam conditions in the LHC are used throughout this work as examples of the applicability and
practical implementation of such a method. Longitudinal phase-space reconstructions obtained with the
proposed method are compared with a tomographic-based technique using experimentally logged data
from the LHC wall current monitors.
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I. INTRODUCTION

The knowledge of the longitudinal phase space can
provide valuable information on the quality of the beam
including injectionmatching, capture performance, stability,
time/phase spread, momentum/energy spread, longitudinal
emittance, injection oscillations and filamentation. A tomo-
graphic-based reconstructionmethod coupledwith a particle
tracking code using longitudinal beamprofilemeasurements
has been proposed in [1]. Following this, other tomography-
based implementations and system design proposals have
been reported in different facilities [2–5].
We propose here a different approach based on a Kalman

filter. The main advantages of this method are low
computational load, sequential profile-by-profile process-
ing and no need for prior trajectory calculations. It can be
used in order to reconstruct the phase space, in real time, for
arbitrarily long (i.e., unbounded) time intervals. In this
work we start by deriving the unperturbed phase-space
equations of motion for the case of hadron bunches, where
typically the energy loss per turn is negligible. We then
build a model for the evolution of the particle density in a
polar discretization of the longitudinal phase space as
well as a model that relates this density with the longi-
tudinal bunch profile. Subsequently we show how these
models can be incorporated in the context of a Kalman
filter estimating the phase-space density using profile

measurements as a sole input. Finally we present
reconstruction results based on both real and simulated
data, as well as a comparison with the tomography-based
method. Conclusions and practical remarks are discussed at
the end.

II. SYNCHROTRON MOTION: TIME AND
MOMENTUM OSCILLATIONS

As shown in [6], for the typical case of hadron machines
where the energy loss per turn is small compared to qV̂rf

(where q denotes the particle charge and V̂rf the peak rf
voltage), the differential equation governing the rf phase
difference Δϕrfi between bunch particle i and the syn-
chronous particle, as a function of time t, is given by

d2Δϕrfi

dt2
þ Ω2

0 sin ðΔϕrfiÞ ¼ 0; ð1Þ

where Ω0 is the nominal synchrotron frequency.
Equation (1), valid for negligible deformations of the shape
of the longitudinal potential well, has the form of the
pendulum equation, for which a well-known approximate
solution can be obtained from the traditional solution of the
harmonic oscillator [7],

Δϕrfi ¼ dΔϕrfi cos ðΩitþ ϕiÞ; ð2Þ

where dΔϕrfi is the rf phase amplitude of synchrotron

oscillations, ϕi is the initial phase and Ωi ¼ Ωið dΔϕrfiÞ is
the synchrotron frequency given by

Ωi ¼
π

2K
h
sinðdΔϕrf i

2
Þ
iΩ0; ð3Þ
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where Kð·Þ is the complete elliptic integral of the first kind
(page 590 of [8]). Both dΔϕrfi and Ωi are time invariant in
the absence of nonconservative forces.
It was shown in [9] that for synchrotron oscillations with

amplitudes satisfying dΔϕrfi ≲ 0.8π, which in the LHC
corresponds to time oscillation amplitudes τ̂ ≲ 1 ns
(i.e., bunch lengths ≲2 ns), Eqs. (2) and (3) provide a
valid approximation to the general solution of Eq. (1). In
addition, a second order approximation of Eq. (3) based on
the MacLaurin series expansion, and which will prove
useful later on, is given by Eq. (40) of [10]:

Ωi ¼
�
1 −

dΔϕrf
2

i

16

�
Ω0: ð4Þ

Figure 1 shows the synchrotron frequency of particle i as
a function of its oscillation amplitude, as given by Eqs. (3)
and (4). As can be seen, there is a good match between the
approximate and the exact solutions for oscillation ampli-
tudes dΔϕrfi ≲ 0.8π.
We shall consider the longitudinal phase ϕLi

ðtÞ as the
angular distance traveled by particle i up to time t. Noting
that Δϕrfi ¼ h × ΔϕLi

, where h is the rf harmonic number
(h ¼ 35640 in the case of LHC) and ΔϕLi

is the longi-
tudinal phase difference between particle i and the syn-
chronous particle, we can substitute it in Eq. (2) to write

