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In the variational cumulant expansion approach. we calculate the internal
energy for the d-dimensional O(N) non-linear v models on laitice. Specially, we
give the results for two-dimensional 0(3),0(4) and O(5) models. A comparison
with Monte Carlo (MC) data is also presented. Our formalism can give the
results for O(N) non-linear ¢ models { for any N and any dimensionality d )

straightforward.
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1. Introduction

{N) non-linear v models in d=2 dimensions are of special interest tn particie
physicists due to their similarities with QCD. More than ten years ago, Wegner
and Migdal ™ have conjectured that there are important sioularities betwesn twe-
dimenstonar Q{IN} aon-lizer » models and {our-dimensional SU{N) gauge theories

o far.this conjeciure has been sucressinl
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els by puraesical simulatiors. In this paper, we siudy the lattice d-dimensional (N
non-linear o models in the variatienal camulaut expansion approach. The formula-
tion is given in Sec.2. In Sec.d, we give our resuits for swo-digmensional 0{3),0(4)

and O(5) models for comparison with MC data

i. The Formulation

Let us copsider the d-dimensional O(N) non-livear 7 models on lattice. The
partiticn fanciion of the sysiem is defined as
".
Z = fidrf}i“ , {1}



with the action(Wilson action)
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where J, 15 a real unit N-dimensicnal vector at ihe i-th lattice site and < i) o> ain

neatesi-neighbor sites on a square lattice. 3 = # is the inverse temperatuse aud {do!
denotes the wneasure
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The free energy * per site is ahiained by
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where N is the total number of sites. The average 1nternal energry per site can be

calculated. It is

as
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Now let us use the variational cumuiant expansion method to study these modais. It
is very diffcult to comipute the partition function anaiytically. In orde: to calcsdaie
it, let us introduce the effective nction 5p{J,3} which should be as "close” to the §
as possible and easy to calenlate. Wa chaose
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where variationai parameter J, is defined for each siie. J; is a N-dimensional vector
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Jo=1 (9)
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Due to the symreiry we put J; = J for each site. For simplicity for calculating. let us
rotate the coordinate scheme to make the 1-axis paraliel to J. Thus, J' = |J | =J

and
Jz.:.fa.:...:.]"\'::e . (10)

Thus, the calculation could be proceeded in 5, system instead of in S system. The

effective action Sy becomes
Se=—3 Joa . (11)

The variational parameter J in S is determined by minimizing {ree energy in cumu-
lant expansion. { In this paper, we expand it up to A, order,see below.) According

to cumulant expansion, the partition function is

L4

Z = Zo(e™ Y= Z, exp (2 ;l—‘ Kn) ., (12)
where
Zo= [ldo] S oD = (FIYY (13)
The single site integral is
Fl= /d&‘,— e’ o (14)



K, = {(5~-5 ,
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3]

Ky = ({55 - 5P~ 3(5 — Shetlde - S0 + 25y - S);

[y
o
R

Because the modulus of 7, is 1, so F'J is an integral in the spheve suriace
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Fho= jexy: {17}
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where [x{J} s N ch modified Bessed function
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Then ( S Yo, { 5 Jo, can be expressed as
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where d is the dimensionality. Now we can caiculate K,. (In this paper, #¢ cxpand

it up to K; order to calculate the iniernal enexgy.j For example,

KlZﬁA‘V,(i(;‘)Q—-,\:(~},c N (21)
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Similarly, we have

K: = BNd[(])o—(])]
+3 N 2d (2= 1) [ (Yo~ (]3]
=43 NA[ (L Jo={1)o( - o]
N o= (0],
(22)
Obviously only connected diagrans give non-zero contdbution to K. ™. For exam-

ple,the contributions of some of them are

{1 = (oY ,
(‘)0 = J(Ul)o ’
(He = (&5 + (VR + (VR + (%),

A

Uldo = (@ ol )00 )o + (0 o ((()P)2 + (PP + e + (0 V1)) (23)

The averages of all connected diagrams in Eq. (15) can be analytically calculated

y, = 5)
(%) = Ixz;a(ﬁ ,
) 1 Iyza(J)
(@) = F(o'h + 2t |
7 Isa(7)
(@ = (@ Fh= o = (@ P = 3 (2
N1 Ina(J
(P = (e - M2 D (20
¥

Substituting the variational parameter J determined by the minimizing free energy

into (7), we get the internal energy E.

3. Results and Conclusion
We give the internal energy E for two-dimensional N=3, 4, and 5 models (shown

in Fig. 1-3). MC data is from [4]. We see that our results are in good agreement



with MC daia in the strong and weak coupling region. There are a little discrepancy

in the intermediate region.
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Let's ubserve the weak expansion of internal energy of O(N) o model, it i -
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in d=2 dimensions.
Our caiculation gives
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to the K3 order.(see Egs.(7),(6) and(12))

Comparing Eqs.(25),(26)and(27},0ne can find again, if one determine {rec energy
of the system to the first two order in the variational comulant expansion, tie bes:

results of internal energy is also given by the first two order in this expansion.

Gur resulis show that the variational cumulant exparsion is also a promsing

theoretical method for the investigation of the lattice O(N) & models.
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Figure Captions

Fig. 1:

Fig. 3:

The internal energy for O(3) model(solid line), scaling approximation from

Eq.(25) (dotted line), MC date taken from[4](crosses).

The internal energy for O(4) model(solid line), scaling approximaiion from

Eq.(25) (dotted line), MC date taken from{4](crosses).

The internal energy for O(3) model(solid line), scaling approximation {rom

Eq.(25) (dotted line), MC date taken from[4]{crosses).
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