ΔϕLi
¼ dΔϕLi

cosðΩitþ ϕiÞ: ð5Þ

Since by definition the longitudinal phase increment of the
synchronous particle is exactly ω0T0 ¼ 2π per turn, where
ω0 is the nominal angular revolution frequency and T0 is
the nominal revolution period, we have that the longitudinal
phase of particle i is given by

ϕLi
ðtÞ ¼ ω0tþ dΔϕLi

cosðΩitþ ϕiÞ þ ϕL; ð6Þ

where ϕL is the initial phase of the bunch with respect to
some longitudinal reference. Differentiating Eq. (6) we get
the expression for the revolution frequency of particle i as a
function of time:

ωLi
ðtÞ ¼ ω0 − dΔωLi

sinðΩitþ ϕiÞ; ð7Þ

where dΔωLi
¼ Ωi

dΔϕLi
is the amplitude of the oscillation in

revolution frequency around its nominal value ω0.
We can now estimate the time difference between

particle i and the synchronous particle on a turn-by-turn
basis. Let us start by calculating the Taylor series expansion
of Eq. (6) in the vicinity of the instants t ¼ nT0, where n
represents an integer number of turns and τni represents the
time difference between the moments when particle i and
the synchronous particle have the longitudinal phase 2nπ.
Without loss of generality, we can choose the arbitrary
initial phase ϕL in Eq. (6) to be zero. Keeping only terms up
to second order we can write

ϕLi
ðnT0 þ τniÞ ≃ ϕLi

ðnT0Þ þ τni × ωLi
ðnT0Þ

þ τ2ni
2
×

�
dωLi

dt

�
t¼nT0

þ � � � ¼ 2nπ; ð8Þ

which, after a bit of manipulation, becomes

τni ≃
−
dΔωLi
ωoΩi

cosðnΩiT0 þ ϕiÞ

1 −
dΔωLi
ω0

sinðnΩiT0 þ ϕiÞ − Ωi
dΔωLi
2ω0

τni cosðnΩiT0 þ ϕiÞ þ � � �
: ð9Þ

From the previous we can conclude that if

ϵk ¼
����Ωk−1

i

k!

dΔωLi

ω0

τk−1ni

���� ≪ 1 for k ∈ Zþ;

then Eq. (9) reduces to

FIG. 1. Comparison between the exact [Eq. (3)] and approxi-
mate [Eq. (4)] expressions for the synchrotron frequency as a
function of the oscillation amplitude.
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τni ≃ −
dΔωLi

ωoΩi
cosðnΩiT0 þ ϕiÞ: ð10Þ

In the case of hadron machines such as the LHC, for
which we can use typical values at injection energy

Ω0 ≈ 2π × 65 Hz;

dΔωLi

ω0

����
1σ

≈ 10−7;

jτj < τ̂Li
≈ 1 ns;

we can clearly demonstrate that Eq. (10) holds.
Being able to write Eq. (10) is very interesting. First of

all it confirms that the turn-by-turn time difference between
particle i and the synchronous particle is described by a
simple harmonic motion, as stated in Eq. (16) of [11]
without much justification. Furthermore, it immediately
provides a relationship between the time amplitude of the
synchrotron oscillations and the amplitude of the momen-
tum deviation:

τ̂Li
¼

cΔωLi

ωoΩi
¼ jηj

Ωi

cΔpi

p0

; ð11Þ

where η ¼ 1=γ2 − α represents the slip factor and α the
momentum compaction factor. In the case of the LHC we
have η ≈ −α since the machine is operated well above
transition energy.
In fact, Eq. (11) can also be found in Eq. (7) of [12] and

in Eq. (9.70) of [13] in the context of low amplitude
oscillations. What we demonstrate here is that, in the case
of hadron machines, the expressions valid for low ampli-
tude oscillations are still valid for maximum elongations of
up to 80% of the length of the rf bucket, i.e., often within
typical operating conditions.
Equation (11) is, of course, directly related to the bunch

length. So, again for typical LHC parameters at injection
energy, i.e.,

Ω0 ≈ 2π × 65 Hz;

η ≈ −3.182 × 10−4;

cΔpi

p0

≈ 4 × 10−4;

we get that

τ̂4σL ≈ 4 ×
3.182 × 10−4

2π × 65
× 4 × 10−4 ≈ 1.25 ns

which largely agrees with available bunch length
measurements.

As previously discussed, an approximate solution for the
pendulum equation [Eq. (1)] is defined by Eqs. (2) and (3).
This means that each particle undergoes linear synchrotron
motion (i.e., harmonic oscillations) at a frequency that
depends on its amplitude of oscillation. The turn-by-turn
momentum deviation of particle i can therefore be written
as in Sec. 9.2.1 of [13]:

Δpni ¼ cΔpi sinðnΩiT0 þ ϕiÞ; ð12Þ

where the sign in front of cΔpi reflects the assumption that
the machine is operated above transition energy, again,
certainly the case of the LHC. Momentum oscillations,
described by Eq. (12), are therefore in phase quadrature
with respect to the time oscillations, given by Eq. (10), and
the knowledge of τ̂i and ϕi completely defines the motion.
Having established the relationships describing the

motion in longitudinal phase space, we now proceed to
propose an equivalent model in the case of a discretized
phase space.

III. DISCRETE PHASE-SPACE
EVOLUTION MODEL

We shall start by considering a polar phase-space
discretization with angular resolution Δϕ and radial reso-
lution Δτ̂. Each point has discrete coordinates ðϕi; τ̂jÞ, for
positive integers i ∈ ½1; Nϕ� and j ∈ ½1; N τ̂�, where Nϕ and
N τ̂ are, respectively, the number of points of the angular
grid and the number of points of the radial grid. An
example representation of this grid is shown in Fig. 2.
To every point in this grid, we associate Cartesian

coordinates ðτ; υÞ, related to the polar coordinates ðϕ; τ̂Þ by

FIG. 2. Representation of a polar phase-space discretization.
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τ ¼ τ̂ cosðϕÞ υ ¼ τ̂ sinðϕÞ: ð13Þ

The Jacobian of the transformation ðϕ; τ̂Þ → ðτ; υÞ is τ̂
and the joint local probability densities of finding
bunch particles at any time instant t are related by (page
201 of [14])

pτ;υðτ; υ; tÞ ¼
pϕ;τ̂ðϕ; τ̂; tÞ

τ̂
: ð14Þ

Equation (14) will be useful in the next section.
Let us now consider a discrete time array tk, with

resolution Δt. From Eq. (10) we have that

pϕ;τ̂ðϕi; τ̂j; tkÞ ¼ pϕ;τ̂ðϕi − ΩjΔt; τ̂j; tk−1Þ; ð15Þ

where Ωj is the synchrotron frequency of a particle with
amplitude τ̂j. This essentially means that, for a given
amplitude τ̂j, pϕ;τ̂ðϕi; τ̂j; tkÞ rotates rigidly with synchro-
tron frequency Ωj=2π. Equation (15), determining the next
state of the phase space based solely on the previous one,
essentially defines a Markov process for the unperturbed

evolution of a particle in longitudinal phase space. A
complication arises from the fact that the angle ϕi −
ΩjΔt in general does not lie on a grid point. One solution
is to linearly interpolate pϕ;τ̂ðϕi −ΩjΔt; τ̂j; tk−1Þ, between
the two closest grid points of the same amplitude, using

pϕ;τ̂ðϕi −ΩjΔt; τ̂j; tk−1Þ
≃ αimj × pϕ;τ̂ðϕm; τ̂j; tk−1Þ

þ ð1 − αimjÞ × pϕ;τ̂ðϕm−1; τ̂j; tk−1Þ; ð16Þ

where m is such that ϕi −ΩjΔt ∈ ½ϕm−1;ϕm� and
αimj ¼ ðϕi −ΩjΔt − ϕm−1Þ=Δϕ.
If we now simplify the notation by writing

pk
ij ¼ pϕ;τ̂ðϕi; τ̂j; tkÞ

and assume, for the sake of argument and without loss of
generality, that Δϕ > ΩjΔt, ∀j ∈ N (i.e., m ¼ i), we can
express the time evolution of the probability density of
every point in the phase-space grid by writing

0
BBBBBBBBBBBBBBBBBB@

pk
11

pk
21

pk
31

pk
12

pk
22

pk
32

pk
13

pk
23

pk
33

1
CCCCCCCCCCCCCCCCCCA

|fflfflfflffl{zfflfflfflffl}
pk

¼

0
BBBBBBBBBBBBBBBBBB@

α111 0 1− α111 0 0 0 0 0 0

1− α221 α221 0 0 0 0 0 0 0

0 1− α331 α331 0 0 0 0 0 0

0 0 0 α112 0 1− α112 0 0 0

0 0 0 1− α222 α222 0 0 0 0

0 0 0 0 1− α332 α332 0 0 0

0 0 0 0 0 0 α113 0 1− α113

0 0 0 0 0 0 1− α223 α223

0 0 0 0 0 0 0 1− α333 α333

1
CCCCCCCCCCCCCCCCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
F

0
BBBBBBBBBBBBBBBBBB@

pk−1
11

pk−1
21

pk−1
31

pk−1
12

pk−1
22

pk−1
32

pk−1
13

pk−1
23

pk−1
33

1
CCCCCCCCCCCCCCCCCCA

|fflfflfflfflffl{zfflfflfflfflffl}
pk−1

; ð17Þ

using Nϕ ¼ N τ̂ ¼ 3 as an example. The dimension of p is
NϕN τ̂ × 1 and the dimension of F is NϕN τ̂ × NϕN τ̂.
It is thus possible to express the discrete time evolution

of the local joint probability density, recursively, in
matrix form.

IV. DISCRETE PHASE-SPACE
MEASUREMENT MODEL

The longitudinal bunch profile is the cumulative sum of
the projections of all particles onto the horizontal τ axis. Let
us define a discrete array τi ∈ ð−N τ̂Δτ̂; N τ̂Δτ̂Þ, having
Nτ ¼ 2N τ̂ − 1 entries spaced by Δτ ¼ Δτ̂, representing
the time differences with respect to the synchronous
particle, at which to calculate the longitudinal bunch

profile. We can now define the relationship between the
probability density in the discretized phase space and
the longitudinal bunch profile λðτÞ. For this we will refer
to Fig. 3 and note that the relative number of particles
(also commonly referred to as line density) measured
at horizontal grid point ðτ ¼ τ2; υ ¼ 0Þ can be approxi-
mated by

λðτ2Þ ≈ ½pτ;υðPT
1 Þ þ pτ;υðPB

1 Þ�l1δτ
þ ½pτ;υðPT

2 Þ þ pτ;υðPB
2 Þ�l2δτ; ð18Þ

where the labels T and B denote, respectively, the Top and
Bottom points. The probability densities in the previous
expression can be interpolated by
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pτ;υðPT=B
n Þ≈ τ̂ðPT=B;out

n Þ− τ̂ðPT=B
n Þ

τ̂ðPT=B;out
n Þ− τ̂ðPT=B;in

n Þ
pτ;υðPT=B;in

n Þ

þ τ̂ðPT=B
n Þ− τ̂ðPT=B;in

n Þ
τ̂ðPT=B;out

n Þ− τ̂ðPT=B;in
n Þ

pτ;υðPT=B;out
n Þ; ð19Þ

where τ̂ðPÞ denotes the synchrotron amplitude at point P
and the labels in and out denote, respectively, the inner
and outer points. From Eq. (14) we have that

pτ;υðPT=B;in=out
n Þ ¼ pϕ;τ̂ðPT=B;in=out

n Þ
τ̂

; ð20Þ

and finally from Eq. (16) we obtain pϕ;τ̂ðPT=B;in=out
n Þ.

In summary, the procedure to calculate λðτÞ is the follow-
ing: from Eq. (16) we can calculate pϕ;τ̂ðPT=B;in=out

n Þ, then,
fromEq. (20) we calculatepτ;υðPT=B;in=out

n Þ, this enables us to
calculate pτ;υðPT=B

n Þ from Eq. (19) and finally get λðτÞ from
Eq. (18), where l1 and l2 are obtained from direct geometric
considerations and δτ is in practice an arbitrary constant
whose value is independent of the measurement point and
thus does not affect the shape of the profile.
Using the procedure described in this section for a

predefined polar grid in phase space, the overall longi-
tudinal bunch profile can be expressed as a sum of linear
combinations of probability densities via

λk ¼ Hpk; ð21Þ

where H is calculated almost strictly from geometric
principles. The bunch profile vector λ has dimensions
Nτ × 1 and the matrix H has dimensions Nτ × NϕN τ̂.

V. KALMAN FILTER IMPLEMENTATION

The Kalman filter (KF) [15] is an estimator which
incorporates information from both theoretical models
and experimental measurements in order to provide optimal
estimates of the state of a system. The Kalman filter works
in two stages. In the first stage the filter uses the theoretical
model to predict the evolution of the state of the system
(prior state estimate). In the second stage this prediction is
corrected by incorporating the experimental measurements
(posterior state estimate). The Kalman filter is essentially
applicable to Markov processes whose state evolution can
be described by a linear model and whose measurements
can be related to the system state also via a linear model.
The two fundamental expressions required for the use of

the Kalman filter have already been derived. These are the
process evolution model, Eq. (17), and the measurement
model, Eq. (21).
The overall idea of the Kalman filter is evident from the

following expressions:

pkjk−1 ¼ Fpk−1jk−1; ð22Þ

λkjk−1 ¼ Hpkjk−1; ð23Þ

and

pkjk ¼ pkjk−1 þKkðλkexp − λkjk−1Þ: ð24Þ

All kjk − 1 indexes refer to a prediction (prior) and all
kjk indexes refer to a correction (posterior). λkexp denotes the
experimental measurements of the longitudinal beam pro-
file taken at time index k, λkjk−1 are the predicted mea-
surements, K is the Kalman filter gain (which will be
discussed shortly) and pkjk is the final estimation of the
phase-space density distribution for discrete time index k.
In order to apply the set of Eqs. (22) to (24) we need to

calculate the Kalman gain K. The gain can be obtained for
every time index k using the following set of expressions:

Pkjk−1 ¼ FPk−1jk−1FT þQ; ð25Þ

Kk ¼ Pkjk−1HTðHPkjk−1HT þRÞ−1; ð26Þ

and

Pkjk ¼ ðI −KkHÞPkjk−1; ð27Þ

where Q is the process covariance matrix, R is the
measurement covariance matrix and P is the covariance
matrix of the combined estimates. Matrix Q represents the

FIG. 3. Auxiliary figure supporting the explanation on how to
express the longitudinal bunch profile at ðτ ¼ τ2; υ ¼ 0Þ as a
function of the local joint probability densities.
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joint variability of the process and can be chosen arbitrarily,
whileR represents the joint variability of the measurement.
For simplicity we assume that both matrices are of the form

Q ¼ qIQ ð28Þ

and

R ¼ rIR; ð29Þ

where IQ and IR are, respectively, the NϕN τ̂ × NϕN τ̂ and
Nτ × Nτ identity matrices, meaning that neither of them
exhibits internal correlations and that all variances are
uniform. Essentially, small values ofK favor the prediction
stage (i.e., enhances the weight given to the process model)
while large values of K favor the correction stage (i.e.,
enhances the weight given to the experimental measure-
ments). This balance depends on the relative magnitude of
the elements in the Q matrix with respect to the ones in the
R matrix. The shape of matrices Q and R does not restrict
the potential solution to a specific case, but might however
impact the convergence. In Eqs. (28) and (29) we have
chosen the simplest example, which may be refined based
on the properties of the measurement system, adopted
Kalman filter model and requirements of the desired phase-
space reconstruction.
We can see from Eqs. (25)–(27) that the Kalman filter

gainK is independent of measurements and state estimates.
In fact, K depends only on F, H, Q and R, which are all
stationary matrices. This means that, in principle,K can be
precalculated by recursively evaluating Eqs. (25) to (27)
and verifying that it converges to a steady-state value K∞.
Alternatively, one can substitute Pkjk−1, from Eq. (25), into
Eq. (26) to obtain the discrete algebraic Riccati equation
which, in case of convergence, can also be used to calculate
K∞ (page 194 of [16]). Even in case of convergence to a
fixed value K∞, the resulting filter is only stable if the
absolute value of each of the eigenvalues of ðI −K∞HÞF
is less than 1 (page 196 of [16]). For the Kalman filter
parameters used in the examples presented in the next
section, we have verified that the recursive evaluation of
Eqs. (25)–(27) leads to a stationary value K∞ and that the
resulting filter is indeed stable.
In terms of computational load, and since the Kalman

gain can be precomputed, this method is extremely inter-
esting since it requires no more than three matrix-vector
multiplications and two vector sums [i.e., Eqs. (22) to (24)]
on each iteration to provide a phase-space estimate in polar
coordinates. Furthermore, it does not require the real-time
evaluation of trigonometric or other complex functions
which are computationally expensive.
An important aspect to note is that we have defined

pϕ;τ̂ðϕ; τ̂; tÞ as a probability density. As such we have to
guarantee that pϕ;τ̂ðϕi; τ̂j; tkÞ > 0; ∀ i; j; k, which is the
same as saying that not a single element of pkjk, calculated

using Eq. (24), can be negative. In order to satisfy this we
need to use a version of the Kalman filter that can handle
state constraints. We have therefore implemented the
approach described in Sec. 2.4 of [17] with hardly an
impact in terms of computation time with respect to the
classical unconstrained Kalman filter.

VI. RESULTS

In order to test the feasibility of this method as an online
phase-space reconstruction tool, we have tested it using
turn-by-turn LHC wall current monitor (WCM) longi-
tudinal bunch profile measurements as an input. The
chosen dataset consists of 398 profiles acquired at a rate
of 40 Gsps (i.e., approximately 100 points per profile),
covers the first turns after injection and shows strong
oscillations due to an initial phase mismatch between the
bunch and the rf waveform. For this dataset, we compare
the results of the Kalman-based reconstruction with the
ones obtained using the standard tomography-based
reconstruction method described in [5].
The Kalman filter was configured withNϕ ¼ 144, which

corresponds toΔϕ ¼ 2.5° for the angular grid,N τ̂ ¼ 40 and
Nτ ¼ 79 (which corresponds to Δτ̂ ¼ Δτ ¼ 12.5 ps) since,
as we have seen before, this approach is only valid for
elongations up to 80% of the bucket length. As a conse-
quence, the first ten and last eleven points of each profile
(with negligible number of particles compared to the center
of the bucket) are ignored. From the rf settings at the time of
injection we know that the synchrotron frequency is approx-
imately 45.82Hzwhich, in the case of the LHC, corresponds
to a synchrotron tune of 4.07 × 10−3. This means that,
during the aforementioned 398 turns, we observe approx-
imately 1.5 synchrotron periods. Regarding matricesQ and
R, respectively given by Eqs. (28) and (29), we have made
q ¼ r ¼ 1, i.e., comparable weight is given to both the
theoretical model and the profile measurements. Finally, we
have used uniform distributions for both the synchrotron
phase and amplitudes as an initial guess of the phase-space
configuration.
As previously seen, the Kalman filter estimates the

phase-space density in polar coordinates, i.e., it estimates
pϕ;τ̂ðϕ; τ̂Þ. In order to express this density in the ðτ;Δp=p0Þ
coordinate system, we can make use of the transformation
ðϕ; τ̂Þ → ðτ;Δp=p0Þ defined by

τ ¼ τ̂ cosðϕÞ; Δp
p0

¼ −
Ωðτ̂Þτ̂
jηj sinðϕÞ: ð30Þ

The choice of signs in the above equation is the result of
the negative slip factor for machines operating above
transition energy. This implies the clockwise rotation of
the phase space. Adopting the sign convention opposite to
Eqs. (10) and (11) has no impact on the model and is
consistent with Eq. (13).
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If we now use Eq. (4) to express Ωðτ̂Þ and note thatdΔϕrfi ¼ hω0τ̂i where h is the rf harmonic number, we can
show (page 201 of [14]) that the joint probability densities,
pϕ;τ̂ðϕ; τ̂Þ and pτ;Δpp0

ðτ; Δpp0
Þ, are related by

pτ;Δpp0

�
τ;
Δp
p0

�
¼ pϕ;τ̂ðϕ; τ̂Þ

Ω0 τ̂
jηj ½1 −

h2ω2
0
τ̂2

8
ðsin2ðϕÞ − 1

2
Þ�
; ð31Þ

where ϕ and τ̂ are given by the inverse transform of
Eq. (30). Essentially, Eq. (31) defines a stationary map
which can be precomputed, and that has to be applied to the
Kalman filter estimate pϕ;τ̂ðϕ; τ̂Þ in order to convert the
phase-space density to the more relevant ðτ;Δp=p0Þ set of
coordinates.
The results from both the Kalman filter phase-space

reconstruction and the standard tomography-based method
are shown in Fig. 4. Since the adopted synchrotron motion
model is only valid for particles within the central 80% of
the bucket, particles closer to the edge of the rf bucket are
not present in the KF estimate.
While the standard tomography method uses the full

dataset of 398 profiles (iterating over all of them a
predefined number of times) in order to calculate the
phase-space evolution turn by turn, the Kalman filter
process is recursive and provides an estimate in real time,
having only the present profile as an input at each step. A
consequence of this fact is that the filter needs some time to
converge to the true phase space. We can observe the
reminiscences of this process in the form of artifacts present

in the center of the phase space. As we do not have profile
measurements beyond the 398th turn for this fill, we
support this statement with two simulations. First, follow-
ing the distribution given by the tomography based phase-
space reconstruction for turn 398, we draw a Monte Carlo
sample of 5 × 105 particles and track their evolution, which
is assumed to follow the synchrotron motion described in
Sec. II. Projecting such an ensemble on the τ axis we obtain
further longitudinal bunch profiles, which can be analyzed
with the KF method. In phase spaces obtained in such a
way after processing additional 150 and 300 turns the
impact of the central artifact is progressively reduced, as
can be seen in Fig. 5.
An additional verification comes with analysis of the

early steps of the filter convergence. In order to focus only
on this aspect, a well-centered bunch with a stationary
longitudinal bunch profile was simulated. In Fig. 6 we can

FIG. 5. Kalman filter phase-space reconstruction of the addi-
tional turns. Input longitudinal profiles based on the Monte Carlo
simulation.

FIG. 4. Comparison between the results of the standard
tomography phase-space reconstruction (TOMO) and the
Kalman filter-based reconstruction (KF) in the presence of
injection oscillations.

FIG. 6. Early steps of the Kalman filter phase-space
reconstruction in the case of the well-centered stationary bunch.
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see that the phase-space estimate gradually improves and
requires, in this particular case, approximately 200 turns for
the full convergence where the central artifact is no longer
visible.

VII. APPLICABILITY TO OTHER
BEAM CONDITIONS

All considerations up to this point, including the vali-
dation of the synchrotron motion approximation as well as
the construction of the state-transition matrix F and
observation matrix H were made under the assumption
of LHC-like parameters in stationary conditions. In this
section we would like to address what is the range of
applicability of the Kalman filter-based longitudinal phase-
space reconstruction method, and what changes may be
required.
The state-transition matrix F has been constructed in

Sec. III under the assumption that the energy loss by a
particle in a single turn is small relative to its total energy
and that particles are not present near the boundaries of the
rf bucket. In addition, the rf system is, or is equivalent to,
a single-cavity stationary system. This, as discussed in
Sec. II, results in a sinusoidal synchrotron motion, with an
amplitude-dependent synchrotron frequency. Such an
assumption is valid for the LHC, as well as for other
hadron machines, such as RHIC [18] (when operating with
a single rf system) and J-PARC main ring [19]. In these
cases all the derivations presented in this paper remain valid
and we should only change the relevant machine-specific
parameters (nominal synchrotron frequency, slip factor and
rf bucket length).
In the case of high energy losses, as in lepton machines

(FCC-ee, CEPC), multiharmonic rf systems as in the SPS
[20], nonsinusoidal rf systems [21], or in the presence of
particles near the boundaries of the rf bucket, the results of
Sec. II are not valid, and, as a consequence, the state-
transition matrix F would be different from the one
presented in Sec. III. Still, such a matrix may be precom-
puted based on the knowledge of the rf system and phase-
space evolution model, including e.g. impedance, radiation
losses and space charge. The limitation being that the
underlying process cannot be chaotic, like in certain double
rf system configurations [22].

VIII. CONCLUSIONS AND PRACTICAL
CONSIDERATIONS

A new approach for the reconstruction of the longi-
tudinal phase-space based on profile measurements, and
with direct application to hadron machines, has been
developed. The method, based on a Kalman filter, strongly
depends on the adopted model of the synchrotron motion.
Examples assuming sinusoidal synchrotron motion, with an
amplitude-dependent frequency were shown to be valid for
bunch lengths of up to about 80% of the single-harmonic rf

bucket length. Although it represents an undeniable limi-
tation of the model, not being able to cope with larger
oscillation amplitudes, for many hadron machines such as
the LHC, this covers the overwhelming majority of
operating time and scenarios. The method has been tested
using longitudinal bunch profiles from WCMs in the LHC
and compared with the standard phase-space tomography,
showing good agreement.
The method, with the synchrotron motion model pre-

sented in this paper, requires the knowledge of the nominal
synchrotron frequency, which can be obtained from
Eq. (9.35) of [13] knowing the nominal momentum, the
peak rf voltage and the cosine of the synchronous phase.
For example, in the LHC, even during acceleration, the
synchronous phase is always <5°. This means that its
cosine is always close to one. Since the values of the
nominal momentum and maximum rf voltage are available
in real time, this does not represent a problem. Impedance
effects leading to significant shifts of the synchronous
phase and of the synchrotron frequency are not taken into
account and are out of the scope of this paper. Alternatively,
the nominal synchrotron frequency can be obtained from
fitting the Schottky spectrum using, for example, the
method described in [9]. In the case of storage ring colliders
such as the LHC, the synchrotron frequency changes only
during acceleration remaining otherwise stationary.
An additional requirement of this method is that the

profile measurements need to be synchronous with the rf
waveform, so that the center of the bucket is precisely
known. Such a synchronization in the case of LHC is not
difficult, as profile measurements are triggered with a jitter
of approximately �25 ps with respect to the rf clock.
In Sec. VI we have used turn-by-turn profile measure-

ments. In this particular case, this corresponds to acquiring
approximately 245 profile measurements per synchrotron
period. Such a high profile acquisition frequency is not
strictly necessary and one could consider reducing the
frequency of this update to, for example, 20 profile
measurements per nominal synchrotron period. This would
help reduce the computational demand of a potential real-
time implementation. Similarly, one could also consider
increasing the spacing of the angular grid, thus reducing
matrix sizes in the Kalman filter implementation. Doing so
would however increase the discretization error, degrading
the quality of the reconstruction.
The validity conditions of this method were discussed.

Impedance effects leading to a significant deformation of
the potential well within the bunch length region would
modify the F matrix and are not taken into account.
Thorough studies on the behavior of the method under
such conditions can be performed and provide an interest-
ing research topic for the future. In principle, any pertur-
bations occurring at timescales much longer than the profile
update period should be taken into account by the correc-
tion term of the filter depending on its bandwidth (i.e., the
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values of r and q). Likewise, also the possible propagation
of discretization errors should be mitigated. Furthermore,
zero-mean perturbations occurring at timescales much
smaller than the profile update period should also, in
theory, have no impact on the filter performance.
Problems are expected to arise from nonzero-mean pertur-
bations occurring at timescales smaller or comparable to
the profile update period. Still, all deviations from the
undisturbed synchrotron motion will in principle have an
impact on the measured profiles and will therefore be taken
into account by the filter.
When it comes to using experimental beam profile

measurements, we have not considered the possibility of
the bunch spectrum having relevant frequency content
beyond the bandwidth of the instrument. However, this
can be taken into account by modifying the measurement
matrix H in order to approximate the bandwidth of the
predicted profile to the experimentally obtained one.
We plan to apply this method directly on the acquired

turn-by-turn longitudinal profiles measured during the next
LHC run (2022–2024) and assess its performance. In
addition, we also plan to continue developing this method
not only to take into account impedance effects but also to
estimate their contribution. Such a development will likely
make use of one of the nonlinear implementations of
the Kalman filter and will be a natural evolution of the
present work.
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